Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
7 results
Search Results
Item Investigating situation awareness transition in construction hazard recognition: A multimodal study of cognitive and neural mechanisms(Elsevier Ltd, 2025-11-01) Zhang Z; Guo BHW; Feng Z; Goh YMConstruction sites are dynamic and hazardous environments where workers often struggle to maintain high levels of situation awareness (SA), essential for effective hazard recognition. While technologies exist to aid hazard perception, limited research has explored how external environmental stimuli and internal safety goals jointly influence the SA transition across perception (SA1), comprehension (SA2), and projection (SA3). This study investigates the effects of augmented stimuli and safety goals setting on SA levels, SA transition and hazard recognition. A multimodal experimental approach was employed, integrating virtual reality (VR), eye tracking, modified Situation Awareness Global Assessment Technique (SAGAT) and event-related potentials (ERPs). A novel Temporal Hybrid Situation Awareness Measurement (THSAM) method was introduced to quantify SA by linking eye-tracking data with SAGAT responses. SAGAT data showed that both augmented stimuli and safety goals improved SA across all levels. SAGAT and THSAM indicated that the combination of the two interventions led to the largest improvements across SA1, SA2, and SA3. SA transition analysis revealed that augmented stimuli effectively facilitated the shift from unawareness (SA0) to SA1. THSAM and SA transition analysis confirmed safety goals primarily enhanced SA2. ERPs analyses further indicate distinct brain activity patterns (P2 and N400) associated with each SA level. This study contributes to construction safety research by providing quantitative evidence on the cognitive and neural mechanisms underlying SA transition. It also introduces THSAM as a methodological advancement for capturing real-time SA dynamics and offers practical implications for designing integrated safety interventions that align with workers’ goals and environmental demands.Item Investigating the interplay of bottom-up and top-down attention in hazard recognition: Insights from immersive virtual reality, eye-tracking and electroencephalography(Elsevier Ltd, 2025-07) Zhang Z; Guo BHW; Feng Z; Goh YMThe construction industry's high-risk environment demands effective hazard recognition strategies. Attention, a critical cognitive process, plays a crucial role in this task. Previous research focused on individual attention process, such as sustained attention, selective and divided attention. However, no research has been conducted to investigate the effects of the interplay between endogenous and exogenous factors on hazard recognition in construction settings. This paper aims to investigate the effects of the interplay between top-down (T-D) and bottom-up (B-U) attention networks on hazard recognition, using immersive virtual reality (IVR), eye tracking (ET), and electroencephalography (EEG). Two safety interventions—augmented stimuli and toolbox meetings—were tested in a dynamic IVR construction site. The results showed that both augmented stimuli and the safety toolbox meeting significantly affected B-U, T-D, and hazard recognition. This paper provided evidence that the interplay between B-U and T-D can significantly improve workers’ hazard recognition performance. The results improved our understanding of the mechanisms that control selective attention and the source of guidance over attention orientation. By demonstrating that T-D and B-U processes can work together rather than in isolation, this research contributes a key theoretical insight: attentional orientation in hazardous construction environments is neither fully determined by external stimuli nor entirely controlled by internal cognitive sets. In addition, this paper highlights and calls for an integrated approach to improving worker's hazard recognition performance, by combining digital-technology-enabled stimuli with safety-goal-oriented training and managerial practices.Item Assessing the win-win situation of forage production and soil organic carbon through a short-term active restoration strategy in alpine grasslands(Frontiers Media S.A., 2024-01-11) Wang Y; Wang Z; Kang Y; Zhang Z; Bao D; Sun X; Su JINTRODUCTION: Grassland degradation has seriously affected the ecological environment and human livelihood. To abate these, implementing effective management strategies to restore and improve the service functions and productivity of degraded grasslands is crucial. METHODS: To evaluate the influences of restoration measures combined with different grazing intensities on short-term (1 year) grassland restoration, the changes in soil physicochemical properties, as well as plant traits under restoration measures of different grazing intensities, reseeding, and fertilization, were analyzed. RESULTS: Soil organic carbon (SOC) increased to varying degrees, whereas available nutrients decreased under all combined restoration measures. Reseeding, alone and in combination with fertilization, substantially increased SOC, improved grassland vegetation status, and enhanced grassland productivity. The aboveground biomass of Gramineae and the total aboveground biomass increased under the combined restoration measures of transferring livestock out of the pasture 45 days in advance, reseeding, and fertilization (T4). Redundancy analysis revealed a strong correlation between grassland vegetation characteristics, SOC, and available potassium. Considering soil and vegetation factors, the short-term results suggested that the combination measures in T4had the most marked positive impact on grassland restoration. DISCUSSION: These findings offer valuable theoretical insights for the ecological restoration of degraded grasslands in alpine regions.Item A novel Bayesian Latent Class Model (BLCM) evaluates multiple continuous and binary tests: A case study for Brucella abortus in dairy cattle.