Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
Search Results
Item Remediation Technologies for Neonicotinoids in Contaminated Environments: Current State and Future Prospects(Elsevier, 16/06/2023) Wei J; Wang X; Tu C; Long T; Bu Y; Wang H; Jeyakumar P; Jiang J; Deng SNeonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.Item STUDY THE INFLUENCE OF SOIL MOISTURE AND PACKING INCREMENTAL LEVEL ON SOIL PHYSICAL AND HYDRAULIC PROPERTIES(14/07/2020) Gunaratnam A; Grafton M; Jeyakumar P; Bishop P; Davies C; McCurdy M; Christensen, C; Horne, D; Singh, RReconstructed soil packing is an alternative for monolithic soil columns in lysimeter studies. The excavated soil is packed in uniform layers to represent the natural soil conditions. Reconstructed soil packing alters the physical properties, including bulk density and porosity, thus can distort the hydraulic properties of the soil, so consistency of the method used is critical. Therefore, the selection of a suitable packing method is imperative. This preliminary study comes under the broad research programme: “developing and testing new fertilizer formulations in lysimeters”. This work was aimed to study the effect of incremental packing methods on the hydraulic properties of soil to select the best combination for testing fertilizers. The selected soil matrix for this lysimeter study was composed of 10 cm topsoil and 30 cm washed builders’ sand. For this study, four different soil packs were trialled in lysimeters with the combination of two soil moisture conditions (dry/damp and wet) and two packing depth increments (5 and 10 cm). The flow rate and saturated hydraulic conductivity were measured. Subsequently, several pore volumes of water (around 5 – 6) was allowed to pass through the soil column and the soil subsidence level was measured for each packing method. Both soil moisture condition and packing increment level have influenced the flow rate and saturated hydraulic conductivity of the soil matrix. The saturated hydraulic conductivity of the dry-5 cm, dry-10 cm, wet-5 cm and wet-10 cm packing were 3.99, 6.70, 3.56 and 6.53 cm hr- 1 , respectively. Soil subsidence was also influenced by both the soil moisture condition and increment level. The highest soil subsidence was exhibited by dry-10 cm packing (13 mm) and lowest by wet-5 cm (2 mm) (p<0.05). This preliminary study showed that both moisture condition and increment level influence the soil hydraulic property and compaction level. Further study needs to be conducted to understand the influence of soil moisture and incremental level on other physical and hydraulic properties of soil packing.Item Nitrate leaching mitigation options in two dairy pastoral soils and climatic conditions in New Zealand(MDPI (Basel, Switzerland), 17/09/2022) Matse DT; Jeyakumar P; Bishop P; Anderson CWNThis lysimeter study investigated the effect of late-autumn application of dicyandiamide (DCD), co-poly acrylic-maleic acid (PA-MA), calcium lignosulphonate (LS), a split-application of calcium lignosulphonate (2LS), and a combination of gibberellic acid (GA) and LS (GA + LS) to reduce N leaching losses during May 2020 to December 2020 in lysimeter field sites in Manawatu (Orthic Pumice soil) and Canterbury (Pallic Orthic Brown soil), New Zealand. In a second application, urine-only, GA only and GA + LS treatments were applied during July 2020 in mid-winter on both sites. Results showed that late-autumn application of DCD, 2LS and GA + LS reduced mineral N leaching by 8%, 16%, and 35% in the Manawatu site and by 34%, 11%, and 35% in the Canterbury site, respectively when compared to urine-only. There was no significant increase in cumulative herbage N uptake and yield between urine-treated lysimeters in both sites. Mid-winter application of GA and GA + LS reduced mineral N leaching by 23% and 20%, respectively in the Manawatu site relative to urine-only treated lysimeters, but no significant reduction was observed in the Canterbury site. Our results demonstrated the potential application of these treatments in different soils under different climate and management conditions.Item Nitrification rate in dairy cattle urine patches can be inhibited by changing soil bioavailable Cu concentration(Elsevier, 17/01/2023) Matse D; Jeyakumar P; Bishop P; Anderson CAmmonia oxidation to hydroxylamine is catalyzed by the ammonia monooxygenase enzyme and copper (Cu) is a key element for this process. We investigated the effect of soil bioavailable Cu changes induced through the application of Cu-complexing compounds on nitrification rate, ammonia-oxidizing bacteria (AOB) and archaea (AOA) amoA gene abundance, and mineral nitrogen (N) leaching in urine patches using the Manawatu Recent soil. Further, evaluated the combination of organic compound calcium lignosulphonate (LS) with a growth stimulant Gibberellic acid (GA). Treatments were applied in May 2021 as late-autumn treatments: control (no urine), urine-only at 600 kg N ha-1, urine + dicyandiamide (DCD), urine + co-poly-acrylic-maleic acid (PA-MA), urine + LS, urine + split-application of LS (2LS), and urine + combination of GA plus LS (GA + LS). In addition, another four treatments were applied in July 2021 as mid-winter treatments: control, urine-only at 600 kg N ha-1, urine + GA, and urine + GA + LS. Soil bioavailable Cu and mineral N leaching were examined during the experimental period. The AOB/AOA amoA genes were quantified using quantitative polymerase chain reaction. Changes in soil bioavailable Cu across treatments correlated with nitrification rate and AOB amoA abundance in late-autumn while the AOA amoA abundance did not change. The reduction in soil bioavailable Cu induced by the PA-MA and 2LS was linked to significant (P < 0.05) reduction in mineral N leaching of 16 and 30%, respectively, relative to the urine-only. The LS did not induce a significant effect on either bioavailable Cu or mineral N leaching relative