Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Association between recruitment methods and attrition in Internet-based studies.
    (PUBLIC LIBRARY SCIENCE, 2014) Bajardi P; Paolotti D; Vespignani A; Eames K; Funk S; Edmunds WJ; Turbelin C; Debin M; Colizza V; Smallenburg R; Koppeschaar C; Franco AO; Faustino V; Carnahan A; Rehn M; Merletti F; Douwes J; Firestone R; Richiardi L
    Internet-based systems for epidemiological studies have advantages over traditional approaches as they can potentially recruit and monitor a wider range of individuals in a relatively inexpensive fashion. We studied the association between communication strategies used for recruitment (offline, online, face-to-face) and follow-up participation in nine Internet-based cohorts: the Influenzanet network of platforms for influenza surveillance which includes seven cohorts in seven different European countries, the Italian birth cohort Ninfea and the New Zealand birth cohort ELF. Follow-up participation varied from 43% to 89% depending on the cohort. Although there were heterogeneities among studies, participants who became aware of the study through an online communication campaign compared with those through traditional offline media seemed to have a lower follow-up participation in 8 out of 9 cohorts. There were no clear differences in participation between participants enrolled face-to-face and those enrolled through other offline strategies. An Internet-based campaign for Internet-based epidemiological studies seems to be less effective than an offline one in enrolling volunteers who keep participating in follow-up questionnaires. This suggests that even for Internet-based epidemiological studies an offline enrollment campaign would be helpful in order to achieve a higher participation proportion and limit the cohort attrition.
  • Item
    Heirarchical regression for multiple comparisons in a case-control study of occupational risks for lung cancer.
    (Public Library of Science, 11/06/2012) Corbin M; Richiardi L; Vermeulen R; Kromhout H; Merletti F; Peters S; Simonato L; Steenland K; Pearce NE; Maule M
    Background Occupational studies often involve multiple comparisons and therefore suffer from false positive findings. Semi-Bayes adjustment methods have sometimes been used to address this issue. Hierarchical regression is a more general approach, including Semi-Bayes adjustment as a special case, that aims at improving the validity of standard maximum-likelihood estimates in the presence of multiple comparisons by incorporating similarities between the exposures of interest in a second-stage model. Methodology/Principal Findings We re-analysed data from an occupational case-control study of lung cancer, applying hierarchical regression. In the second-stage model, we included the exposure to three known lung carcinogens (asbestos, chromium and silica) for each occupation, under the assumption that occupations entailing similar carcinogenic exposures are associated with similar risks of lung cancer. Hierarchical regression estimates had smaller confidence intervals than maximum-likelihood estimates. The shrinkage toward the null was stronger for extreme, less stable estimates (e.g., “specialised farmers”: maximum-likelihood OR: 3.44, 95%CI 0.90–13.17; hierarchical regression OR: 1.53, 95%CI 0.63–3.68). Unlike Semi-Bayes adjustment toward the global mean, hierarchical regression did not shrink all the ORs towards the null (e.g., “Metal smelting, converting and refining furnacemen”: maximum-likelihood OR: 1.07, Semi-Bayes OR: 1.06, hierarchical regression OR: 1.26). Conclusions/Significance Hierarchical regression could be a valuable tool in occupational studies in which disease risk is estimated for a large amount of occupations when we have information available on the key carcinogenic exposures involved in each occupation. With the constant progress in exposure assessment methods in occupational settings and the availability of Job Exposure Matrices, it should become easier to apply this approach.