Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 10 of 12
  • Item
    Temporal reconstruction of a Salmonella Enteritidis ST11 outbreak in New Zealand
    (Microbiology Society, 2025-10-30) Strydom H; Wright J; Bromhead C; Welch D; Williams E; Mulqueen K; de Ligt J; Biggs PJ; Paine S; Jefferies S; French N
    Outbreaks caused by Salmonella Enteritidis are commonly linked to eggs and poultry meat internationally, but this serovar had never been detected in Aotearoa New Zealand (NZ) poultry prior to 2021. Locally designated genomic cluster Salmonella Enteritidis_2019_C_01, was implicated in a 2019 outbreak associated with a restaurant in Auckland. Four Enteritidis_2019_C_01 sub-clusters have since been identified, two retrospectively, in the Auckland region. Authorities initiated a formal outbreak investigation after genomically indistinguishable S. Enteritidis was isolated from the NZ poultry production environment. This study analysed 231 S. Enteritidis genomes obtained from the outbreak using Bayesian phylodynamic tools to gain insight into the outbreak's dynamics and origin. We used Bayesian integrated coalescent epoch plots to estimate the change of the Enteritidis ST11 population size over time and marginal structured coalescent approximation to estimate transmission between poultry producers. We investigated human and poultry isolates to elucidate the time and location of the most recent common ancestor of the outbreak and transmission pathways. The median most recent common ancestor was estimated to be February 2019. We found evidence of amplification and spread of strain Enteritidis_2019_C_01 within the poultry industry, as well as transmission events throughout the production chain. The intervention by the public health and food safety authorities coincided with a drop in the effective population size of the S. Enteritidis ST11 as well as notified human cases. This information is crucial for understanding and preventing the transmission of S. Enteritidis in NZ poultry to ensure poultry meat and eggs are safe for consumption.
  • Item
    Genomic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli from humans and a river in Aotearoa New Zealand.
    (Microbiology Society, 2025-01-10) Gray HA; Biggs PJ; Midwinter AC; Rogers LE; Fayaz A; Akhter RN; Burgess SA
    In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing E. coli found in the environment and their link with human clinical isolates. In this study, we examined the genetic relationship between environmental and human clinical ESBL-producing E. coli and isolates collected in parallel within the same area over 14 months. Environmental samples were collected from treated effluent, stormwater and multiple locations along an Aotearoa New Zealand river. Treated effluent, stormwater and river water sourced downstream of the treated effluent outlet were the main samples that were positive for ESBL-producing E. coli (7/14 samples, 50.0%; 3/6 samples, 50%; and 15/28 samples, 54%, respectively). Whole-genome sequence comparison was carried out on 307 human clinical and 45 environmental ESBL-producing E. coli isolates. Sequence type 131 was dominant for both clinical (147/307, 47.9%) and environmental isolates (11/45, 24.4%). Only one ESBL gene was detected in each isolate. Among the clinical isolates, the most prevalent ESBL genes were bla CTX-M-27 (134/307, 43.6%) and bla CTX-M-15 (134/307, 43.6%). Among the environmental isolates, bla CTX-M-15 (28/45, 62.2%) was the most prevalent gene. A core SNP analysis of these isolates suggested that some strains were shared between humans and the local river. These results highlight the importance of understanding different transmission pathways for the spread of ESBL-producing E. coli.
  • Item
    New Campylobacter Lineages in New Zealand Freshwater: Pathogenesis and Public Health Implications
    (John Wiley and Sons, 2024-12) Cookson AL; Burgess S; Midwinter AC; Marshall JC; Moinet M; Rogers L; Fayaz A; Biggs PJ; Brightwell G
    This study investigated the diversity of thermophilic Campylobacter species isolated from three New Zealand freshwater catchments affected by pastoral and urban activities. Utilising matrix-assisted laser desorption ionisation-time of flight and whole genome sequence analysis, the study identified Campylobacter jejuni (n = 46, 46.0%), C. coli (n = 39, 39%), C. lari (n = 4, 4.0%), and two novel Campylobacter species lineages (n = 11, 11%). Core genome sequence analysis provided evidence of prolonged persistence or continuous faecal shedding of closely related strains. The C. jejuni isolates displayed distinct sequence types (STs) associated with human, ruminant, and environmental sources, whereas the C. coli STs included waterborne ST3302 and ST7774. Recombination events affecting loci implicated in human pathogenesis and environmental persistence were observed, particularly in the cdtABC operon (encoding the cytolethal distending toxin) of non-human C. jejuni STs. A low diversity of antimicrobial resistance genes (aadE-Cc in C. coli), with genotype/phenotype concordance for tetracycline resistance (tetO) in three ST177 isolates, was noted. The data suggest the existence of two types of naturalised waterborne Campylobacter: environmentally persistent strains originating from waterbirds and new environmental species not linked to human campylobacteriosis. Identifying and understanding naturalised Campylobacter species is crucial for accurate waterborne public health risk assessments and the effective allocation of resources for water quality management.
