
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

ON THE CLASSIFICATION OF CYCLIC

DEPENDENCIES IN JAVA PROGRAMS

A thesis presented in partial fulfilment of the
requirements for the degree of

Master of Science
in

Computer Science

at Massey University, Manawatū, New Zealand

HUSSAIN ABDULLAH A. AL-MUTAWA

2013

© Hussain Abdullah Al-Mutawa, 2013.
All rights reserved.

A B S T R A C T

Software engineering guidelines and rules discourage cyclic dependencies between
modules, yet empirical studies have shown that many software systems are burdened
with them. This might indicate that not all cycles are as detrimental to software quality
as previously thought. Clearly, a better understanding of the types of cyclic
dependencies and their effect on software quality is required. As a first step in this
direction, we look closely at the shapes formed by software dependency graphs
containing cyclic dependencies. Such cyclic dependencies correspond to the concept of
strongly connected components in graph theory. We propose an approach to classify
strongly connected components according to their topologies. This allows us to
distinguish between dense and sparse, symmetric and asymmetric structures. We
extend on previous studies and investigate the relationship between cyclic
dependencies and the package containment tree. We validate our approach with
experiments based on a corpus of 103 open–source Java systems. We find that cyclic
dependencies tend to form in branches of the package containment tree around parent
packages that are not critical according to some researchers.

i

A C K N O W L E D G E M E N T S

I am in debt to my advisors, Jens Dietrich, Catherine McCartin, and Stephen Marsland
for supervising me throughout the course of this thesis. This thesis would not have
been possible without their guidance and continual help. When I had been doing
my undergraduate degree, I once asked Jens: “why cyclic dependency matters?” Jens’s
response was: “why don’t you do some postgraduate research with me and find out for yourself?”
My deepest thanks goes to Jens for motivating me towards doing this research and
for his continual and invaluable help in putting this thesis together. My thanks also
goes to Catherine and Stephen for being tolerant and supportive and for the warm
encouragement and guidance they provided.

My sincere thanks also goes to Janet George, Russell Johnson and Briony Coote for
their help in proofreading this thesis.

Last but not least, my heartfelt thanks goes to my wife, for her kindness and support
she has shown during the past eighteen months it has taken me to finalise this thesis.
I would also like to thank my daughters Ayah and Alaa, and my son Ali, for their
patience during my study. Furthermore, I would like to offer my special thanks to my
parents for teaching me how to be persistent.

This project has been supported by funding from the Ministry of Higher Education,
Saudi Arabia as part of the King Abdullah Foreign Scholarship Program (KASP).

iii

C O N T E N T S

1 Introduction 1

1.1 The Growing Size and Complexity of Software 2

1.2 Coping with Complexity . 5

1.2.1 Layered Design . 5

1.2.2 The Acyclic Dependency Principle 5

1.2.3 The Acyclic Dependency Principle and the Package Containment
Tree . 8

1.3 Research Questions . 9
1.4 Thesis Outline . 9

2 Background and Related Work 11

2.1 Cycles in Directed Graphs . 12

2.2 Standard Metrics from Graph Theory . 14

2.2.1 Density (DENSE) . 14

2.2.2 Ratio of number of vertices to number of edges 15

2.2.3 Minimum Feedback Edge Set . 15

2.2.4 Mean Degree Centrality (DEG) . 16

2.2.5 Diameter (DIAM) . 16
2.2.6 Longest Path Length (LONG) . 17

2.2.7 Betweenness Centrality . 17

2.2.8 Tangledness (TANGL) . 19

2.2.9 Transitivity (TRANS) . 19

2.2.10 Size of the Automorphism Group (AUTO) 20

2.3 The Package Containment Tree . 20

2.3.1 Building the Package Containment Tree 22

2.3.2 Metrics on Package Containment Tree 22

2.3.3 Reduced Package Containment Trees 23

2.4 Graph Topology . 23

2.5 Removal of Cyclic Dependencies – Refactoring 25

2.6 Conclusion . 26

3 Dependency Graphs and Tangles 29

v

vi CONTENTS

3.1 The Level of Dependencies in Software 30

3.1.1 Statement Level Dependency Graph 30

3.1.2 Method Level Dependency Graph 31

3.1.3 Class Level Dependency Graph . 31

3.1.4 Package Level Dependency Graph 33

3.1.5 Component Level Dependency Graph 33

3.2 Types and Levels of Tangles . 33

3.2.1 Extracting Tangles from Dependency Graph 34

3.2.2 Class Tangles . 36

3.2.3 Top-Level-Class Tangles . 37

3.2.4 Weak Package Tangles . 38

3.2.5 Strong Package Tangles . 38

3.3 Building Dependency Graphs . 40

3.4 Conclusion . 41

4 Tangles Classification 43

4.1 Introduction . 44
4.2 Reference Topologies . 45

4.2.1 Symmetric Topologies . 45

4.2.2 Asymmetric Topologies . 48

4.3 A Set of Custom Metrics . 49
4.3.1 The Depth of the SCC Decomposition Graph 49

4.3.2 Immediate Back-reference (BCKREF) 51
4.3.3 Starness (STAR) . 51
4.3.4 Chainness (CHAIN) . 52
4.3.5 Hubs (HUB) . 52

4.4 Robustness Analysis . 54

4.5 Classification of Tangles . 57

4.6 Validating the Classifier . 58

4.7 Classification of Qualitas Corpus Tangles 58

4.7.1 Raw Result Data . 59
4.7.2 The Number of Tangles . 60

4.7.3 The Size of Tangles . 62

4.7.4 The Occurrence of Topologies . 63

4.7.5 Tangles Morphology . 65

4.8 Conclusion . 67

CONTENTS vii

5 Tangles and the Package Containment Tree 69

5.1 Introduction . 70
5.2 Parent Centrality . 70

5.3 The Shape of Tangles and the Package Containment Tree 71

5.4 Conclusion . 73

6 Conclusions and Future Work 75

6.1 Conclusions . 76
6.2 Future Work . 77

A Glossaries 93

B A N T L R a n d H i b e r n a t e Ve r s i o n D a t a 97

B.1 ANTLR . 97
B.2 Hibernate . 97

C Qualitas Corpus Dataset 99

L I S T O F F I G U R E S

Microsoft Windows operating system size over a decade 2

A small example graph with eight vertices and nine edges 3

PDGs of different versions of ANTLR. 4
PDGs of different versions of Hibernate. 4
Layered design . 5

A comparison between sparse and dense Strongly Connected
Components (SCCs) formed by cyclic dependencies 6

PDGs of different versions of ANTLR with emphasis on cyclic
dependencies (bold edges). 7

PDGs of different versions of Hibernate with emphasis on cyclic
dependencies (bold edges). 7

A partial Package Containment Tree (PCT) of java.awt, javax.swing
and some of their sub-packages. 8

A partial PCT of java.awt, javax.swing and some of their sub-packages.
The labels on edges represent the number of class-to-class dependencies
made from one package to another. 8

Three families of directed graphs, namely: disconnected, connected and
strongly connected. 12

A dependency graph that contains three tangles 13

The relationship between RATIO, DENSE and the shape of tangle. 15

The relationship between Minimum Feedback Edge Set (MFES) and the
shape of tangle. 16

The relationship between DEG and the shape of tangles. 16

The relationship between DIAM, LONG and the shape of tangles. 17

The relationship between vertex betweenness and the shape of tangles . 18

The package containment tree for selected core Java packages. 21

The normal and reduced PCTs of NekuHTML-1.9.14 system. 23

Cycle, tall, flat and balanced binary Package Dependency Graphs (PDGs). 24

Controlled vs. Pancaked structure. 24

An example of call graph . 31

Example classes and packages (UML class diagram) 34

The package graph Gp. 34

ix

x List of Figures

The class graph Gc. 34

The top-level-class graph Gtlc. 34

Class tangles, Tc = {{A, B, C, C$1}}. 36

Top Level Class tangles, Ttlc = {{A, B, C}}. 37

Weak package tangles, Tw
p = {{P1, P2, P3}}. 38

Strong package tangles, Ts
p = {{P1, P2}}. 39

Symmetric tangle topologies. 46

Asymmetric tangle topologies. 48

A SCC and its elementary cycles. 50

Decomposition graph. 50

SCC decomposition graphs of some tangles. 51

Graphical representation of the Gini coefficient. 53

Some example of tangles and their HUB values. 53

HUB metric can be misleading on very dense tangles. 54

TANGL score for variations of the circle and star topologies 55

Classification algorithm . 57

An example dependency graph of the system shown in Listing 4.8. . . . 60

Distribution of tangle topologies on the corpus. 61

A package can be a member of more than one strong package tangle. . . 62

Package boundaries and strong package tangles. 62

The distribution of tangles topologies on the corpus. 64

Star-like package dependencies in Swing. 64

Top-level-class tangle derived from non tangled class graph. 66

Summary of tangles morphology. 67

Parent centrality results on the corpus. 71

The package containment tree for some selected core Java packages. . . 71

ACLOSE distribution in package tangles. 72

DCLOSE distribution in package tangles. 72

Strongly connected components extracted from dependency graph. . . . 94

L I S T O F T A B L E S

Some differences between source code and byte code. 40

Some tools and research done in analysing cyclic dependencies. 41

List of projects in Qualitas Corpus which contain multiple classes that
have the same qualified name. 45

