Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 10 of 43
  • Item
    Exposure to drinking water trihalomethanes and nitrate and the risk of brain tumours in young people
    (Elsevier Inc, 2021-09) Zumel-Marne A; Castaño-Vinyals G; Alguacil J; Villanueva CM; Maule M; Gracia-Lavedan E; Momoli F; Krewski D; Mohipp C; Petridou E; Bouka E; Merletti F; Migliore E; Piro S; Ha M; 't Mannetje A; Eng A; Aragones N; Cardis E
    Brain tumours (BTs) are one of the most frequent tumour types in young people. We explored the association between tap water, exposure to trihalomethanes (THM) and nitrate and neuroepithelial BT risk in young people. Analysis of tap water consumption were based on 321 cases and 919 appendicitis controls (10-24 years old) from 6 of the 14 participating countries in the international MOBI-Kids case-control study (2010-2016). Available historical residential tap water concentrations of THMs and nitrate, available from 3 countries for 86 cases and 352 controls and 85 cases and 343 for nitrate, respectively, were modelled and combined with the study subjects' personal consumption patterns to estimate ingestion and residential exposure levels in the study population (both pre- and postnatal). The mean age of participants was 16.6 years old and 56% were male. The highest levels and widest ranges for THMs were found in Spain (residential and ingested) and Italy and in Korea for nitrate. There was no association between BT and the amount of tap water consumed and the showering/bathing frequency. Odds Ratios (ORs) for BT in relation to both pre- and postnatal residential and ingestion levels of THMs were systematically below 1 (OR = 0.37 (0.08-1.73)) for postnatal average residential THMs higher than 66 μg/L. For nitrate, all ORs were above 1 (OR = 1.80 (0.91-3.55)) for postnatal average residential nitrate levels higher than 8.5 mg/L, with a suggestion of a trend of increased risk of neuroepithelial BTs with increasing residential nitrate levels in tap water, which appeared stronger in early in life. This, to our knowledge, is the first study on this topic in young people. Further research is required to clarify the observed associations.
  • Item
    A novel gyrovirus is abundant in yellow-eyed penguin (Megadyptes antipodes) chicks with a fatal respiratory disease.
    (2023-02) Wierenga JR; Morgan KJ; Hunter S; Taylor HS; Argilla LS; Webster T; Dubrulle J; Jorge F; Bostina M; Burga L; Holmes EC; McInnes K; Geoghegan JL
    Yellow-eyed penguins (Megadyptes antipodes), or hoiho in te reo Māori, are predicted to become extinct on mainland Aotearoa New Zealand in the next few decades, with infectious disease a significant contributor to their decline. A recent disease phenomenon termed respiratory distress syndrome (RDS) causing lung pathology has been identified in very young chicks. To date, no causative pathogens for RDS have been identified. In 2020 and 2021, the number of chick deaths from suspected RDS increased four- and five-fold, respectively, causing mass mortality with an estimated mortality rate of >90%. We aimed to identify possible pathogens responsible for RDS disease impacting these critically endangered yellow-eyed penguins. Total RNA was extracted from tissue samples collected during post-mortem of 43 dead chicks and subject to metatranscriptomic sequencing and histological examination. From these data we identified a novel and highly abundant gyrovirus (Anelloviridae) in 80% of tissue samples. This virus was most closely related to Gyrovirus 8 discovered in a diseased seabird, while other members of the genus Gyrovirus include Chicken anaemia virus, which causes severe disease in juvenile chickens. No other exogenous viral transcripts were identified in these tissues. Due to the high relative abundance of viral reads and its high prevalence in diseased animals, it is likely that this novel gyrovirus is associated with RDS in yellow-eyed penguin chicks.
  • Item
    CHANGES IN THE LEVELS OF THEILERIA ORIENTALIS IKEDA TYPE INFECTION IN HAEMAPHYSALIS LONGICORNIS NYMPHS OVER A SIX-MONTH PERIOD.
    (1/09/2021) Zhao Y; Lawrence KE; Minor M; Gedye K; Wang B; Pomroy W; Potter M
    This study aimed to investigate whether the infection intensity of Theileria orientalis Ikeda type organisms within Haemaphysalis longicornis larvae and nymph stages fluctuated over 6 mo after feeding as larvae on infected calves in the field. Naïve larvae, hatched from eggs, were fed on infected calves for 5 days while contained within cotton socks glued over the calves' ears. Larvae were first sampled immediately post-feeding and then sampled every 3 wk for 23 wk in total, after molting to nymphs. All larvae and nymphs were tested for T. orientalis Ikeda organisms using quantitative PCR. The qPCR results showed that the infection intensity of Haemaphysalis longicornis larvae and nymphs was not constant over the sampling period, and after initially dropping after molting to nymphs, it then rose with fasting to a maximum at 17 and 23 wk post-feeding. The significant rise in T. orientalis Ikeda organisms observed at 23 wk postfeeding may explain why more severe clinical cases of bovine theileriosis in New Zealand are seen in the spring when nymphs are the predominant instar questing.