  • Item
    Genomic diversity of Campylobacter jejuni and Campylobacter coli isolates recovered from human and poultry in Australia and New Zealand, 2017 to 2019.
    (Microbiology Society, 2024-11-05) Cribb DM; Biggs PJ; McLure AT; Wallace RL; French NP; Glass K; Kirk MD
    We used genomic and epidemiological data to assess and compare the population structure and origins of Campylobacter, a major foodborne pathogen, in two neighbouring countries with strong trade and cultural links, similar poultry production systems and frequent movement of people and food products. The most common sequence types (STs) differed between Australia and New Zealand, with many unique to each country. Over half of all STs were represented by a single isolate. Multidrug-resistant (MDR) genotypes were detected in 0.8% of all samples, with no MDR isolates detected in poultry. Quinolone and tetracycline resistant ST6964 was prevalent in New Zealand (10.6% of C. jejuni). Closely related isolates suggested some similar food sources or contacts. We have shown that there is little genetic overlap in human and poultry STs of Campylobacter between the countries, which highlights that this common foodborne pathogen has domestic origins in Australia and New Zealand.
  • Item
    Assessing antimicrobial resistance in pasture-based dairy farms: a 15-month surveillance study in New Zealand.
    (American Society for Microbiology, 2024-10-23) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Liu J; Brightwell G; Cookson AL
    Antimicrobial resistance is a global public and animal health concern. Antimicrobial resistance genes (ARGs) have been detected in dairy farm environments globally; however, few longitudinal studies have utilized shotgun metagenomics for ARG surveillance in pasture-based systems. This 15-month study aimed to undertake a baseline survey using shotgun metagenomics to assess the relative abundance and diversity of ARGs in two pasture-based dairy farm environments in New Zealand with different management practices. There was no statistically significant difference in overall ARG relative abundance between the two dairy farms (P = 0.321) during the study period. Compared with overseas data, the relative abundance of ARG copies per 16S rRNA gene in feces (0.08-0.17), effluent (0.03-0.37), soil (0.20-0.63), and bulk tank milk (0.0-0.12) samples was low. Models comparing the presence or absence of resistance classes found in >10% of all feces, effluent, and soil samples demonstrated no statistically significant associations (P > 0.05) with "season," and only multi-metal (P = 0.020) and tetracycline (P = 0.0003) resistance were significant at the "farm" level. Effluent samples harbored the most diverse ARGs, some with a recognized public health risk, whereas soil samples had the highest ARG relative abundance but without recognized health risks. This highlights the importance of considering the genomic context and risk of ARGs in metagenomic data sets. This study suggests that antimicrobial resistance on pasture-based dairy farms is low and provides essential baseline ARG surveillance data for such farming systems. IMPORTANCE: Antimicrobial resistance is a global threat to human and animal health. Despite the detection of antimicrobial resistance genes (ARGs) in dairy farm environments globally, longitudinal surveillance in pasture-based systems remains limited. This study assessed the relative abundance and diversity of ARGs in two New Zealand dairy farms with different management practices and provided important baseline ARG surveillance data on pasture-based dairy farms. The overall ARG relative abundance on these two farms was low, which provides further evidence for consumers of the safety of New Zealand's export products. Effluent samples harbored the most diverse range of ARGs, some of which were classified with a recognized risk to public health, whereas soil samples had the highest ARG relative abundance; however, the soil ARGs were not classified with a recognized public health risk. This emphasizes the need to consider genomic context and risk as well as ARG relative abundance in resistome studies.
  • Item
    Population structure and pathogen interaction of Escherichia coli in freshwater: Implications of land-use for water quality and public health in Aotearoa New Zealand.