Boxplots of metrics scores on different tangles topologies 56

Metrics scores on different tangles topologies 56

Un-mutated tangles classification confusion matrix 58

Mutated tangles classification confusion matrix 58

System specifications of the workstation used in performing the
experiment. 59

Execution time of the classification algorithm on the corpus in milli-
seconds. 59
Breakdown of tangles and their topologies. 61

The size of class tangles. 63

The size of package tangles. 63

Class to top-level-class tangles topologies change in morphology 65

Top-level-class to strong package tangles topologies change in morphology 65

Weak package to strong package tangles topologies change in morphology 66

Package containment tree metrics. 72

Some measures among different versions of ANTLR system. 97

Some measures among different versions of Hibernate system. 97

xi

L I S T I N G S

2.1 An example of extends reference . 13
2.2 An example of uses reference . 13
3.1 An example of data dependence . 31
3.2 An example of control dependence . 31
3.3 An example Java Program . 31
3.4 An example of a static nested class . 32
3.5 An example of an inner class . 32
3.6 An example of an anonymous class . 33
3.7 Tarjan’s algorithm implementation in Java 35
3.8 The method used to build tangles from dependecy graphs. 36
3.9 The method used to build class tangles. 36
3.10 The method used to build the top-level-class tangles. 37
3.11 The method used to build the weak package tangles. 38
3.12 The method used to build the strong package tangles. 39
3.13 The source code and byte-code of class A 40
3.14 The source code and byte-code of class B 40
4.1 Tiny tangle generation function. 46
4.2 Circle tangle generation function. 46
4.3 Clique tangle generation function. 47
4.4 Chain tangle generation function. 47
4.5 Star tangle generation function. 48
4.6 Noisfy tangle function. 48
4.7 Semi-clique tangle generation function . 49
4.8 Dependency graph, tangles and their topologies of a system stored in

JSON data format. 60

xiii

A C R O N Y M S

ADP Acyclic Dependency Principle

ANTLR ANother Tool for Language
Recognition

ASPL Average Shortest Path Length

AWT Abstract Window Toolkit

DAG Directed Acyclic Graph

DFS Depth First Search

JAR Java Archive

JRE Java Runtime Environment

JSON JavaScript Object Notation

LOC Lines of Code

MFES Minimum Feedback Edge Set

ORM Object-Relational Mapping

OSI Open System Interconnection

PCT Package Containment Tree

PDG Package Dependency Graph

SCC Strongly Connected Component

SVM Support Vector Machine

UML Unified Modelling Language

xv

CHAPTER 1

I N T R O D U C T I O N

The complexity of software is an essential property, not an accidental one. Hence, descriptions of a software
entity that abstract away its complexity often abstract away its essence.

[Brooks]

Contents

1.1 The Growing Size and Complexity of Software 2

1.2 Coping with Complexity . 5

1.3 Research Questions . 9

1.4 Thesis Outline . 9

Summary – This chapter provides a discussion of the causes and effects of the increasing
complexity of software systems. We discuss some of the preventive measures that can
be taken to avoid, cure and tame the growing complexity of software systems. Then we
state the research questions and present the thesis outline.

1

2 Chapter 1. Introduction

1.1 The Growing Size and Complexity of Software

Software systems grow in size and complexity with time [1, 2, 3]. Brooks claims that
software and complexity are not separable [4]. Lehman [5, 6, 7] suggests that the
complexity of a software system is directly proportional to its size [8]. For instance, the
size of Microsoft’s Windows operating system has increased from 5 million Lines of
Code (LOC) to 50 million LOC between the years 1993 and 2003 (Figure 1.1). Similarly,
the size of the development and testing teams has increased rapidly with a rate of more
than 100 developers per year, which suggests that the cost of maintaining the system
has increased accordingly [9, 10].

1993 1995 1997 1999 2001 2003
0

10

20

30

40

50

Year

M
illi

on
LO

C

Figure 1.1 Microsoft Windows operating system size over a decade. The number of
LOC increased by a rate of approximately 4.5 million LOC per year, which is almost equal
to the initial size.

A software system may start with a simple design, clear architecture and, most
importantly, a specific purpose. However, as various developers of different experience
levels work on the same project, requirements change often and issues are being
addressed to resolve problems in the design; the whole structure of the system starts to
get complicated and signs of decay start to appear [11]. Features that were not part of
the main purpose of the system are added. In addition, enhancements and upgrades are
carried out as a response to compatibility issues imposed by changes in the operating
system or virtual machine. The design gradually moves from simplicity to complexity,
unless some work has been devoted to maintaining the system’s architecture [7].

1.1. The Growing Size and Complexity of Software 3

The relationships between software components can be analysed and visualised
using a simple model from Graph theory1. A dependency graph G = (V, E) is a finite
discrete structure composed of a set of vertices V, which represents the components of
the system and a set of edges E ⊆ V × V, which represents the relationships between
those components (Figure 1.2). For simplicity, in this thesis the term ‘graph’ means
“directed graph”. A Java program is a collection of classes that can be grouped into
packages. The PDG is a directed graph whose vertices are packages and edges are
the dependencies between packages. Package P1 depends on package P2, i.e P1 → P2,
if there is at least one reference from a class in P1 to a class in P2. A package is not
dependent on itself, i.e. Pi �→ Pi.

vertex

edge

Figure 1.2 A small example graph with eight vertices and nine edges

In order to illustrate the evolution of size and complexity in software systems,
two open–source systems – ANother Tool for Language Recognition (ANTLR)2 and
Hibernate have been investigated. ANTLR started with few packages in its early
phases of development. However, the number of packages in the system has increased
substantially since version 2.7.2. Figure 1.3 shows the PDGs of some selected versions
of ANTLR starting from 2.4.0 to 3.2. After every release, the system increases not only in
size, but also in complexity. Hibernate is an Object-Relational Mapping (ORM)3 library
that helps developers map between Relational Database Management System (RDBMS)
entities, i.e. tables and views, and classes. Hibernate started with a relatively simple
design composed of eight packages and then progressively became very complex with
76 packages (Figure 1.4).

1Graph theory is the study of graphs which are mathematical structures used in modelling the
relationships between objects. A graph is made of nodes or vertices that are linked by edges or
arcs [12].

2ANTLR is a language tool that provides a framework for constructing recognisers, compilers, and
translators from grammatical descriptions containing Java, C++, or C# actions [13].

3ORM is a programming technique for converting data between incompatible type systems in object–
oriented programming languages.

4 Chapter 1. Introduction

2.4.0 2.6.0 2.7.2 2.7.3

2.7.7 3.0 3.1 3.2

Figure 1.3 PDGs of different versions of ANTLR. The number under each graph
represents the version number of the system.

0.8.1 1.1.0 2.0.0 2.1.0

2.1.5 2.1.8 3.0.0 3.2.0

Figure 1.4 PDGs of different versions of Hibernate. The number under each graph
represents the version number of the system.

1.2. Coping with Complexity 5

1.2 Coping with Complexity

Many solutions have been proposed to cope with the increasing complexity of software
systems as they evolve. Many can be seen as constraints that restrict the dependencies
between system modules in some way.

1.2.1 Layered Design

Dijkstra [14] and Parnas [15, 16, 17] suggest organising software systems in layers. A
well known example of a successful layered architectural design is the Open System
Interconnection (OSI) network model [18, 19]. Although the OSI model is not entirely
an integrated software system, its strength tends to come from the enforcement of
abstraction between layers. For example, the presentation layer is not concerned with
how the connection to the other end is established, how data packets are transferred or
what connection medium is used in transmission.

Organising software components into layers is not sufficient by itself. The flow of
information has to be managed as well. For instance, cyclic and bypassing references
are two violations of proper layered design (Figure 1.5). A layer should only know its
immediate neighbours. The flow of dependencies should move in one direction and
does not make a cyclic path. In graph theory, this kind of graph is called a Directed
Acyclic Graph (DAG).

Layer 1

Layer 2

Layer 3

Layer 4

Bypassing

Cyclic

Figure 1.5 System modules should be organised into layers where every layer provides
a specific functionality. Dotted arrows represent some violations of proper layered design.

1.2.2 The Acyclic Dependency Principle

One of the widely established design principles dates back to early research in software
design [17, 20] and mandates that software should be organised into modules with
managed dependencies. For instance, Parnas suggests that modules should be

6 Chapter 1. Introduction

organised in a hierarchy based on dependency relationships, thereby keeping
dependencies “loop free” [20]. In object-oriented programming, this is known as the
Acyclic Dependency Principle (ADP): “The dependencies between packages must not form
cycles.” [21].

Dependency graphs may contain a group of components that are highly tangled,
i.e. that are in a cyclic dependency. A tangled component is equivalent to the graph
theoretic concept of a strongly connected component (SCC). A graph is strongly connected
when there is a directed path between any two vertices in the graph. The shape of
SCCs varies from one dependency graph to another. For instance, consider these two
extreme cases: (a) a simple cycle where each package depends exactly on another
package, which forms a circle, and (b) a clique where each package depends on all
other packages within the clique. Figure 1.6 shows an actual simple circle and a clique
formed by cyclic dependencies extracted from James and JREFactory systems. The
removal of a single link breaks the circle structure. However, in order to break the clique
structure, many links need to be chosen and removed. Therefore, we are interested
with investigating the topology and the size of tangles, and aim to classify different
types of tangles so that their effect on software quality can be evaluated.

