Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Culture media and format alter cellular composition and barrier integrity of porcine colonoid-derived monolayers
    (Taylor and Francis Group, 2024-04-02) Barnett AM; Mullaney JA; McNabb WC; Roy NC
    Intestinal organoid technology has revolutionized our approach to in vitro cell culture due in part to their three-dimensional structures being more like the native tissue from which they were derived with respect to cellular composition and architecture. For this reason, organoids are becoming the new gold standard for undertaking intestinal epithelial cell research. Unfortunately, their otherwise advantageous three-dimensional geometry prevents easy access to the apical epithelium, which is a major limitation when studying interactions between dietary or microbial components and host tissues. To overcome this problem, we developed porcine colonoid-derived monolayers cultured on both permeable Transwell inserts and tissue culture treated polystyrene plates. We found that seeding density and culture format altered the expression of genes encoding markers of specific cell types (stem cells, colonocytes, goblets, and enteroendocrine cells), and barrier maturation (tight junctions). Additionally, we found that changes to the formulation of the culture medium altered the cellular composition of colonoids and of monolayers derived from them, resulting in cultures with an increasingly differentiated phenotype that was similar to that of their tissue of origin.
  • Item
    Bovine dairy complex lipids improve in vitro measures of small intestinal epithelial barrier integrity
    (PLOS, 2018-01-05) Anderson RC; MacGibbon AKH; Haggarty N; Armstrong KM; Roy NC; Brandner JM
    Appropriate intestinal barrier maturation is essential for absorbing nutrients and preventing pathogens and toxins from entering the body. Compared to breast-fed infants, formula-fed infants are more susceptible to barrier dysfunction-associated illnesses. In infant formula dairy lipids are usually replaced with plant lipids. We hypothesised that dairy complex lipids improve in vitro intestinal epithelial barrier integrity. We tested milkfat high in conjugated linoleic acid, beta serum (SureStart™Lipid100), beta serum concentrate (BSC) and a ganglioside-rich fraction (G600). Using Caco-2 cells as a model of the human small intestinal epithelium, we analysed the effects of the ingredients on trans-epithelial electrical resistance (TEER), mannitol flux, and tight junction protein co-localisation. BSC induced a dose-dependent improvement in TEER across unchallenged cell layers, maintained the co-localisation of tight junction proteins in TNFα-challenged cells with increased permeability, and mitigated the TEER-reducing effects of lipopolysaccharide (LPS). G600 also increased TEER across healthy and LPS-challenged cells, but it did not alter the co-location of tight junction proteins in TNFα-challenged cells. SureStart™Lipid100 had similar TEER-increasing effects to BSC when added at twice the concentration (similar lipid concentration). Ultimately, this research aims to contribute to the development of infant formulas supplemented with dairy complex lipids that support infant intestinal barrier maturation.
  • Item
    Porcine colonoids and enteroids keep the memory of their origin during regeneration
    (American Physiological Society, 2021-05-01) Barnett AM; Mullaney JA; Hendriks C; Le Borgne L; McNabb WC; Roy NC
    The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell types (stem cells, enterocytes, goblet, and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin and colonoids with enteroids. Colonoids derived from three healthy pigs formed multilobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem cell markers Sox9 and Lgr5 encoding sex-determining region Y-box 9 and leucine-rich repeat-containing G protein-coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1, respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga, and Muc2 encoding atonal homolog 1, chromogranin A, and mucin 2, respectively, were decreased in colonoids, whereas Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A, respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell types with decreased barrier maturation relative to their tissues of origin.
