Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Predicting resilience of migratory birds to environmental change.(National Academy of Sciences, 2024-05-07) Lisovski S; Hoye BJ; Conklin JR; Battley PF; Fuller RA; Gosbell KB; Klaassen M; Benjamin Lee C; Murray NJ; Bauer S; Kareiva PThe pace and scale of environmental change represent major challenges to many organisms. Animals that move long distances, such as migratory birds, are especially vulnerable to change since they need chains of intact habitat along their migratory routes. Estimating the resilience of such species to environmental changes assists in targeting conservation efforts. We developed a migration modeling framework to predict past (1960s), present (2010s), and future (2060s) optimal migration strategies across five shorebird species (Scolopacidae) within the East Asian-Australasian Flyway, which has seen major habitat deterioration and loss over the last century, and compared these predictions to empirical tracks from the present. Our model captured the migration strategies of the five species and identified the changes in migrations needed to respond to habitat deterioration and climate change. Notably, the larger species, with single or few major stopover sites, need to establish new migration routes and strategies, while smaller species can buffer habitat loss by redistributing their stopover areas to novel or less-used sites. Comparing model predictions with empirical tracks also indicates that larger species with the stronger need for adaptations continue to migrate closer to the optimal routes of the past, before habitat deterioration accelerated. Our study not only quantifies the vulnerability of species in the face of global change but also explicitly reveals the extent of adaptations required to sustain their migrations. This modeling framework provides a tool for conservation planning that can accommodate the future needs of migratory species.Item Environmental stewardship: A systematic scoping review.(Public Library of Science (PLoS), 2024-05-07) McLeod LJ; Kitson JC; Dorner Z; Tassell-Matamua NA; Stahlmann-Brown P; Milfont TL; Hine DW; Belgrano AEnvironmental stewardship is a term describing both the philosophy and the actions required to protect, restore, and sustainably use natural resources for the future benefit of the environment and society. In this paper, we review the environmental science literature to map the types of practical actions that are identified as 'environmental stewardship' using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for scoping reviews. We specifically mapped: 1) the type of actions and outcomes targeting the natural environment that have been categorized as environmental stewardship, 2) the main actors, and the underlying factors influencing their environmental stewardship actions, and 3) the methods used to mobilize environmental stewardship actions once these factors are known. From the 77 selected articles, we found the term environmental stewardship encompassed a multitude of different actions, undertaken by a range of actors and addressing an array of issues that impact biodiversity on the land and in the water. These stewardship actions were conducted on both privately-owned and publicly managed lands and waterways, and across rural and urban landscapes. Despite many studies identifying characteristics and underlying behavioral factors that predicted actors' participation in stewardship actions, there were few studies formally evaluating interventions to increase stewardship. Our review highlighted the term environmental stewardship is not embraced by all and is viewed by some as being inconsistent with aspects of indigenous worldviews. A better understanding of the concept of environmental stewardship and continued practical research into its practice is fundamental to empowering people to demand and enact environmental stewardship as well as for evaluating the success of their actions.Item Importance of timely metadata curation to the global surveillance of genetic diversity(Wiley Periodicals LLC on behalf of Society for Conservation Biology, 2023-08) Crandall ED; Toczydlowski RH; Liggins L; Holmes AE; Ghoojaei M; Gaither MR; Wham BE; Pritt AL; Noble C; Anderson TJ; Barton RL; Berg JT; Beskid SG; Delgado A; Farrell E; Himmelsbach N; Queeno SR; Trinh T; Weyand C; Bentley A; Deck J; Riginos C; Bradburd GS; Toonen RJGenetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome-scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data-sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever. Importancia de la curación oportuna de metadatos para la vigilancia mundial de ladiversidad genéticaResumen:La diversidad genética intraespecífica representa un nivel