    (John Wiley & Sons, Inc., 2024-08-02) Cookson AL; Devane M; Marshall JC; Moinet M; Gardner A; Collis RM; Rogers L; Biggs PJ; Pita AB; Cornelius AJ; Haysom I; Hayman DTS; Gilpin BJ; Leonard M
    Freshwater samples (n = 199) were obtained from 41 sites with contrasting land-uses (avian, low impact, dairy, urban, sheep and beef, and mixed sheep, beef and dairy) and the E. coli phylotype of 3980 isolates (20 per water sample enrichment) was determined. Eight phylotypes were identified with B1 (48.04%), B2 (14.87%) and A (14.79%) the most abundant. Escherichia marmotae (n = 22), and Escherichia ruysiae (n = 1), were rare (0.68%) suggesting that these environmental strains are unlikely to confound water quality assessments. Phylotypes A and B1 were overrepresented in dairy and urban sites (p < 0.0001), whilst B2 were overrepresented in low impact sites (p < 0.0001). Pathogens ((Salmonella, Campylobacter, Cryptosporidium or Giardia) and the presence of diarrhoeagenic E. coli-associated genes (stx and eae) were detected in 89.9% (179/199) samples, including 80.5% (33/41) of samples with putative non-recent faecal inputs. Quantitative PCR to detect microbial source tracking targets from human, ruminant and avian contamination were concordant with land-use type and E. coli phylotype abundance. This study demonstrated that a potential recreational health risk remains where pathogens occurred in water samples with low E. coli concentration, potential non-recent faecal sources, low impact sites and where human, ruminant and avian faecal sources were absent.
  • Item
    Genomic analysis of canine pneumoviruses and canine respiratory coronavirus from New Zealand.
    (Taylor and Francis Group, 2024-07-01) Dunowska M; More GD; Biggs PJ; Cave NJ
    AIMS: To isolate canine respiratory coronavirus (CRCoV) and canine pneumovirus (CnPnV) in cell culture and to compare partial genomic sequences of CRCoV and CnPnV from New Zealand with those from other countries. METHODS: Oropharyngeal swab samples from dogs affected by canine infectious respiratory disease syndrome that were positive for CnPnV (n = 15) or CRCoV (n = 1) by virus-specific reverse transcriptase quantitative PCR (RT-qPCR) in a previous study comprised the starting material. Virus isolation was performed in HRT-18 cells for CRCoV and RAW 264.7 and Vero cells for CnPnV. The entire sequence of CnPnV G protein (1,266 nucleotides) and most (8,063/9,707 nucleotides) of the 3' region of CRCoV that codes for 10 structural and accessory proteins were amplified and sequenced. The sequences were analysed and compared with other sequences available in GenBank using standard molecular tools including phylogenetic analysis. RESULTS: Virus isolation was unsuccessful for both CRCoV and CnPnV. Pneumovirus G protein was amplified from 3/15 (20%) samples that were positive for CnPnV RNA by RT-qPCR. Two of these (NZ-048 and NZ-049) were 100% identical to each other, and 90.9% identical to the third one (NZ-007). Based on phylogenetic analysis of the G protein gene, CnPnV NZ-048 and NZ-049 clustered with sequences from the USA, Thailand and Italy in group A, and CnPnV NZ-007 clustered with sequences from the USA in group B. The characteristics of the predicted genes (length, position) and their putative protein products (size, predicted structure, presence of N- and O-glycosylation sites) of the New Zealand CRCoV sequence were consistent with those reported previously, except for the region located between open reading frame (ORF)3 (coding for S protein) and ORF6 (coding for E protein). The New Zealand virus was predicted to encode 5.9 kDa, 27 kDa and 12.7 kDa proteins, which differed from the putative coding capacity of this region reported for CRCoV from other countries. CONCLUSIONS: This report represents the first characterisation of partial genomic sequences of CRCoV and CnPnV from New Zealand. Our results suggest that the population of CnPnV circulating in New Zealand is not homogeneous, and that the viruses from two clades described overseas are also present here. Limited conclusions can be made based on only one CRCoV sequence, but the putative differences in the coding capacity of New Zealand CRCoV support the previously reported variability of this region. The reasons for such variability and its biological implications need to be further elucidated.