†.core

†.services

†.dnsserver

†.util

†= org.apache.james

‡.classfile

‡.generic

‡.util

‡

‡= org.apache.bcel

(a) A circle tangle from James-2.2.0 (b) A clique tangle from JREFactory-2.9.19

Figure 1.6 A comparison between sparse and dense cyclic dependencies extracted from
James and JREFactory systems.

Although the ADP discourages cycles in dependencies, many large software systems
are riddled with them [22, 23] including the Java Runtime Environment (JRE) [24].
Figures 1.7 and 1.8 show the same dependency graphs presented earlier in this chapter
for ANTLR and Hibernate systems with emphasis on the proportion of relationships
between packages that belong to cyclic dependencies. More information about ANTLR
and Hibernate versions statistics can be found in Appendix B.

1.2. Coping with Complexity 7

2.4.0 2.6.0 2.7.2 2.7.3

2.7.7 3.0 3.1 3.2

Figure 1.7 PDGs of different versions of ANTLR with emphasis on cyclic dependencies
(bold edges).

0.8.1 1.1.0 2.0.0 2.1.0

2.1.5 2.1.8 3.0.0 3.2.0

Figure 1.8 PDGs of different versions of Hibernate with emphasis on cyclic
dependencies (bold edges).

8 Chapter 1. Introduction

1.2.3 The Acyclic Dependency Principle and the Package

Containment Tree

In Java, packages can be organised into hierarchical levels (tree structure). The tasks
done by a package are distributed among different levels. Sub-packages at the bottom
of the tree can have a more specific functionality. For instance, the javax.swing

package provides a set of lightweight platform-independent user interface widgets.
The package javax.swing.event provides event handlers for actions performed by
Swing components. In this example, a cyclic reference can result because a component
fires events and an event handler manages events fired by a component. This cyclic
reference is tolerable, and in fact may be desirable, from the point of view of the
developers [25]. The package containment tree (PCT) is a graph that shows the
relationships between packages and their sub-packages (Figure 1.9).

<root>

java javax

javax.swing

javax.swing.table javax.swing.tree

java.awt

java.awt.event java.awt.image

Figure 1.9 A partial PCT of java.awt, javax.swing and some of their sub-packages.

The JRE contains many cyclic dependencies that occur between packages that are not
nested under the same parent package [26]. In particular, the java.awt and javax.swing

packages depend on each other (Figure 1.9). A cyclic dependency that passes through
the root, such as the cyclic dependency between javax.swing and java.awt, is less
desirable than a cyclic dependency formed between a package and its sub-packages,
e.g. javax.swing and javax.swing.tree (Figure 1.10) [25].

<root>

java javax

javax.swing

javax.swing.table javax.swing.tree

java.awt

java.awt.event java.awt.image

26
2241 25101 5338 176

3859

9

Figure 1.10 A partial PCT of java.awt, javax.swing and some of their sub-packages.
The labels on edges represent the number of class-to-class dependencies made from one
package to another.

1.3. Research Questions 9

1.3 Research Questions

Cyclic dependency in software design has attracted attention for a long time. Cyclic
dependencies have been considered as a design defect that inhibits modularity and
affects software quality, yet many well-known software systems are known to have
this design anomaly. This implies that cyclic dependencies may not be as detrimental
to software quality as previously thought. Some of the detected cycles are very dense
and large while others are small, simple and can be easily understood. Splitting the
tasks performed by a package to its sub-packages may introduce some kind of cyclic
references. Therefore, the shape of cyclic dependencies might be affected by the PCT.
This leads to our research questions:

• What are the shapes that cyclic dependencies form?

• Can we construct an efficient and robust algorithm to classify strongly connected
components according to their shape?

• What is the relationship between cyclic dependencies and the package containment tree?

1.4 Thesis Outline

In Chapter 2, we present a background of the problem of cyclic dependencies and a
review of the existing literature. In particular, we present some of the existing metrics
and methods used to detect and classify cyclic dependencies. In Chapter 3, we provide
a study of levels of dependencies in Java programs and the way in which dependency
graphs and different types and classes of tangles are constructed. The methodology
followed to classify tangles is presented in Chapter 4, where we explain the experiments
we conducted to build the tangles classifier and describe the set of metrics that we
considered in order to classify tangles and identify the computational complexity of
these metrics. We discuss the robustness of analysis methods we used to ensure that
the metrics we used are resistant to the size or the orientation of tangles. We present
the results and findings of the classification algorithm on a corpus of 103 open–source
Java programs. In Chapter 5, we try to answer the last research question related to the
package containment tree and cyclic dependency. Finally, we summarise our findings
and discuss some of the possible future directions of our research in Chapter 6.

CHAPTER 2

B A C K G R O U N D A N D R E L A T E D W O R K

In the beginner’s mind there are many possibilities, in the expert’s there are few.
[Shunryu Suzuki]

Contents

2.1 Cycles in Directed Graphs . 12

2.2 Standard Metrics from Graph Theory 14

2.3 The Package Containment Tree . 20

2.4 Graph Topology . 23

2.5 Removal of Cyclic Dependencies – Refactoring 25

2.6 Conclusion . 26

Summary – This chapter presents background and a review of the work reported in
the literature related to our research. In each section, definitions are provided, followed
by relevant theories and applications. Briefly, the following topics are discussed: cycles
in directed graphs and their properties which can be extracted using some standard
metrics from graph theory; the package containment tree and its relationships, and its
significance in studying cyclic dependencies on the package dependency level; previous
work on classifying graph topologies and identifying patterns in software dependency
graphs. Finally, the effects of cyclic dependencies on refactoring is discussed from the
point of view of other researchers.

11

12 Chapter 2. Background and Related Work

2.1 Cycles in Directed Graphs

A directed graph G = (V, E) consists of a set of vertices V and a set of edges E, where
edges have directions associated with them. For simplicity, whenever the term ‘graph’
will be used later on, it refers to a ‘directed graph’. An edge is an ordered pair (v, w) ∈
V × V where v and w are called the endpoints of the edge. A directed path is a sequence
of vertices {v1, v2, . . . , vn} ⊆ V such that (vi, vi+1) ∈ E. A path is simple if it contains
no repeated vertices. A cycle, a.k.a. circuit, is a path which starts and terminates at the
same vertex. A cycle is simple or elementary if every vertex in it is visited exactly once.
Reversing the direction of every edge in a graph G = (V, E) results in its transposed
graph GT = (V, {(b, a) | (a, b) ∈ E}). A graph G is called a connected component if there
exists a path between any pair of vertices in G ∪ GT. A graph is called disconnected if
it is composed of more than one component. A strongly connected component (SCC) is
a maximal subset of vertices if a path exists in both directions between every pair of
vertices in the subset [27] (Figure 2.1).

a

b

c

d

a

b

c

d

a

b

c

d

(a) Disconnected (b) Connected (c) Strongly connected

Figure 2.1 Three families of directed graphs, namely: disconnected, connected and
strongly connected.

Software modules and the dependencies between them can be modelled as a directed
graph whose vertices represent the various modules in the system and whose edges
represent the dependencies between modules. The dependency takes place when a
module references another one. Dependencies in Java classes1 can be divided into two
categories which are: extends and uses [23]. Listing 2.1 and 2.2 illustrate the difference
between these two dependencies using an example for each category. However, we do
not make distinction between these two categories in our study. A set of modules are
considered in “cyclic dependency” if there exists a dependency path that starts and
terminates at the same module. Cyclic dependencies can be detected by the presence

1We use the term Java class to refer to units of byte code, not source code. This notion also includes
interfaces, enumerations and annotation types.

2.1. Cycles in Directed Graphs 13

of SCCs in the dependency graph. Consider a graph G = (V, E), a tangle T ⊆ G is a
maximal SCC that represents software modules and their dependencies. Figure 2.2
shows an example of a connected graph composed of 8 vertices and 14 edges. The
removal of edges that do not make cyclic paths { (b, c), (b, f), (e, f), (c, g), (h, g) } results
in three subgraphs which are strongly connected ‘tangles’.

class A extends B { // extends reference

...

}

Listing 2.1 An example of extends reference

class A{

public A(){

B.doSomething (); // uses reference

}

}

Listing 2.2 An example of uses reference

a b

e f g

c d

h

Figure 2.2 A dependency graph that contains three tangles which are
{ a, b, e } , { f , g } , { c, d, h }. Dotted edges are disregarded because they do not make
cyclic paths.

Decomposing a directed graph into SCCs is a fundamental graph theoretic problem
[28]. Computing chains of recurrent sets [29], data-flow analysis [30], and compiler
optimisation [31] are some of the applications of the study of SCCs. Several algorithms
have been proposed to decompose directed graphs into SCCs using a path-based
approach [32, 33, 34, 35, 36]. Path-based algorithms use Depth First Search (DFS) in
combination with two stacks; one to keep track of visited vertices and one to keep a
record of the path traversed.

Tarjan presented an algorithm that enumerates a list of SCCs of a graph in linear
time O(|V|+ |E|) [37]. Unlike path-based SCC decomposition algorithms, only one
stack is used and vertices are labelled in the order they are visited. Although several
algorithms and heuristics have been proposed to parallelise and speed up decomposing

14 Chapter 2. Background and Related Work

a graph into SCCs [38, 39, 40, 41, 38, 42, 43, 44] and [45, 46, 28, 47], we found that
Tarjan’s algorithm is adequate for the type of graphs that we deal with.