fundamental, pero ala vez subvalorado de la biodiversidad. La diversidad genética puede indicar la resilienciade una especie ante el clima cambiante, por lo que su medición es relevante para muchosobjetivos de la política de conservación mundial y nacional. Muchos estudios producenuna gran cantidad de datos sobre la diversidad a nivel genético de las poblaciones silvestres,aunque la mayoría (87%) no incluye los metadatos espaciales y temporales asociados paraque sean reutilizados en los programas de monitoreo o para reconocer la soberanía de lasnaciones o los pueblos indígenas. Realizamos un “datatón” distribuido para cuantificar ladisponibilidad de estos metadatos faltantes y para probar la hipótesis que supone que estadisponibilidad se deteriora con el tiempo. También trabajamos para reparar los metadatosfaltantes al extraerlos de los artículos asociados publicados, los repositorios en línea yla comunicación directa con los autores. Iniciamos con 838 candidatos de conjuntos dedatos genómicos (representación reducida y genoma completo) tomados de la colabo-ración internacional para la base de datos de secuencias de nucleótidos y determinamosque 561 incluían en su mayoría muestras tomadas de poblaciones silvestres. Restauramoscon éxito los metadatos espaciotemporales en el 78% de estos 561 conjuntos de datos (n=440 conjuntos de datos con información sobre 45,105 individuos de 762 especies en 17filos). El análisis de los artículos y los repositorios virtuales fue mucho más productivo quecontactar a los 351 autores, quienes tuvieron un 45% de respuesta a nuestros correos. Engeneral, el 23% de nuestras consultas descubrieron metadatos útiles. La probabilidad derecuperar metadatos espaciotemporales declinó de manera significativa conforme incre-mentó la antigüedad del conjunto de datos. Hubo una disminución anual del 13.5% enlos metadatos asociados con los artículos publicados y los repositorios virtuales y hastauna disminución anual del 22% en los metadatos que sólo estaban disponibles mediante lacomunicación con los autores. Este rápido deterioro en la disponibilidad de los metadatos,duplicado en estudios de otros tipos de datos biológicos, debería motivar la pronta actual-ización de las políticas del intercambio de datos y las prácticas de los investigadores paraasegurar que en las ciencias de la conservación no se pierda para siempre el contexto valiosoproporcionado por los metadatos.Item Wildlife trade targets colorful birds and threatens the aesthetic value of nature(Elsevier Inc, 2022-10-10) Senior RA; Oliveira BF; Dale J; Scheffers BRA key component of nature's contribution to people is aesthetic value. Charismatic species rally public support and bolster conservation efforts. However, an insidious aspect to humanity's valuation of nature is that high value also drives wildlife trade, which can spearhead the demise of prized species. Here, we explore the antagonistic roles of aesthetic value in biodiversity conservation by using novel metrics of color to evaluate the aesthetics of the most speciose radiation of birds: passerines (i.e., the perching birds). We identify global color hotspots for passerines and highlight the breadth of color in the global bird trade. The tropics emerge as an epicentre of color, encompassing 91% and 65% of the world's most diverse and most uniquely colored passerine assemblages, respectively. We show that the pet trade, which currently affects 30% of passerines (1,408/5,266), traverses the avian phylogeny and targets clusters of related species that are uniquely colored. We identify an additional 478 species at risk of future trade based on their coloration and phylogenetic relationship to currently traded species-together totaling 1,886 species traded, a 34% increase. By modeling future extinctions based on species' current threat status, we predict localized losses of color diversity and uniqueness in many avian communities, undermining their aesthetic value and muting nature's color palette. Given the distribution of color and the association of unique colors with threat and trade, proactive regulation of the bird trade is crucial to conserving charismatic biodiversity, alongside recognition and celebration of color hotspots.Item Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition.(2022-08) Hoban S; Archer FI; Bertola LD; Bragg JG; Breed MF; Bruford MW; Coleman MA; Ekblom R; Funk WC; Grueber CE; Hand BK; Jaffé R; Jensen E; Johnson JS; Kershaw F; Liggins L; MacDonald AJ; Mergeay J; Miller JM; Muller-Karger F; O'Brien D; Paz-Vinas I; Potter KM; Razgour O; Vernesi C; Hunter MEBiodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne ). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long-term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.