to urine-only. The GA + LS reduced mineral N leaching by 10% relative to LS in late-autumn, however, there was no significant effect in mid-winter. This study demonstrated that reducing soil bioavailable Cu can be a potential strategy to reduce N leaching from urine patches.Item Responses of rice (Oryza sativa L.) plant growth, grain yield and quality, and soil properties to the microplastic occurrence in paddy soil(Springer, 18/05/2022) Chen S; Feng Y; Han L; Li D; Feng Y; Jeyakumar P; Sun H; Shi W; Wang HPurpose: Agricultural soil has been recognized as a major sink of microplastic, an emerging pollutant to environmental biodiversity and ecosystem. However, the impacts of microplastic on soil–plant systems (e.g., crop growth, grain yield and amino acid content, nitrogen uptake capacity, and soil properties) remain largely unknown. Methods: Four typical microplastics, i.e., polythene (PE, 200 μm), polyacrylonitrile (PAN, 200 μm), and polyethylene terephthalate (PET) in diameter of 200 μm and 10 μm (PET200 and PET10), were tested to assess the consequent aforementioned responses under rice (Oryza sativa L.) paddy soil in a mesocosm experiment. Results: Microplastics multiply influenced the soil pH, NH4+-N and NO3−-N contents, which effects were depended on the rice growth stage and plastic type. Overall, microplastics significantly decreased the soil urease activity by 5.0–12.2% (P < 0.05). When exposed to PAN and PET (in both diameter of 200 μm and 10 μm), there were significantly 22.2–30.8% more grain yield produced, compared to the control (P < 0.05), which was attributing to the higher nitrogen uptake capacity of rice grain. Meanwhile, microplastics exhibited nominal influences on rice plant height, tillering number, leaf SPAD, and NDVI. The amino acids were affected by microplastic, depending on the types of plastics and amino acids. Conclusion: This study provides evidence that microplastic can affect the development and final grain yield, amino acid content, nitrogen uptake capacity of rice, and some major soil properties, while these effects vary as a function of plastic type. Our findings highlight the positive impacts that could occur when the presence of microplastics in paddy soil.Item Biochar can Increase Chinese Cabbage (Brassica oleracea L.) Yield, Decrease Nitrogen and Phosphorus Leaching Losses in Intensive Vegetable Soil(Tech Science Press, 16/08/2021) Sun H; Jeyakumar P; Xiao H; Li X; Liu J; Yu M; Rana P; Shi WThere are few evidences on the effect of biochar on vegetable yield, nitrogen (N) and phosphorus (P) leaching losses under intensive vegetable production soil. The current field plot scale study evaluated responses of Chinese cabbage (Brassica oleracea L.) yield, N and P leaching losses using five N treatments of common N application rate according to local farmers’ practice (N100%), reducing 20% or 40% N fertilizer (N80% and N60%), and reducing 40% N fertilizer but incorporating 10 or 20 t/ha biochar (N60% + BC10 and N60% + BC20). Results showed that N80% and N60% decreased both the cabbage economic and leaf yields by 6.8%–36.3% and 27.4%–37.7%, respectively. Incorporation of biochar with reduced N fertilizer rates improved the cabbage yield, in particular the N60% + BC20 matched the yield that observed in N100% treatment. Enhanced N and P uptake capacities of cabbage shoot probably contributed the higher vegetable production under both biochar amendment schemes. Biochar application mitigated the NH+4-N and total P leaching losses by 20%–30% and 29%–32%, respectively, compared with their counterpart treatment N60%. Nevertheless, biochar exerted no influence on the NO–3-N leaching. In addition, soil organic matter content was recorded with 7.4%–28.7% higher following 10–20 t/ha bio-char application. In conclusion, biochar application can increase economic yield of cabbage via increasing N and P use efficiency, decrease N and P leaching losses, and improve soil quality in an intensive vegetable production system.Item Organic carbon content controls the severity of water repellency and the critical moisture level across New Zealand pasture soils(Elsevier BV, 15/03/2019) Hermansen C; Moldrup P; Müller K; Jensen PW; van den Dijssel C; Jeyakumar P; de Jonge LWOrganic matter can render soil hydrophobic and cause soil water repellency (SWR) which has large implications for agriculture. Consequences such as fingered flow, uneven wetting patterns, and increased overland flow reduce irrigation efficiency and plant nutrient availability. The phenomenon of SWR is a transient soil property depending, inter alia, on soil water content (w). Soil can exhibit SWR from oven-dry w until the critical w where it again becomes fully wettable (wNON). The total SWR can be obtained from the nonlinear SWR-w relationship as the integrated trapezoidal area under the SWR-w curve (SWRAREA). We analyzed 78 soil samples, representing five dominant soil orders in the South Island of New Zealand. The soils had a large range in clay (0.000–0.520 kg kg−1) and organic carbon (OC) content (0.021–0.217 kg kg−1). The degree of SWR was measured on soils at air-dry conditions (SWRAD) and after heat-pretreatment at 60 (SWR60) and 105°C (SWR105). Further, SWR was measured in small w increments above air-dry w until wNON was reached. The SWR-w curves were either unimodal or bimodal, or no SWR occurred. SWRAREA ranged from 0.16 to 26.82 mN m−1 kg kg−1. Among the five soil orders tested, the Podzols exhibited the highest severity in SWR, whereas the Semiarid soils were the least hydrophobic soils. In conclusion, OC was the main factor for controlling the severity of SWR. Though, pH also had minor effects on SWR. Further, an upper limit critical water content was derived from the simple relationship between the wNON and OC, which could be applied to improve irrigation practices of pastoral soils. However, there is a need for further testing on different soils and land uses.