The term “coupling” is used to denote the degree to which a software module
is dependent on another. High coupling may indicate a higher chance of change
propagation (ripple effect) [48]. If a dependency path is acyclic, then the change applied
to one module can propagate in one direction and eventually stops at some module.
On the other hand, when a dependency path is cyclic, the change effect may entail
visiting a module more than once. Therefore, dependencies between software modules
need to be managed to avoid cyclic paths. Fowler suggests that if a change in a module
requires changes in another, then they are highly coupled [49]. Fowler states that code
duplication, which is considered a bad code “smell” [50], can result in high coupling
between modules. Ambler et al. [51] argue that if a system contains two or more
packages in cyclic dependency, then a change in one package may enforce the change
in another. Therefore, cyclic dependencies make the system fragile and hard to test.

2.2 Standard Metrics from Graph Theory

This section presents some standard measures and metrics for quantifying graph
structure which are derived from graph theory and have wide applications, such as
in the study of social networks. We look for metrics that are computationally efficient
and resilient to minor changes of the graph structure. For each metric presented, a
definition is provided, and its significance in detecting the shape of graphs and its
computational complexity are discussed. More metrics that we have developed are
discussed in Section 4.3.

2.2.1 Density (DENSE)

A single component graph is considered dense if its number of edges is close to the
maximum possible number of edges. In contrast, a single component graph is
considered sparse if its number of edges is close to the minimum number of edges
required for it to be connected. If the number of edges compared to the number of
vertices is considered as a measure of graph density, then the ratio δ(G) = |E|/|V| can
be used as a measure of the graph’s density. The problem with the ratio is that it is not
normalised. The maximum number of edges possible occurs in cliques where every
vertex is linked to every other vertex in the graph. Hence, the density of a clique is
δmax(Gclique) = |V| − 1. On the other hand, the minimum density for the same size
graph occurs in simple circles, which is δmin(Gcircle) = 1. In order to normalise the
density, we can apply the min-max normalisation as suggested by Shah et al. [52]:

2.2. Standard Metrics from Graph Theory 15

DENSE(G) =
|E| − |V|

|V|2 − 2 × |V| (2.1)

2.2.2 Ratio of number of vertices to number of edges

The ratio of a tangle (RATIO) is the number of vertices relative to edges (|V|/|E|). The
complexity of both RATIO and DENSE is O(1) if the number of vertices and edges
are known, and O(|V|+ |E|) if they must be counted. Figure 2.3 shows a comparison
between RATIO and DENSE for some tangle shapes.

Tangle

RATIO 1/(|V| – 1) 1 1/2 |V|/2(|V| – 1) |V|/2(|V| – 1)

DENSE 1 0 1/(|V| – 2) 1/|V| 1/|V|

Figure 2.3 The relationship between RATIO, DENSE and the shape of tangle.

2.2.3 Minimum Feedback Edge Set

The Minimum Feedback Edge Set (MFES) is the minimum cardinality of a set of
edges whose removal makes a graph acyclic. This measure can be useful in detecting
some topologies formed by SCCs. For instance, the MFES can indicate the degree of
complexity of a network. In particular, the MFES is useful in determining the number of
dependencies that need to be broken in order to resolve the issue of cyclic dependency.
Figure 2.4 shows different cyclic directed graphs of the same size2. Dense graphs have
higher MFES sizes than sparse graphs.

The problem of finding the minimum feedback edge set is known to be NP-hard
[53, 54, 55, 56]. There have been many heuristics and algorithms that can provide
approximations to solve the MFES problem [55, 57, 58, 59]. However, we decided not
to consider this metric because of its complexity.

2We use the number of vertices in a graph |V| to measure its size.

16 Chapter 2. Background and Related Work

Tangle

MFES |V|(|V| – 1)/2 1 |V| |V| – 1 |V| – 1

Figure 2.4 The relationship between MFES and the shape of tangle.

2.2.4 Mean Degree Centrality (DEG)

The centrality of a vertex can be defined as a measure of its relative importance within
a graph. The degree of a vertex is the number of edges which are incident on it. Let
G = (V, E) be a graph. The indegree of a vertex v ∈ V denoted d−(v) is the number of
edges that terminate at v. On the other hand, the outdegree of a vertex v ∈ V denoted
d+(v) is the number of edges that originate from v. The degree of a vertex v ∈ V
denoted d(v) is the sum of its indegree and outdegree. A vertex is called sink if its
outdegree is zero. In contrast, a vertex is called source if its indegree is zero. A strongly
connected component contains neither sinks nor sources. The mean degree of a graph
can be computed by using this formula DEG(G) = ∑n

i d(vi)/n, where d(vi) denotes
the degree of vertex vi. DEG is O(|V|) in dense graphs, and is O(1) in sparse graphs
(Figure 2.5). The complexity of DEG is O(|V|+ |E|).

Tangle

DEG 2|V| – 2 2 4 4 – 4/|V| 4 – 4/|V|

Figure 2.5 The relationship between DEG and the shape of tangles.

2.2.5 Diameter (DIAM)

The distance between two vertices in a graph is the length of the shortest path between
them. In different applications, every edge is associated with a numerical value which
is refered to as the cost or the weight of the edge. An unweighted graph is a graph
G = (V, E) such that each edge weight is 1. In unweighted graphs, the distance is
the cardinality of the path connecting a pair of vertices. The distance in weighted
graphs is the sum of the edges’ weights in the path. The diameter is the longest distance
between any pair of vertices [27]. The diameter is considered one of the fundamental

2.2. Standard Metrics from Graph Theory 17

topological parameters of real world networks [60]. Note that DIAM is ∞ if the graph
is disconnected [61, 62]. DIAM tends to be large in sparse graphs. In contrast, DIAM
is close to 1 in dense graphs. The complexity of computing DIAM is O(|V||E|) using
the all-pairs shortest path algorithm (APSP)3 [60]. DIAM can be calculated in O(|V|3)
with Floyd-Warshall’s algorithm [63]. Johnson’s algorithm [64] can be used to calculate
DIAM which runs in O(|V|2 log |V|+ |V||E|).

2.2.6 Longest Path Length (LONG)

LONG is the length of the longest geodesic (simple) path that can be found in a graph.
Small values for LONG indicate that a tangle is compact and dense. Note that LONG is
different from DIAM in dense graphs, but is similar in sparse graphs (Figure 2.6). The
longest possible path length is |V| − 1. Finding the longest path length is known to be
NP-Hard [65]. Thus, we do not consider this measure in our study.

Tangle

DIAM 1 |V| – 1 |V|/2 |V| – 1 2

LONG |V| – 1 |V| – 1 |V| – 1 |V| – 1 2

Figure 2.6 The relationship between DIAM, LONG and the shape of tangles.

2.2.7 Betweenness Centrality

Betweenness is a measure of network centrality that counts the paths between vertex
pairs in a graph that pass through a given vertex/edge. The study of betweenness
centrality is a fundamental measurement concept for the analysis of social networks
[66]. Betweenness centrality can be seen as a measure of the influence a vertex has over
the spread of information throughout the network [67]. Let G = (V, E) be a graph, and
v, s, t ∈ V. The betweenness centrality of v is the number of shortest paths between
s and t that pass through v, relative to the total number of shortest paths between s
and t, over all pairs s and t such that s �= v �= t. In a SCC, there exists a path between
any pair s, t ∈ V such that s �= v �= t; therefore, the total number of shortest paths
we need to consider is (|V| − 2)(|V| − 1). The betweenness centrality of edges can be
calculated similarly. Let σs,t be the total number of shortest paths between the vertices s

3This algorithm is an approximation one.

18 Chapter 2. Background and Related Work

and t. Also, let σs,t(v) be the number of those paths that pass through v, and then the
betweenness centrality of a given vertex v is computed as follows:

BC(v) = ∑
s �=v �=t

σs,t(v)
σs,t

(2.2)

Freeman [66] proposed some formulae that can be used to measure the centrality of
undirected graphs (Equation 2.2). White et al. generalised the concept of betweenness
centrality to directed graphs [68]. Brandes proposed a method to calculate betweenness
centrality whose complexity is O(|V|2log|V|+ |V||E|) [63]. Newman [67] claims that
the betweenness centrality can be calculated for all vertices in time O(|V||E|).

Betweenness
Low High

Tangle

(a) (b) (c) (d) (e)

Distribution

Figure 2.7 The relationship between vertex betweenness and the shape of tangles.
The darker vertices are those of high betweenness score. It can be seen that the average
betweenness and standard deviation is affected by the shape of the tangle.

The betweenness centrality measure can help in determining the shape of a tangle
by testing the skewness in betweenness distribution (Figure 2.7). In a like manner, the
inequality of betweenness scores can be used as an indicator of the shape of the tangle.
Specifically, the inequality is represented by the presence of a few vertices in a tangle
of very high betweenness relative to other vertices. There are several metrics used to
detect and assess the inequality of distributions. For instance, the range [69] and the
range ratio, the McLoone index [70], the coefficient of variation [71], the Gini coefficient
[69, 72, 73], the Theil index [74], the Palma ratio [75], the Hoover index [76], the relative
mean deviation [69], the variance and log variance [69]. An inequality measure of
choice has to be widely applicable, preferably applied to software metrics in the past,
and simple to compute.