  • Item
    BfpI, BfpJ, and BfpK Minor Pilins Are Important for the Function and Biogenesis of Bundle-Forming Pili Expressed by Enteropathogenic Escherichia coli
    (American Society for Microbiology, 1/03/2016) Nisa S; Martinez de la Peña CF; De Masi L; Mulvey G; Tong J; Donnenberg MS; Armstrong GD
  • Item
    Evaluating edge-of-range genetic patterns for tropical echinoderms, Acanthaster planci and Tripneustes gratilla, of the Kermadec Islands, southwest Pacific
    (ROSENSTIEL SCH MAR ATMOS SCI, 1/01/2014) Liggins L; Gleeson L; Riginos C
    Edge-of-range populations are often typified by patterns of low genetic diversity and high genetic differentiation relative to populations within the core of a species range. The "core-periphery hypothesis," also known as the "central-marginal hypothesis," predicts that these genetic patterns at the edge-of-range are a consequence of reduced population size and connectivity toward a species range periphery. It is unclear, however, how these expectations relate to high dispersal marine species that can conceivably maintain high abundance and high connectivity at their range edge. In the present study, we characterize the genetic patterns of two tropical echinoderm populations in the Kermadec Islands, the edge of their southwest Pacific range, and compare these genetic patterns to those from populations throughout their east Indian and Pacific ranges. We find that the populations of both Acanthaster planci (Linnaeus, 1758) and Tripneustes gratilla (Linnaeus, 1758) are represented by a single haplotype at the Kermadec Islands (based on mitochondrial cytochrome oxidase C subunit I). Such low genetic diversity concurs with the expectations of the "core-periphery hypothesis." Furthermore, the haplotypic composition of both populations suggests they have been founded by a small number of colonists with little subsequent immigration. Thus, local reproduction and self-recruitment appear to maintain these populations despite the ecologically marginal conditions of the Kermadec Islands for these tropical species. Understanding rates of self-recruitment vs reliance on connectivity with populations outside of the Kermadec Islands has implications for the persistence of these populations and range stability of these echinoderm species.© 2014 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.
  • Item
    The population genetic structure of the urchin Centrostephanus rodgersii in New Zealand with links to Australia
    (1/09/2021) Thomas LJ; Liggins L; Banks SC; Beheregaray LB; Liddy M; McCulloch GA; Waters JM; Carter L; Byrne M; Cumming RA; Lamare MD
    The diadematid sea urchin Centrostephanus rodgersii occurs in Australia and New Zealand and has undergone recent southward range extension in Australia as a result of regional warming. Clarifying the population genetic structure of this species across its New Zealand range would allow a better understanding of recent and future mechanisms driving range changes in the species. Here, we use microsatellite DNA data to assess connectivity and genetic structure in 385 individuals from 14 locations across the Australian and New Zealand ranges of the species. We detected substantial genetic differentiation among C. rodgersii populations from Australia and New Zealand. However, the population from Port Stephens (located north of Newcastle), Australia, strongly clustered with New Zealand samples. This suggests that the New Zealand populations recently originated from this area, likely via larval transport in the Tasman Front flow that arises in this region. The weak population genetic structure and relatively low genetic diversity detected in New Zealand (global Fst = 0.0021) relative to Australia (global Fst = 0.0339) is consistent with the former population’s inferred history of recent climate-driven expansion. Population-level inbreeding is low in most populations, but were higher in New Zealand (global Fis = 0.0833) than in Australia (global Fis = 0.0202), suggesting that self-recruitment is playing an increasingly important role in the New Zealand region. Our results suggest that C. rodgersii is likely to spread southwards as ocean temperatures increase; therefore, it is crucial that researchers develop a clearer understanding of how New Zealand ecosystems will be reshaped by this species (and others) under climate change.
  • Item
    Functional beta diversity of New Zealand fishes: Characterising morphological turnover along depth and latitude gradients, with derivation of functional bioregions
    (1/09/2021) Myers EMV; Eme D; Liggins L; Harvey ES; Roberts CD; Anderson MJ
    Changes in the functional structures of communities are rarely examined along multiple large-scale environmental gradients. Here, we describe patterns in functional beta diversity for New Zealand marine fishes versus depth and latitude, including broad-scale delineation of functional bioregions. We derived eight functional traits related to food acquisition and locomotion and calculated complementary indices of functional beta diversity for 144 species of marine ray-finned fishes occurring along large-scale depth (50–1200 m) and latitudinal gradients (29°–51°S) in the New Zealand Exclusive Economic Zone. We focused on a suite of morphological traits calculated directly from in situ Baited Remote Underwater Stereo-Video (stereo-BRUV) footage and museum specimens. We found that functional changes were primarily structured by depth followed by latitude, and that latitudinal functional turnover decreased with increasing depth. Functional turnover among cells increased with increasing depth distance, but this relationship plateaued for greater depth distances (>750 m). In contrast, functional turnover did not change significantly with increasing latitudinal distance at 700–1200 m depths. Shallow functional bioregions (50–100 m) were distinct at different latitudes, whereas deeper bioregions extended across broad latitudinal ranges. Fishes in shallow depths had a body shape conducive to efficient propulsion, while fishes in deeper depths were more elongated, enabling slow, energy-efficient locomotion, and had large eyes to enhance vision. Environmental filtering may be a primary driver of broad-scale patterns of functional beta diversity in the deep sea. Greater environmental homogeneity may lead to greater functional homogeneity across latitudinal gradients at deeper depths (700–1200 m). We suggest that communities living at depth may follow a ‘functional village hypothesis’, whereby similar key functional niches in fish communities may be maintained over large spatial scales.
