Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Origin and Fate of Vanadium in the Hazeltine Creek Catchment following the 2014 Mount Polley Mine Tailings Spill in British Columbia, Canada(American Chemical Society, Washington, 2019-04-16) Hudson-Edwards KA; Byrne P; Bird G; Brewer PA; Burke IT; Jamieson HE; Macklin MG; Williams RDResults from the analysis of aqueous and solid-phase V speciation within samples collected from the Hazeltine Creek catchment affected by the August 2014 Mount Polley mine tailings dam failure in British Columbia, Canada, are presented. Electron microprobe and X-ray absorption near-edge structure (XANES) analysis found that V is present as V3+ substituted into magnetite and V3+ and V4+ substituted into titanite, both of which occur in the spilled Mount Polley tailings. Secondary Fe oxyhydroxides forming in inflow waters and on creek beds have V K-edge XANES spectra exhibiting E1/2 positions and pre-edge features consistent with the presence of V5+ species, suggesting sorption of this species on these secondary phases. PHREEQC modeling suggests that the stream waters mostly contain V5+ and the inflow and pore waters contain a mixture of V3+ and V5+. These data, and stream, inflow, and pore water chemical data, suggest that dissolution of V(III)-bearing magnetite, V(III)- and V(IV)-bearing titanite, V(V)-bearing Fe(-Al-Si-Mn) oxhydroxides, and V-bearing Al(OH)3 and/or clay minerals may have occurred. In the circumneutral pH environment of Hazeltine Creek, elevated V concentrations are likely naturally attenuated by formation of V(V)-bearing secondary Fe oxyhydroxide, Al(OH)3, or clay mineral colloids, suggesting that the V is not bioavailable. A conceptual model describing the origin and fate of V in Hazeltine Creek that is applicable to other river systems is presented.Item Fourier transform infrared (FTIR) analysis identifies microplastics in stranded common dolphins (Delphinus delphis) from New Zealand waters(Elsevier Ltd, 2021-12) Stockin KA; Pantos O; Betty EL; Pawley MDM; Doake F; Masterton H; Palmer EI; Perrott MR; Nelms SE; Machovsky-Capuska GEHere we provide a first assessment of microplastics (MPs) in stomach contents of 15 common dolphins (Delphinus delphis) from both single and mass stranding events along the New Zealand coast between 2019 and 2020. MPs were observed in all examined individuals, with an average of 7.8 pieces per stomach. Most MPs were fragments (77%, n = 90) as opposed to fibres (23%, n = 27), with translucent/clear (46%) the most prevalent colour. Fourier transform infrared (FTIR) spectroscopy revealed polyethylene terephthalate (65%) as the most predominant polymer in fibres, whereas polypropylene (31%) and acrylonitrile butadiene styrene (20%) were more frequently recorded as fragments. Mean fragment and fibre size was 584 μm and 1567 μm, respectively. No correlation between total number of MPs and biological parameters (total body length, age, sexual maturity, axillary girth, or blubber thickness) was observed, with similar levels of MPs observed between each of the mass stranding events. Considering MPs are being increasingly linked to a wide range of deleterious effects across taxa, these findings in a typically pelagic marine sentinel species warrants further investigation.Item Global assessment of chemical quality of drinking water: The case of trihalomethanes(Elsevier Ltd, 15/02/2023) Villanueva CM; Evlampidou I; Ibrahim F; Donat-Vargas C; Valentin A; Tugulea A-M; Echigo S; Jovanovic D; Lebedev AT; Lemus-Pérez M; Rodriguez-Susa M; Luzati A; de Cássia Dos Santos Nery T; Pastén PA; Quiñones M; Regli S; Weisman R; Dong S; Ha M; Phattarapattamawong S; Manasfi T; Shaibu-Imodagbe EM; Eng A; Janák K; Rush SC; Reckhow D; Krasner SW; Vineis P; Richardson SD; Kogevinas MBACKGROUND: Trihalomethanes (THM), a major class of disinfection by-products, are widespread and are associated with adverse health effects. We conducted a global evaluation of current THM regulations and concentrations in drinking water. METHODS: We included 120 countries (∼7000 million inhabitants in 2016), representing 94% of the world population. We searched for country regulations and THM routine monitoring data using a questionnaire addressed to referent contacts. Scientific and gray literature was reviewed where contacts were not identified or declined participation. We obtained or estimated annual average THM concentrations, weighted to the population served when possible. RESULTS: Drinking water regulations were ascertained for 116/120 (97%) countries, with 89/116 (77%) including THM regulations. Routine monitoring was implemented in 47/89 (53%) of countries with THM regulations. THM data with a varying population coverage was obtained for 69/120 (58%) countries consisting of ∼5600 million inhabitants (76% of world's population in 2016). Population coverage was ≥90% in 14 countries, mostly in the Global North, 50-89% in 19 countries, 11-49% among 21 countries, and ≤10% in 14 countries including India, China, Russian Federation and Nigeria (40% of world's population). DISCUSSION: An enormous gap exists in THM regulatory status, routine monitoring practice, reporting and data availability among countries, especially between high- vs. low- and middle-income countries (LMICs). More efforts are warranted to regulate and systematically assess chemical quality of drinking water, centralize, harmonize, and openly report data, particularly in LMICs.