2.2. Standard Metrics from Graph Theory 19

2.2.8 Tangledness (TANGL)

TANGL is based on the average of back-reference path lengths between every pair of
adjacent vertices. According to the definition of SCCs, if there is a directed edge from
s to t in a tangle, then there is at least one simple path from t to s (back-reference). The
average length of such paths (BRPL) has a minimum of 1, and maximum of |V| − 1.
TANGL can be measured using Equation 2.3 as suggested by [52]. “Untangledness” is
defined as the min-max normalisation of the average back-reference path length, and
tangledness is the complement (1 – untangledness).

TANGL(G) = 1 − BRPL − 1
|V| − 2

(2.3)

Note that DENSE and TANGL are not always correlated. For instance, a star-like
structure with a central hub vertex, similar to the tangles in the class graph created by
anonymous inner classes4, will have a high TANGL value (the value will be 1, unless
nested inner classes are used), but will have a relatively low DENSE value, since all of
the edges connecting the outer vertices (representing references amongst inner classes)
are missing. In order to compute TANGL, we can proceed as for DIAM – simply
computing all-pairs shortest paths using the Floyd-Warshall algorithm, or Johnson’s
algorithm, and then extract the paths that correspond to the pairs of adjacent vertices.
The running time using this approach is upper bounded by O(|V|3) [77].

2.2.9 Transitivity (TRANS)

TRANS measures the ratio between connected triples with “shortcuts” between the
first and the last vertex. It corresponds to the clustering coefficient in undirected graphs
[27]. A closed path is a sequence of vertices (v1, v2, . . . , vn) where adjacent vertices are
connected by edges (vk, vk+1) ∈ E and the first vertex is also connected to the last vertex
(v1, vn) ∈ E. Transitivity is then defined as the ratio between the number of closed
paths on three vertices and the number of all simple paths connecting three vertices.
Alternatively, TRANS can be defined by counting the number of triangles and triples in
the graph. A triangle � = (V�, E�) of graph G = (V, E) is a subgraph of three vertices
V� = {v1, v2, v3} ⊂ V and E� = {(v1, v2), (v2, v3), (v1, v3)} ⊂ E. A triple τ = (Vτ, Eτ)

of a graph G = (V, E) is a graph of three vertices such that Vτ = {v1, v2, v3} ⊂ V and
Eτ = {(v1, v2), (v2, v3)} ⊂ E. Let �(G) and τ(G) denote the number of triangles and
the number of triples of a graph G respectively. Then the transitivity of the graph can
be computed using the formula stated in Equation 2.4 [78]. TRANS measures the level

4The definition of inner classes and anonymous inner classes will be provided with some examples in
section 3.1.3

20 Chapter 2. Background and Related Work

of robustness of a tangle. If an edge between vertices in a closed path of three vertices
is removed (e.g., through refactoring of the program), the dependency between the first
and the last element of the triple will not be broken. We can compute TRANS in time
O(|V|3) by considering the two-hop neighbourhood of each vertex in turn.

TRANS(G) =
3�(G)

τ(G)
(2.4)

2.2.10 Size of the Automorphism Group (AUTO)

AUTO measures the degree of symmetry of a tangle. Both simple cycles and cliques
have relatively large automorphism groups, indicating that each of these topologies has
a very regular, symmetric structure. For a simple cycle, the size of the automorphism
group is |V|, and each element in the group corresponds to a “rotation” of the structure,
which maps each vertex to another some fixed distance further on in the cycle. For
a clique, the size of the automorphism group is |V|!, and every vertex permutation
corresponds to an element of the group. The problem of constructing the automorphism
group is in NP. Although there is a polynomial time algorithm for solving the graph
automorphism problem for graphs where the vertex degrees are bounded by a constant
[79], a significant drawback of using AUTO as a metric for classifying tangles in our
context is that it is very sensitive to even small mutations in the structure. Adding
or removing a single edge in a simple cycle or a clique, for example, will result in a
reduction of the automorphism group size by a factor of |V|. For this reason we opted
not to employ this measure in our study.

2.3 The Package Containment Tree

Software systems have different levels of packaging that are used to organise and sort
modules that interact together to build a larger system. A package is a bundle of some
resources and compilation units. Packages are needed to prevent naming conflicts in
the context of large class libraries not managed by a central authority. In addition, the
visibility and accessibility of some classes can be restricted to immediate neighbour
classes. Gosling et al. [80] suggest that packages should be organised in a hierarchical
structure. According to the naming conventions in Java specifications [80], a package
name starts with the organisation reversed domain such as com.sun or org.wikipedia.
A package S is considered a sub-package of another package P if its fully qualified name
is P.S.

2.3. The Package Containment Tree 21

Grouping classes into packages 5 has been adopted to organise the program into
“logical units” [2]. The package containment tree (PCT) is a hierarchical structure that
shows the relationships between packages and its sub-packages.

The relevance of PCT to our research lies in the following points:

1. it has been assumed that the majority of cyclic dependencies on the package level
are within branches of the PCT [25].

2. the shape of the PCT may have some influence on the shape of cyclic dependencies
formed by the packages in the tree.

Laval et al. presented an approach to rank tangles by their level of undesirability
[25]. This is based on the assumption that tangles that consist of packages with similar
names (probably because they are close in the package containment tree) are less critical
than tangles consisting of packages that are far apart in the package containment tree.
We will demonstrate in Chapter 5 that tangles tend to form within branches of the PCT,
by measuring the relative closeness of packages common to single tangles. According
to the argument of Laval et al., this implies that most package tangles are not critical.

In order to investigate the question of whether packages within tangles are closely
related, we have built the package containment trees (PCT) with sets of packages from
both the entire dependency graphs and tangles. PCTs are trees that are constructed as
follows. The vertices of such trees are obtained by tokenising package names. Package
names themselves are included, and if a package name contains more than one token,
its parent package is obtained by removing the last token, and then also added to the
tree. The edges connect vertices with their parents. A virtual root node is also added to
the graph to ensure that the graph is connected. Figure 2.8 shows the PCT built from
some selected core Java packages.

<root>

java javax

javax.swing

javax.swing.table javax.swing.tree

java.awt

java.awt.event java.awt.image

Figure 2.8 The package containment tree for selected core Java packages.

5Packages in Java correspond to namespaces in other programming languages.

22 Chapter 2. Background and Related Work

2.3.1 Building the Package Containment Tree

A PCT has a root node called <root> which glues base packages that are not from the
same hierarchy. The dot character (.) is used as a separator between packages and
sub-packages, as used in Java specifications. Each sub-package is added as a child of
its parent package until a package has no parent but the root. Consider the packages
{java.awt.event, java.awt.image, javax.swing.table, javax.swing.tree}. The
package containment tree of these packages is shown in Figure 2.8.

2.3.2 Metrics on Package Containment Tree

In this section, we present some of the metrics that are used in the analysis of package
containment trees. In particular, we discuss the diameter (TDIAM) and PASTA metrics
that can be used as indicators of the desirability of cyclic dependency.

Tree Diameter (TDIAM)

Laval et al. used TDIAM to denote the maximum distance between any pair of
packages in the PCT [25]. Large values of TDIAM indicate that packages do not come
from the same branch. Consider the following two packages from the JRE,
javax.swing.events and java.awt. TDIAM is large because the path between the
Swing and AWT packages passes through the root (Figure 2.8). In order to normalise
TDIAM, Laval et al. suggested assigning a weight for each link in the tree based on the
distance from the root. In order to measure the desirability of a cyclic dependency,
Laval et al. associated the desirability of a cyclic dependency with lower values of
TDIAM. The suggested weight for links between nodes in the PCT is 2−level.

The PASTA Metric

Hautus proposed a metric for measuring the level of software modularity that is called
the PASTA metric [81]. This metric can be applied to the software package-containment-
tree and is defined as “the weight of all desirable dependencies in all packages divided
by the total weight of the dependencies in all packages”. The weight of a dependency
is the number of class references made from one package to another. Hautus suggested
giving higher weight for high level packages, which corresponds to the notion that high
level architecture is more important than lower level architecture, which is consistent
with the Laval et al. approach [25].

2.4. Graph Topology 23

2.3.3 Reduced Package Containment Trees

The average diameter of PCTs might be affected because the nested sub-packages that
do not have classes in them but may have direct sub-packages. In order to overcome
this issue, we collapse consecutive empty sub-packages. For instance, Figure 2.9 shows
the package containment tree built from NekuHTML-1.9.14 system. Since the package
org and org.cyberneko are empty, they are collapsed to the upper level. This shortens
the height of the PCT from 4 to 2.

NORMAL REDUCED

<root>

org

org.cyberneko

org.cyberneko.html

org.cyberneko.html.parsers

org.cyberneko.html.xercesbridge

org.cyberneko.html.filters

org.cyberneko.html

org.cyberneko.html.parsers

org.cyberneko.html.xercesbridge

org.cyberneko.html.filters

Figure 2.9 The normal and reduced PCTs of NekuHTML-1.9.14 system.

2.4 Graph Topology

The term ‘Topology’ is the “study of geometrical properties and spatial relations
unaffected by the continuous change of shape or size of figures” [82]. In graph theory,
the word topology can refer to the arrangement of vertices and edges in some pattern.
Classifying graph topologies has several applications. For instance, the arrangement of
computers in a network can be used to identify the physical topology of the network.

Some graphs may have no definite shape because of the complexity in their layout.
However, a complex graph tends to be a result of accumulated building blocks that
may have been combined in a way that obscures the original structure.. Although
some researchers looked into identifying patterns in subgraphs, so-called motifs6

[84, 85, 86, 87], we found this to be out of the scope of our study.

