• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biochemical characterization of metal-dependent 3-deoxy-D-manno-octulosonate 8-phosphate synthases from Chlorobium tepidum & Acidithiobacillus ferrooxidans : a thesis presented in partial fulfillment of the requirements for the degree of Masterate of Science in Biochemistry at Massey University, Turitea, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02whole.pdf (2.700Mb)
    01front.pdf (113.6Kb)
    Export to EndNote
    Abstract
    3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase is the enzyme responsible for catalyzing the first reaction in the biosynthesis of KDO. KDO is an essential component in the cell wall of Gram-negative bacteria and plants. This compound is not present in mammals; therefore the enzymes responsible for its biosynthesis are potential targets for the development of new antibiotic agents. KDO8P synthase catalyzes the condensation reaction between phosphoenol pyruvate (PEP) and D-arabinose 5-phosphate (A5P) to form KDO8P. Two types of KDO8P synthase have been identified; a metal-dependent type and a non metal-dependent type. KDO8P synthase from the organism Chlorobium tepidum (Cte) has been partially purified and partially characterized. In line with predictions based on sequence alone, the activity of this enzyme is dependent on the presence of a divalent metal ion and is sensitive to the presence of the metal chelating agent EDTA. Cte KDO8P synthase was found to have the highest activity in the presence of Mn2+ or Cd2+. KDO8P synthase from the organism Acidithiobacillus ferrooxidans (Afe) has also been cloned, purified and biochemically characterized. Afe KDO8P synthase was also found to be a metallo enzyme and the catalytic activity is highest in the presence of Mn2+ or Co2+. Afe KDO8P synthase was found to exist as a tetramer in solution and is most active within the pH range of 6.8 to 7.5 and within a temperature range of 35 ºC to 40 ºC. Sequence analysis suggests that this enzyme has characteristics conserved throughout the metallo and the non-metallo KDO8P synthases and is closely related to the metal-dependent 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthases. The role of several active-site residues of Afe KDO8P synthase has been investigated. A C21N mutant of Afe KDO8P synthase was found to retain 0.5% of wildtype activity and did not require a divalent metal ion for catalytic activity. This suggests that the metallo and non-metallo KDO8P synthases have similar catalytic mechanisms.
    Date
    2007
    Author
    Yeoman, Jeffrey Aaron
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/706
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1