(Elsevier B.V., 2024-03-01) Wang Y; Vallée E; Compton C; Heuer C; Guo A; Wang Y; Zhang Z; Vignes MBovine brucellosis, primarily caused by Brucella abortus, severely affects both animal health and human well-being. Accurate diagnosis is crucial for designing informed control and prevention measures. Lacking a gold standard test makes it challenging to determine optimal cut-off values and evaluate the diagnostic performance of tests. In this study, we developed a novel Bayesian Latent Class Model that integrates both binary and continuous testing outcomes, incorporating additional fixed (parity) and random (farm) effects, to calibrate optimal cut-off values by maximizing Youden Index. We tested 651 serum samples collected from six dairy farms in two regions of Henan Province, China with four serological tests: Rose Bengal Test, Serum Agglutination Test, Fluorescence Polarization Assay, and Competitive Enzyme-Linked Immunosorbent Assay. Our analysis revealed that the optimal cut-off values for FPA and C-ELISA were 94.2 mP and 0.403 PI, respectively. Sensitivity estimates for the four tests ranged from 69.7% to 89.9%, while specificity estimates varied between 97.1% and 99.6%. The true prevalences in the two study regions in Henan province were 4.7% and 30.3%. Parity-specific odds ratios for positive serological status ranged from 1.2 to 2.2 for different parity groups compared to primiparous cows. This approach provides a robust framework for validating diagnostic tests for both continuous and discrete tests in the absence of a gold standard test. Our findings can enhance our ability to design targeted disease detection strategies and implement effective control measures for brucellosis in Chinese dairy farms.Item A scoping review on the epidemiology and public significance of Brucella abortus in Chinese dairy cattle and humans(Elsevier B.V., 2024-01-31) Wang Y; Vallée E; Heuer C; Wang Y; Guo A; Zhang Z; Compton CBrucellosis, caused by Brucella spp., is a re-emerging One Health disease with increased prevalence and incidence in Chinese dairy cattle and humans, severely affecting animal productivity and public health. In dairy cattle, B. abortus is the primary causative agent although infections with other Brucella species occur occasionally. However, the epidemiological and comparative importance of B. abortus in dairy cattle and humans remains inadequately understood throughout China due to the heterogeneity in locations, quality, and study methods. This scoping review aims to describe the changing status of B. abortus infection in dairy cattle and humans, investigate the circulating Brucella species and biovars, and identify factors driving the disease transmission by retrieving publicly accessible literature from four databases. After passing the prespecified inclusion criteria, 60 original articles were included in the final synthesis. Although the reported animal-level and farm-level prevalence of brucellosis in dairy cattle was lower compared to other endemic countries (e.g. Iran and India), it has been reported to increase over the last decade. The incidence of brucellosis in humans displayed seasonal increases. The Rose Bengal Test and Serum Agglutination Test, interpreted in series, were the most used serological test to diagnose Brucella spp. in dairy cattle and humans. B. abortus biovar 3 was the predominant species (81.9%) and biovar (70.3%) in dairy cattle, and B. melitensis biovar 3 was identified as the most commonly detected strain in human brucellosis cases. These strains were mainly clustered in Inner Mongolia and Shannxi Province (75.7%), limiting the generalizability of the results to other provinces. Live cattle movement or trade was identified as the key factor driving brucellosis transmission, but its transmission pattern remains unknown within the Chinese dairy sector. These knowledge gaps require a more effective One Health approach to be bridged. A coordinated and evidence-based research program is essential to inform regional or national control strategies that are both feasible and economical in the Chinese context.Item Editorial: Coronavirus Disease (COVID-19): Pathophysiology, Epidemiology, Clinical Management and Public Health Response(Frontiers Media S.A., 2021-11-30) Doolan DL; Kozlakidis Z; Zhang Z; Paessler S; Su L; Yokota YT; Shioda T; Rodriguez-Palacios A; Kaynar AM; Ahmed R; Samy A; Bradby H; Kalergis AM; Dutta MJ; Kogut M; Zhang S-Y; Petrosillo NItem Rapid Spread of Severe Fever with Thrombocytopenia Syndrome Virus by Parthenogenetic Asian Longhorned Ticks.(2022-02) Zhang X; Zhao C; Cheng C; Zhang G; Yu T; Lawrence K; Li H; Sun J; Yang Z; Ye L; Chu H; Wang Y; Han X; Jia Y; Fan S; Kanuka H; Tanaka T; Jenkins C; Gedye K; Chandra S; Price DC; Liu Q; Choi YK; Zhan X; Zhang Z; Zheng ASevere fever with thrombocytopenia syndrome virus (SFTSV) is spreading rapidly in Asia. This virus is transmitted by the Asian longhorned tick (Haemaphysalis longicornis), which has parthenogenetically and sexually reproducing populations. Parthenogenetic populations were found in ≥15 provinces in China and strongly correlated with the distribution of severe fever with thrombocytopenia syndrome cases. However, distribution of these cases was poorly correlated with the distribution of populations of bisexual ticks. Phylogeographic analysis suggested that the parthenogenetic population spread much faster than bisexual population because colonization is independent of sexual reproduction. A higher proportion of parthenogenetic ticks was collected from migratory birds captured at an SFTSV-endemic area, implicating the contribution to the long-range movement of these ticks in China. The SFTSV susceptibility of parthenogenetic females was similar to that of bisexual females under laboratory conditions. These results suggest that parthenogenetic Asian longhorned ticks, probably transported by migratory birds, play a major role in the rapid spread of SFTSV.