There has been some relevant research on the classification of arbitrary graphs,
which is related to our work. For example, several authors proposed using supervised
machine learning techniques such as Support Vector Machines (SVMs) [88, 89, 90, 91, 92].

6A motif represents patterns of interconnections that occur in a graph. [83]

24 Chapter 2. Background and Related Work

These approaches require a corpus of labelled training data, which we do not have.
Zhu et al. [93] suggested some metrics that are suitable for arbitrary graphs. Zhu
et al. formalised the problem of property–based graph classification and provided a
greedy algorithm that selects some discriminative metrics and a classifier that can be
used to classify general graphs. However, our requirements are rather more specific to
classifying different types of SCCs.

(a) Cycle (b) Tall (c) Flat (d) Balanced binary tree

Figure 2.10 Cycle, tall, flat and balanced binary PDGs.

In regard to classifying software dependency graphs, Melton and Tempero [94, 95,
96] discussed some shapes formed by PDGs and pointed out that organising packages
in a flat structure is the most preferred among other shapes (Figure 2.10). In addition,
Pressman [2] suggested some design heuristics to organise the packages of a system.
Pressman recommends avoiding excessive fan-out, which can result in what is referred
to as “pancaked structure” (Figure 2.11). Pressman attests that a program should be
maintained in a way to control the number of fan-outs to be balanced with fan-ins,
resulting in diamond shape subtrees. Lower level sub-packages should provide the
entry to the package by providing enough abstraction to the functionality implemented
in the top levels. The depth and width indicate the level of control and span of control
respectively [2].

x

a

b c

d

e f

m n

i

j

k l

o

rv
fan-in

fan-out

width

de
pt

h

’

’’’’’’’’’’

(a) Controlled structure (b) Pancaked structure

Figure 2.11 Controlled vs. Pancaked structure.

2.5. Removal of Cyclic Dependencies – Refactoring 25

2.5 Removal of Cyclic Dependencies – Refactoring

In spite of the design violation caused by cyclic dependencies, the functionality of the
system may not be affected. For instance, the two systems discussed in Section 1.1
(ANTLR and Hibernate) contain many cyclic dependencies, yet are widely used and
have been proven successful [97, 98]. “Code smells”, design violations and potential
design defects are some of the issues that need to be addressed in order to improve
the overall quality of the system. The techniques used to remove cyclic dependencies
are a subset of refactoring methods used in software design. Code refactoring can be
defined as the process of restructuring an existing internal code by altering its content
without changes in external behaviour [50]. Refactoring can be applied on class level
or even architectural level. An example of design level refactoring is the correction of
code smells, while architectural level refactoring is concerned with the placement of
classes within packages or introducing new packages. We list here some of the work
done in the literature which is related to refactoring in general and the removal of cyclic
dependencies as a special case of refactoring methodologies in particular.

Ambler et al. suggest the elimination of cyclic dependencies, either by moving
classes between packages or introducing a new package that contains all of the classes
that are cyclically dependent [51]. Bourquin and Keller presented an experience report
on high impact refactoring based on architectural violations [99]. The refactoring
methods can be summarised as fixing code smells, removing duplicated segments of
code and relocating classes to other packages, or creating new packages if necessary
and introducing dynamic proxies. Bourquin and Keller claim that the number of classes
involved in cyclic references has declined to half as a result of the refactoring methods
applied.

Simon et al. presented a metric based refactoring tool that has a visualisation
component [100]. Simon et al. claim that automating refactoring is an issue and the
developer is the last authority to determine if a refactoring should be carried out or
not. Therefore, for a system that has a large number of dependencies in cycles, human
factors have to be involved in rectifying those cyclic dependencies. Simon et al. focused
their research on four refactoring candidates which are: move method, move attribute,
extract class and inline class.

Melton and Tempero presented a tool called Jepends that analyses the source code
of Java programs in order to identify classes that are possible refactoring candidates
[101]. Their main motivation is the removal of cycles that are considered detrimental
to software understandability, testing and reuse. Jepends mainly targets cycles of a
large size. Melton and Tempero investigated the presence of cycles in class graphs

26 Chapter 2. Background and Related Work

[22]. These graphs are characterised to assess the “refactorability” of tangles using an
approximation algorithm for the minimum feedback arc set problem. This is similar
to our approach. However, we investigate different types of dependency graphs and
use a more fine-grained method of classification that avoids the use of metrics with
high computational complexity. Melton and Tempero presented the CRSS metric which
can be used to identify candidates for refactoring and therefore improve the package
structure of software systems [94].

Moha provided a systematic approach for the detection and correction of design
defects in object-oriented architectures [102]. Moha claims that defect detection and
correction are two related activities, yet previously they have been studied separately.
According to Moha, auto-refactoring is a difficult task because of the lack of specification
of defects and automated tools to support defect detection and correction. Moha adds
that existing refactoring tools require manual interaction. Moreover, software metrics
are not sufficient to understand the complexity of large software architecture, and
therefore they cannot be solely used to detect design defects.

Abdeen et al. presented work focused on optimising software modularity by
minimising package coupling and cyclic dependencies [103]. Abdeen et al. presented
an algorithm and a set of measures to optimise the modularity of software systems. In
order to minimise cyclic dependencies, some classes are moved between existing
packages without introducing new packages, therefore maintaining the size and
complexity of the system on the package and class levels.

Dietrich et al. investigated the presence of various class level anti-patterns in
programs, including different types of cyclic dependencies [23]. They found that
these anti-patterns are very common. Based on their findings, they have proposed
an algorithm based on edge scoring to effectively remove these anti-patterns from
programs [87], and investigated several refactoring techniques to automate the removal
of dependencies from programs [104, 52, 105].

Shah et al. [52] presented several refactoring patterns that can break cyclic
dependencies. These are: (1) type abstraction, (2) dependency injection, (3) relocating
classes and packages, and (4) inlining. Shah et al. suggest that a set of pre- and
post-conditions have to be met for each refactoring to be successful.

2.6 Conclusion

To sum up, this chapter has presented a background and a review of the work related
to the research questions stated in Section 1.3. In particular, this included a discussion
of the methods used in order to analyse and detect cyclic dependencies in software

2.6. Conclusion 27

design which can be modelled as strongly connected components in graph theory.
We presented some metrics and tested their ability to detect the shape of tangles and,
more importantly, we have taken in consideration their computational complexities.
Furthermore, the notion of the package containment tree has been discussed to analyse
cyclic package dependency graphs. Some metrics and theories related to PCTs have
been discussed and will be further expanded in Chapter 5 with some results that
validate the assumption that most of the cyclic references tend to be formed around
parent packages. A definition of graph topology was provided and we discussed some
common dependency graphs shapes used in the literature related to software. Finally,
we looked at the cyclic dependencies problem from the refactoring and code change
point of view.

In the next chapter, we provide a study of dependency graphs and the method used
to build them and to extract cyclic dependencies. In addition, we look at different types
of tangles on class and package dependency levels.

CHAPTER 3

D E P E N D E N C Y G R A P H S A N D T A N G L E S

It’s difficult to offer hard pieces of guidance when trying to define a well-controlled set of dependencies
[Martin Fowler]

Contents

3.1 The Level of Dependencies in Software 30

3.2 Types and Levels of Tangles . 33

3.3 Building Dependency Graphs . 40

3.4 Conclusion . 41

Summary – In this chapter, we explore the notion of dependency graphs and tangles in
more detail. It turns out that there are not only different types of dependency graphs on
class and package levels, but also several methods to build such graphs and to define
tangles. We discuss this in detail, propose several precise definitions, and review the
definitions used in existing work. We also present a comparison between building
dependency graphs from source code and byte code, and which method was applied
in this study and the reason behind our choice.

29

30 Chapter 3. Dependency Graphs and Tangles

3.1 The Level of Dependencies in Software

Software dependency can be defined as the degree to which a program module relies
on each of the other modules in order to compile and function properly [49]. In general,
a dependency exists when two pieces of code have some relationship. A dependency of
a module A on another module B exists when there exists at least one reference made
from module A to module B. The dependency relationship is transitive. If module A
depends on module B, and module B depends on module C, then module A indirectly
depends on module C [106]. A module that depends on another module is called a
dependent module. A module that is required by another is called a dependee module. In
this section, we discuss different levels of dependencies that can be extracted from Java
programs.

Our interest is mainly focused on dependencies that result within Java programs
(internal). Examples of external dependencies are references to file system, database or
network resources. In Java, internal dependencies can be analysed on different levels
which are:

• statement

• method

• class

• package

• component

In this chapter, we provide some definitions for those levels of dependencies and the
methods available to build dependency graphs from them.

3.1.1 Statement Level Dependency Graph

A statement level dependency occurs when a resource in a statement is accessed in
another. Analysing dependencies at this level can be useful in detecting opportunities
for parallelism and optimisation [107]. For instance, two or more consecutive
statements can be executed in parallel if they do not share a common resource, i.e. the
execution of a statement is dependent on the execution of the preceding one. The types
of dependencies in this level can be of two types: data and control (Listings 3.1 and 3.2).
A statement level dependency graph “Dependence Graph” is a set of vertices that
represent statements in program code and a set of edges that represent the flow
direction between statements [108, 107, 109, 110]. Data dependencies deal with

3.1. The Level of Dependencies in Software 31

variables and resources while control dependencies deal with loops and branches.
Based on this type of dependency graph, the Cyclomatic complexity is a popular
metric which measures the complexity of the program code [111].