  • Item
    Evolutionary history of rabies in Ghana
    (Public Library of Science, 2011) Hayman DTS; Johnson N; Horton DL; Hedge J; Wakeley PR; Banyard AC; Zhang S; Alhassan A; Fooks AR
    Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007-2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme.
  • Item
    Classification of Bartonella strains associated with straw-colored fruit bats (Eidolon helvum) across Africa using a multi-locus sequence typing platform.
    (PUBLIC LIBRARY SCIENCE, 2015-01) Bai Y; Hayman DTS; McKee CD; Kosoy MY
    Bartonellae are facultative intracellular bacteria and are highly adapted to their mammalian host cell niches. Straw-colored fruit bats (Eidolon helvum) are commonly infected with several bartonella strains. To elucidate the genetic diversity of these bartonella strains, we analyzed 79 bartonella isolates from straw-colored fruit bats in seven countries across Africa (Cameroon, Annobon island of Equatorial Guinea, Ghana, Kenya, Nigeria, Tanzania, and Uganda) using a multi-locus sequencing typing (MLST) approach based on nucleotide sequences of eight loci (ftsZ, gltA, nuoG, ribC, rpoB, ssrA, ITS, and 16S rRNA). The analysis of each locus but ribC demonstrated clustering of the isolates into six genogroups (E1 - E5 and Ew), while ribC was absent in the isolates belonging to the genogroup Ew. In general, grouping of all isolates by each locus was mutually supportive; however, nuoG, gltA, and rpoB showed some incongruity with other loci in several strains, suggesting a possibility of recombination events, which were confirmed by network analyses and recombination/mutation rate ratio (r/m) estimations. The MLST scheme revealed 45 unique sequence types (ST1 - 45) among the analyzed bartonella isolates. Phylogenetic analysis of concatenated sequences supported the discrimination of six phylogenetic lineages (E1 - E5 and Ew) corresponding to separate and unique Bartonella species. One of the defined lineages, Ew, consisted of only two STs (ST1 and ST2), and comprised more than one-quarter of the analyzed isolates, while other lineages contained higher numbers of STs with a smaller number of isolates belonging to each lineage. The low number of allelic polymorphisms of isolates belonging to Ew suggests a more recent origin for this species. Our findings suggest that at least six Bartonella species are associated with straw-colored fruit bats, and that distinct STs can be found across the distribution of this bat species, including in populations of bats which are genetically distinct.
  • Item
    Origin and post-colonization evolution of the Chatham Islands skink (Oligosoma nigriplantare nigriplantare).
    (WILEY-BLACKWELL, 2008-07) Liggins L; Chapple DG; Daugherty CH; Ritchie PA
    Island ecosystems provide an opportunity to examine a range of evolutionary and ecological processes. The Chatham Islands are an isolated archipelago situated approximately 800 km east of New Zealand. Geological evidence indicates that the Chatham Islands re-emerged within the last 1-4 million years, following a prolonged period of marine inundation, and therefore the resident flora and fauna is the result of long-distance overwater dispersal. We examine the origin and post-colonization evolution of the Chatham Islands skink, Oligosoma nigriplantare nigriplantare, the sole reptile species occurring on the archipelago. We sampled O. n. nigriplantare from across nine islands within the Chatham Islands group, and representative samples from across the range of its closest relative, the New Zealand mainland common skink (Oligosoma nigriplantare polychroma). Our mitochondrial sequence data indicate that O. n. nigriplantare diverged from O. n. polychroma 5.86-7.29 million years ago. This pre-dates the emergence date for the Chatham Islands, but indicates that O. n. nigriplantare colonized the Chatham Islands via overwater dispersal on a single occasion. Despite the substantial morphological variability evident in O. n. nigriplantare, only relatively shallow genetic divergences (maximum divergence approximately 2%) were found across the Chatham Islands. Our analyses (haplotypic diversity, Phi(ST), analysis of molecular variance, and nested clade phylogeographical analysis) indicated restricted gene flow in O. n. nigriplantare resulting in strong differentiation between islands. However, the restrictions to gene flow might have only arisen recently as there was also a significant pattern of isolation by distance, possibly from when the Chatham Islands were a single landmass during Pleistocene glacial maxima when sea levels were lower. The level of genetic and morphological divergence between O. n. nigriplantare and O. n. polychroma might warrant their recognition as distinct species.