  • Item
    One dog's waste is another dog's wealth: A pilot study of fecal microbiota transplantation in dogs with acute hemorrhagic diarrhea syndrome
    (PLOS, 2021-04-19) Gal A; Barko PC; Biggs PJ; Gedye KR; Midwinter AC; Williams DA; Burchell RK; Pazzi P; Carbonero F
    Canine acute hemorrhagic diarrhea syndrome (AHDS) has been associated in some studies with Clostridioides perfringens overgrowth and toxin-mediated necrosis of the intestinal mucosa. We aimed to determine the effect of a single fecal microbiota transplantation (FMT) on clinical scores and fecal microbiomes of 1 and 7 dogs with AHDS from New Zealand and South Africa. We hypothesized that FMT would improve AHDS clinical scores and increase microbiota alpha-diversity and short-chain fatty acid (SCFA)-producing microbial communities' abundances in dogs with AHDS after FMT. We sequenced the V3-V4 region of the 16S-rRNA gene in the feces of AHDS FMT-recipients and sham-treated control dogs, and their healthy donors at admission, discharge, and 30 days post-discharge. There were no significant differences in median AHDS clinical scores between FMT-recipients and sham-treated controls at admission or discharge (P = 0.22, P = 0.41). At admission, the Shannon diversity index (SDI) was lower in AHDS dogs than healthy donors (P = 0.002). The SDI did not change from admission to 30 days in sham-treated dogs yet increased in FMT-recipients from admission to discharge (P = 0.04) to levels not different than donors (P = 0.33) but significantly higher than sham-treated controls (P = 0.002). At 30 days, the SDI did not differ between FMT recipients, sham-treated controls, and donors (P = 0.88). Principal coordinate analysis of the Bray-Curtis index separated post-FMT and donor dogs from pre-FMT and sham-treated dogs (P = 0.009) because of increased SCFA-producing genera's abundances after FMT. A single co-abundance subnetwork contained many of the same OTUs found to be differentially abundant in FMT-recipients, and the abundance of this module was increased in FMT-recipients at discharge and 30 days, compared to sham-treated controls. We conclude in this small pilot study FMT did not have any clinical benefit. A single FMT procedure has the potential to increase bacterial communities of SCFA-producing genera important for intestinal health up to 30 days post-FMT.
  • Item
    Whole-Genome Sequencing and Virulome Analysis of Escherichia coli Isolated from New Zealand Environments of Contrasting Observed Land Use
    (American Society for Microbiology, 2022-05-10) Cookson AL; Marshall JC; Biggs PJ; Rogers LE; Collis RM; Devane M; Stott R; Wilkinson DA; Kamke J; Brightwell G; Elkins CA
    Generic Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.
  • Item
    Whole-genome sequencing and ad hoc shared genome analysis of Staphylococcus aureus isolates from a New Zealand primary school
    (Springer Nature Limited, 2021-10-13) Scott P; Zhang J; Anderson T; Priest PC; Chambers S; Smith H; Murdoch DR; French N; Biggs PJ
    Epidemiological studies of communicable diseases increasingly use large whole-genome sequencing (WGS) datasets to explore the transmission of pathogens. It is important to obtain an initial overview of datasets and identify closely related isolates, but this can be challenging with large numbers of isolates and imperfect sequencing. We used an ad hoc whole-genome multi locus sequence typing method to summarise data from a longitudinal study of Staphylococcus aureus in a primary school in New Zealand. Each pair of isolates was compared and the number of genes where alleles differed between isolates was tallied to produce a matrix of "allelic differences". We plotted histograms of the number of allelic differences between isolates for: all isolate pairs; pairs of isolates from different individuals; and pairs of isolates from the same individual. 340 sequenced isolates were included, and the ad hoc shared genome contained 445 genes. There were between 0 and 420 allelic differences between isolate pairs and the majority of pairs had more than 260 allelic differences. We found many genetically closely related S. aureus isolates from single individuals and a smaller number of closely-related isolates from separate individuals. Multiple S. aureus isolates from the same individual were usually very closely related or identical over the ad hoc shared genome. Siblings carried genetically similar, but not identical isolates. An ad hoc shared genome approach to WGS analysis can accommodate imperfect sequencing of the included isolates, and can provide insights into relationships between isolates in epidemiological studies with large WGS datasets containing diverse isolates.