S1 S2

a = b * c; // S1

d = a + 1; // S2

Listing 3.1 An example of data dependence

S1

S2

S3

S4

if (a == 1) // S1

d = a + 1; // S2

else

d = a - 1; // S3

c = d + a; // S4

Listing 3.2 An example of control dependence

3.1.2 Method Level Dependency Graph

A method level dependency occurs when a method executes another method. “Call Graph”
is a term used to describe the relationships between methods in a program [112, 113].
The analysis of this kind of dependency is useful in detecting methods that are never
referenced and thus might be candidates for removal. Call graph can be used to measure
the complexity of program execution and detecting opportunities for parallelism. In
particular, when methods are mutually exclusive, they can be executed in parallel.
Listing 3.3 and Figure 3.1 show a simple example of a call graph.

class Program{

void run(){ ... }

void main (){ run(); }

}

Listing 3.3 An example Java Program

main() run()

Figure 3.1 An example of call graph

3.1.3 Class Level Dependency Graph

A class level dependency can be found when a class references another one. The common
types of class-to-class relationships in Java are extends and uses [52, 23]. Note that

32 Chapter 3. Dependency Graphs and Tangles

there is an implicit dependency between a class and its nested classes. Nested classes
are divided into two groups: static and non-static (Listing 3.4 and 3.5). A nested class
that is declared static is called nested static class. Non-static nested classes are called
inner classes [114, Sec. 8.1.3]. The need for this distinction is important because inner
classes naturally form cyclic dependencies with their outer classes. Specifically, the
outer class makes its instance “this” available to its inner classes but not to static nested
classes on the byte code level. In addition, static nested classes reference outer classes
and vice versa in source code. However, inner classes reference outer classes by using
an implicit reference to the instance of the outer class. Note that on the source code
level, both cases can be considered in a cyclic dependency.

Outer
main()

StaticNested

class Outer{

static class StaticNested { }

void main (){

new StaticNested ();

}

}

Listing 3.4 An example of a static nested class

Outer
main()

Inner

class Outer{

class Inner { }

void main (){

new Inner ();

}

}

Listing 3.5 An example of an inner class

In addition to non-static inner classes and static nested classes, anonymous classes
explicitly make a cyclic dependency with their outer classes. Anonymous classes
are just like other classes except that they do not have names. Listing 3.6 shows an
example of an anonymous class. Compiling the code in Listings 3.4 and 3.5 will result
in byte code files with the names Outer$StaticNested.class and Outer$Inner.class

respectively. However, since anonymous classes do not have names, the Java compiler
assigns a unique identifier (number) to those anonymous classes. The compiled byte
code of the anonymous class shown in Listing 3.6 would be Outer$1.class.

We treat inner, nested static and anonymous classes the same way when we build class
dependency graphs.

3.2. Types and Levels of Tangles 33

abstract class Anonymous{ abstract void go(); };
class Outer{

void main (){
new Anonymous (){

void go(){ }
};

}
}

Listing 3.6 An example of an anonymous class

3.1.4 Package Level Dependency Graph

Two packages form a package level dependency when a package P1 depends on package
P2 if a class exists in P1 that references a class in P2. Fowler [49], Tessier [115] and Laval
et al. [25] argue that analysing the dependencies among packages has more priority
than lower levels. This is mainly due to the fact that managing the dependencies on
the package level hides redundant relationships between packages. Furthermore, a
package level dependency provides a higher level of abstraction that simplifies the
understanding of program structure.

3.1.5 Component Level Dependency Graph

A component graph is a Unified Modelling Language (UML) diagram that illustrates
the relationships between the components of a system. A software component contains
implementation items such as executables and logic binaries. Components can be seen
as encapsulation units within a system or a subsystem that requires the functionality
of other components in order to provide their own functionality. Java class files and
any associated metadata and resources can be assembled into distributable containers
which are called Java Archives (JARs). A JAR can be considered as a component that
can be deployed and integrated with other components to build an entire system.

3.2 Types and Levels of Tangles

In this section, we present the method used to build tangles from dependency graphs
and present different types of tangles. Two tangle types are extracted from class level
dependency graphs and two tangle types are on the package level. The definitions of
tangle types provided later in this section are based on the dependency graphs depicted
in Figures 3.2, 3.3, 3.4 and 3.5.

34 Chapter 3. Dependency Graphs and Tangles

P1

A

B

P2

C

C$1

P3

D

E

Figure 3.2 Example classes and packages (UML class diagram). Note that C$1
is an inner class of C.

P1 P2 P3

Figure 3.3 The package graph Gp.

A

B

C

C$1

D

E

Figure 3.4 The class graph Gc.

A

B

C D

E

Figure 3.5 The top-level-class graph Gtlc.

3.2.1 Extracting Tangles from Dependency Graph

We explored the available methods for identifying and extracting SCCs from graphs.
The straightforward method is running a DFS from every vertex (source) to all other
vertices (targets) in the graph. Whenever there is a path from source to target and vice

3.2. Types and Levels of Tangles 35

versa, the two vertices belong to the same SCC. Using a shortest path algorithm, such as
Dijkstra’s shortest path algorithm, [116, 117] can make the process faster. The problem is
that this approach does not scale up with very large graphs. A good algorithm available
to enumerate SCCs is Tarjan’s algorithm which runs in linear time O(|V|+ |E|) [37]
while the other methods are polynomial in terms of running time and space. Listing 3.7
shows the Java implementation of the Tarjan’s algorithm.

static <V,E> Collection <Collection <V>> tarjan(Graph <V,E> graph){

Collection <Collection <V>> sccs = new ArrayList <>();

for(V v : graph.getVertices ()){
if(!v.visited){

strongconnect(sccs ,graph ,v,new Stack <V>());
}

}
return sccs;

}

static <V,E> void strongconnect(Collection <Collection <V>> sccs ,
Graph <V,E> graph ,V v, Stack <V> stack){

v.lowlink = v.dn = count ++;
v.visited = true;
stack.push(v);

for(V w : graph.getSuccessors(v)){
if(!w.visited){

strongconnect(sccs ,graph ,w,stack);

if(w.lowlink < v.lowlink){
v.lowlink = w.lowlink;

}
}else if(stack.contains(w) && w.dn < v.dn && w.dn < v.lowlink){

v.lowlink = w.dn;
}

}
if(v.lowlink == v.dn){

Collection <V> scc = new ArrayList <>();

V w = null;
do{

w = stack.pop(); scc.add(w);
} while(w != v);

sccs.add(scc);
}

}

Listing 3.7 Tarjan’s algorithm implementation in Java

36 Chapter 3. Dependency Graphs and Tangles

Listing 3.8 shows the method used to build tangles from dependency graphs. It
accepts a dependency graph as an input and returns a collection of tangles that are
subgraphs of the input graph. Note that tangles of a single vertex are not included
because we do not consider them.

static <V,E> Collection <Graph <V,E>> getTangles(Graph <V,E> depGraph){
Collection <Graph <V,E>> tangles = new ArrayList <>();
Collection <Collection <V>> sccs = tarjan(depGraph);
for(Collection <V> scc : sccs){

if(scc.size ()==1) continue;
Graph <V,E> tangle = new DirectedSparseGraph <>();
for(V v: scc){

for(V w: scc){
E e = depGraph.findEdge(v,w);
if(e != null) tangle.addEdge(e,v,w);

}
}
tangles.add(tangle);

}
return tangles;

}

Listing 3.8 The method used to build tangles from dependecy graphs.

3.2.2 Class Tangles

The set of class tangles Tc is defined as follows: a class tangle tc is a strongly connected
component extracted from Gc = (Vc, Ec). A tangle has to have at least two vertices.
Figure 3.4 and 3.6 show an example of a class tangle extracted from a class graph. We
build class tangle graphs using the method shown in Listing 3.9.

A

B

C

C$1

Figure 3.6 Class tangles, Tc = {{A, B, C, C$1}}.

static <V,E> Collection <Graph <V,E>> getCTangles(Graph <V,E> cdg){
return getTangles(cdg);

}

Listing 3.9 The method used to build class tangles.

3.2. Types and Levels of Tangles 37

3.2.3 Top-Level-Class Tangles

The set of top-level-class tangles Ttlc is defined as follows: a top-level-class tangle ttlc is a
strongly connected component extracted from Gtlc (Figure 3.5 and 3.7). Top-level-class
tangles can be built the same way class tangles are built except that all inner, nested
static, and anonymous classes are collapsed to the top level class. Therefore, the class
dependency graph is modified and then the same method that is used to get class
tangles is applied to generate top-level-class tangle graphs (Listing 3.10).

A

B

C

Figure 3.7 Top Level Class tangles, Ttlc = {{A, B, C}}.

static <V,E> getTopClass(Graph <V,E> cdg , V v){
for(V p : cdg.getVertices ()){

if(p.toString (). contains("$")== false){
if(v.toString (). startsWith(p.toString ())){

return p;
}

}
}
return v;

}

static <V,E> Collection <Graph <V,E>> getTLCTangles(Graph <V,E> cdg){
Graph <V,E> topClassDG = new DirectedSparseGraph <>();
for(E e : cdg.getEdges ()){

V v = getTopClass(cdg , cdg.getSource(e));
V w = getTopClass(cdg , cdg.getDest(e));
if(v!=w && topClassDG.findEdge(v,w)== null){

topClassDG.addEdge(e,v,w);
}

}
return getTangles(topClassDG);

}

Listing 3.10 The method used to build the top-level-class tangles.