  • Item
    Gluten Induces Subtle Histological Changes in Duodenal Mucosa of Patients with Non-Coeliac Gluten Sensitivity: A Multicentre Study
    (MDPI (Basel, Switzerland), 2022-06-15) Rostami K; Ensari A; Marsh MN; Srivastava A; Villanacci V; Carroccio A; Asadzadeh Aghdaei H; Bai JC; Bassotti G; Becheanu G; Bell P; Di Bella C; Bozzola AM; Cadei M; Casella G; Catassi C; Ciacci C; Apostol Ciobanu DG; Cross SS; Danciu M; Das P; Del Sordo R; Drage M; Elli L; Fasano A; Florena AM; Fusco N; Going JJ; Guandalini S; Hagen CE; Hayman DTS; Ishaq S; Jericho H; Johncilla M; Johnson M; Kaukinen K; Levene A; Liptrot S; Lu L; Makharia GK; Mathews S; Mazzarella G; Maxim R; La Win Myint K; Mohaghegh-Shalmani H; Moradi A; Mulder CJJ; Ray R; Ricci C; Rostami-Nejad M; Sapone A; Sanders DS; Taavela J; Volta U; Walker M; Derakhshan M; Witteman B
    Background: Histological changes induced by gluten in the duodenal mucosa of patients with non-coeliac gluten sensitivity (NCGS) are poorly defined. Objectives: To evaluate the structural and inflammatory features of NCGS compared to controls and coeliac disease (CeD) with milder enteropathy (Marsh I-II). Methods: Well-oriented biopsies of 262 control cases with normal gastroscopy and histologic findings, 261 CeD, and 175 NCGS biopsies from 9 contributing countries were examined. Villus height (VH, in μm), crypt depth (CrD, in μm), villus-to-crypt ratios (VCR), IELs (intraepithelial lymphocytes/100 enterocytes), and other relevant histological, serologic, and demographic parameters were quantified. Results: The median VH in NCGS was significantly shorter (600, IQR: 400−705) than controls (900, IQR: 667−1112) (p < 0.001). NCGS patients with Marsh I-II had similar VH and VCR to CeD [465 µm (IQR: 390−620) vs. 427 µm (IQR: 348−569, p = 0·176)]. The VCR in NCGS with Marsh 0 was lower than controls (p < 0.001). The median IEL in NCGS with Marsh 0 was higher than controls (23.0 vs. 13.7, p < 0.001). To distinguish Marsh 0 NCGS from controls, an IEL cut-off of 14 showed 79% sensitivity and 55% specificity. IEL densities in Marsh I-II NCGS and CeD groups were similar. Conclusion: NCGS duodenal mucosa exhibits distinctive changes consistent with an intestinal response to luminal antigens, even at the Marsh 0 stage of villus architecture.
  • Item
    One dog's waste is another dog's wealth: A pilot study of fecal microbiota transplantation in dogs with acute hemorrhagic diarrhea syndrome
    (PLOS, 2021-04-19) Gal A; Barko PC; Biggs PJ; Gedye KR; Midwinter AC; Williams DA; Burchell RK; Pazzi P; Carbonero F
    Canine acute hemorrhagic diarrhea syndrome (AHDS) has been associated in some studies with Clostridioides perfringens overgrowth and toxin-mediated necrosis of the intestinal mucosa. We aimed to determine the effect of a single fecal microbiota transplantation (FMT) on clinical scores and fecal microbiomes of 1 and 7 dogs with AHDS from New Zealand and South Africa. We hypothesized that FMT would improve AHDS clinical scores and increase microbiota alpha-diversity and short-chain fatty acid (SCFA)-producing microbial communities' abundances in dogs with AHDS after FMT. We sequenced the V3-V4 region of the 16S-rRNA gene in the feces of AHDS FMT-recipients and sham-treated control dogs, and their healthy donors at admission, discharge, and 30 days post-discharge. There were no significant differences in median AHDS clinical scores between FMT-recipients and sham-treated controls at admission or discharge (P = 0.22, P = 0.41). At admission, the Shannon diversity index (SDI) was lower in AHDS dogs than healthy donors (P = 0.002). The SDI did not change from admission to 30 days in sham-treated dogs yet increased in FMT-recipients from admission to discharge (P = 0.04) to levels not different than donors (P = 0.33) but significantly higher than sham-treated controls (P = 0.002). At 30 days, the SDI did not differ between FMT recipients, sham-treated controls, and donors (P = 0.88). Principal coordinate analysis of the Bray-Curtis index separated post-FMT and donor dogs from pre-FMT and sham-treated dogs (P = 0.009) because of increased SCFA-producing genera's abundances after FMT. A single co-abundance subnetwork contained many of the same OTUs found to be differentially abundant in FMT-recipients, and the abundance of this module was increased in FMT-recipients at discharge and 30 days, compared to sham-treated controls. We conclude in this small pilot study FMT did not have any clinical benefit. A single FMT procedure has the potential to increase bacterial communities of SCFA-producing genera important for intestinal health up to 30 days post-FMT.