• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Journal Articles
    • View Item
    •   Home
    • Massey Documents by Type
    • Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of titanomagnetite composition on the magnetic anisotropy in a dyke-sill complex in Hungary

    Icon
    View/Open Full Text
    viewcontent.pdf (235.4Kb)
    Abstract
    In the last decades low-field magnetic susceptibility measurements have become an increasingly attractive method for geological studies which use the scalar values (bulk susceptibility) as well as the directional information, the anisotropy of magnetic susceptibility (AMS). Because of the potential for detecting weak fabric anisotropies, AMS has become a routine method for assessing flow directions in magmatic bodies. Sources of AMS in ferrimagnetic basaltic rocks are mainly titanomagnetites. After Jackson et al. (1998) and de Wall (2000), the magnetic susceptibility (MS) of titanomagnetite varies strongly with mineral composition and is in the low-field range strongly depending on the field amplitude of the inducing magnetic field. Here we present a systematic study to record the effects of field dependence on AMS of dykes, sills and lava flows. Variation in MS characteristics have been found indicative for lava emplacement and flow dynamics (Cañón-Tapia et al. 1997, Cañón-Tapia & Pinkerton 2000). The contribution of the effect of field dependence on MS and AMS in titanomagnetite-bearing volcanic rocks needs to be assessed for a reliable interpretation of AMS variations. The key study has been carried out at the Ság-hegy volcanic complex in the Little Hungarian Plain. It is composed of a phreatomagmatic tuff ring, formed during the pliocene-miocene period. After meteoric water supply ended, the phreatomagmatic eruptive style changed into an effusive behaviour and the tephra ring was filled with a lava lake and a dyke-sill complex transected the pyroclastic successions. We report AMS characteristics of sills, dykes and lavas from the lake interior and outflowing lava deposits. Furthermore we discriminated samples that represent the transition from dykes to sills and from intrusive (dyke) to effusive (lava flow) emplacement, respectively. The MS has been measured by a KLY-4S kappabridge (AGICO, Brno) which allows a record of the AMS at a high sensitivity and in various field amplitudes (2 to 450 A/m).
    Date
    2006-01-01
    Author
    Renk, Danny
    de Wall, Helga
    Martin, Ulrike
    Nemeth, KarolyORCID
    Publisher
    Massey University.
    URI
    http://hdl.handle.net/10179/9604
    Collections
    • Journal Articles
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1