38 Chapter 3. Dependency Graphs and Tangles

3.2.4 Weak Package Tangles

The set of weak package tangles Tw
p is defined as follows: a weak package tangle tp ∈ Tw

p

is the package graph built from the packages and their relationships in Gp (Figure 3.8).
In order to build weak package tangles, we use the same method getTangles(Graph)

presented in Listing 3.8, with the exception that the graph dependency graph is built in
advance (Listing 3.11).

P1

A

B

P2

C

C$1

P3

D

E

Figure 3.8 Weak package tangles, Tw
p = {{P1, P2, P3}}.

/*
* getPackage(Graph , V) returns a the package vertex of the given
* class vertex
*/

static <V,E> Collection <Graph <V,E>> getWPTangles(Graph <V,E> cdg){
Graph <V,E> pdg = new DirectedSparseGraph <>();
for(E e : cdg.getEdges ()){

V v = getPackage(cdg , cdg.getSource(e));
V w = getPackage(cdg , cdg.getDest(e));
if(v!=w && pdg.findEdge(v,w)== null){

pdg.addEdge(e,v,w);
}

}
return getTangles(pdg);

}

Listing 3.11 The method used to build the weak package tangles.

3.2.5 Strong Package Tangles

The set of strong package tangles Ts
p is defined as follows: for each class tangle tc ∈ Tc,

a strong package tangle tp ∈ Ts
p is the package graph built from the classes and their

relationships in tc as described above. It follows directly from the definition that each
strong package tangle is either a weak package tangle or is embedded in a weak package
tangle (Figure 3.9). In order to build strong package tangles, we enumerate the list of
class tangles. Then, from each one we build a package tangle as used in Listing 3.11,
given that a class tangle vertices come from the different packages (Listing 3.12).

3.2. Types and Levels of Tangles 39

P1

A

B

P2

C

C$1

P3

D

E

Figure 3.9 Strong package tangles, Ts
p = {{P1, P2}}.

static <V,E> Collection <Graph <V,E>> getSPTangles(Graph <V,E> cdg){
Collection <Graph <V,E>> pdgs = new ArrayList <>();
Collection <Collection <V>> sccs = tarjan(cdg);
for(Collection <V> scc : sccs){

if(scc.size ()==1) continue;
Graph <V,E> graph = new DirectedSparseGraph <>();
for(V v : scc){

V s = getPackage(cdg , v);
for(V w : scc){

V t = getPackage(cdg , w);
E e = cdg.findEdge(v,w);
if(!(s==t || e == null || graph.containsEdge(s,t))){

graph.addEdge(e,s,t);
}

}
}
if(graph.getEdgeCount ()>1){

pdgs.addAll(getTangles(graph));
}

}
return pdgs;

}

Listing 3.12 The method used to build the strong package tangles.

In order to illustrate these concepts, consider the dependency graph in Figure 3.2
which shows a simple scenario using a UML class diagram. The respective class graph
is shown in Figure 3.4 and the respective package graph in Figure 3.3. The class graph
contains a single class tangle {A, B, C, C$1} (Figure 3.6). By reducing inner classes,
there is a top-level-class tangle which is {A, B, C} (Figure 3.7).

There is a single weak package tangle {P1, P2, P3}, as this is the sole strongly
connected component in the package graph. However, this differs from the strong
package tangle {P1, P2} obtained from the class tangle (Figure 3.9).

Note that the two notions representing package tangles differ if packages are not

40 Chapter 3. Dependency Graphs and Tangles

cohesive. In particular, this means that weak package tangles could be removed by
splitting packages. Strong package tangles are related to the strong cyclic dependencies
anti-pattern used in [23] and [87].

3.3 Building Dependency Graphs

Dependencies in Java programs can be analysed either from source code or byte–code.
Source code is a set of instructions written in human readable programming language,
mostly using text. Source code files generally have a .java extension. On the other
hand, the byte code is a compiled code which is composed of a set of instructions. Byte
code files can be executed by a virtual machine and usually have a .class extension.
More differences are shown in Table 3.1.

source code byte-code
APIs Used PMD, JavaNCSS ASM, BECL
Fully qualified names no yes
Reference to constants yes no
Annotations yes some, depending on retention policy

Table 3.1 Some differences between source code and byte code.

Because we extract dependencies from byte-code, references made to String and
primitive type constants (static final fields) are copied into the referencing class, a
technique called “constant inlining” [114]. Listings 3.13 and 3.14 show the source code
and byte–code of two classes: A and B respectively. Class B makes a reference to a
constant declared in class A. However, the class B is independent as shown by analysing
the byte–code. The compiler may copy such constant value to improve the performance
of the running time.

class A {

public static final int a = 42;

}

//javap -constants A.class

// Compiled from "A.java"

class A {

public static final int a = 42;

A();

}

Listing 3.13 The source code and
byte-code of class A

class B {

public static final int b = A.a;

}

//javap -constants B.class

// Compiled from "B.java"

class B {

public static final int b = 42;

B();

}

Listing 3.14 The source code and
byte-code of class B

On the source code level, an explicit dependency can be made from a class to
another by specifying its fully qualified name in the statement call. Alternatively,
external classes can be imported, either individually such as import java.util.List,
or as part of an imported package such as import java.util.*. Byte–code based

3.4. Conclusion 41

analysis has the advantage that all import statements are resolved by the compiler, and
all references to other classes are resolved via fully qualified names.

Table 3.2 shows some of the existing tools and publications that analyse the
dependencies on the different levels of dependency stated in this chapter.

Tool/Paper Extraction Statement Method Class Package JAR
ByeCycle [118] B x
Classycle [119] B x w
CodePro [120] B x w x
Dependency Finder [115] B x w x
Eisenbarth et al. [121] S x
JDepend [122] B w
Jepends [101] S x x
JooJ [118] S x
Lattix LDM [123] B w
McCabe [111] S x
Melton & Tempero [22] S+B x w
Popsycle [25, 124] B w
Sarkar et al. [125] S w
Shah et al. [52] B w+s
XplrArc [126] B x w+s x

Table 3.2 Some tools and research done in analysing cyclic dependencies. B: Byte-code,
S: Source code, w: weak, s: strong

3.4 Conclusion

In summary, in this chapter we presented different levels of dependencies that can be
analysed from software systems. Most work in dependency analysis is concerned with
analysing the graph defined by packages and their relationships. We use Gp = (Vp, Ep)

to refer to this graph, where Vp (the vertices) represents a set of packages and Ep (the
edges) a set of dependencies between packages. This means that the package graph
is built from the class graph. We use Gc = (Vc, Ec) to refer to the graph consisting of
classes and their relationships. Unlike Shah et al. [52], we treated extends and uses

dependencies equally in Gc. In order to measure the effects of the cycles generated
by the compiler between outer classes and their inner classes, we also investigated
the graph consisting of top-level-classes and their relationships, (Gtlc = (Vtlc, Etlc)).
The vertices in Gtlc are top level classes. A dependency exists between two top level
classes (c1, c2) ∈ Etlc iff c1 or any of the inner classes of c1, depending on c2 or any of
the inner classes of c2. The relationships between containers (JARs) are not investigated.
Although cyclic dependencies exist in these graphs as well [23], such graphs tend to be
small and can be analysed manually.

We also looked at two ways of building the dependency graphs, which are by

42 Chapter 3. Dependency Graphs and Tangles

source code and byte code. We prefer to use the latter method because it is easier
than analysing the source code. Furthermore, analysing the source code to extract
dependencies requires an extensive knowledge of the language compiler and its role of
detecting referenced classes. Therefore, building the dependencies from source code
is redundant because it tends to require building a compiler. We also presented a
summary of the existing tools and publications that analyse software dependencies.

In the next chapter, we look at the different shapes of tangles, their properties and
some metrics specifically developed to detect them. We also present an algorithm to
classify tangles and the methodology followed to test its robustness.

CHAPTER 4

T A N G L E S C L A S S I F I C A T I O N

The classification of facts, the recognition of their sequence and relative significance is the function of science, and
the habit of forming a judgment upon these facts unbiassed by personal feeling is characteristic of what may be

termed the scientific frame of mind.
[Karl Pearson]

Contents

4.1 Introduction . 44

4.2 Reference Topologies . 45

4.3 A Set of Custom Metrics . 49

4.4 Robustness Analysis . 54

4.5 Classification of Tangles . 57

4.6 Validating the Classifier . 58

4.7 Classification of Qualitas Corpus Tangles 58

4.8 Conclusion . 67

Summary – In this chapter, we present the shapes of cyclic dependencies we used
which are categorised according to the symmetry. Also, we present some new metrics
that are tailor–made to detect some tangle shapes. We show how tangles were auto–
generated to perform experiments and measure the robustness of metrics. In addition,
we present our tangles classification algorithm and show its correctness and the method
followed to test its correctness. We also apply the classifier on a data set of open–source
Java systems to classify tangles and present the result of their classification. Finally, we
present some results related to the classification of tangles and the shift of shape by
moving between different levels.

43

44 Chapter 4. Tangles Classification

4.1 Introduction

In order to classify tangles, we use a set of archetypical reference topologies. While
these topologies are modelled using visual metaphors, we cannot rely on manual
identification for several reasons. Firstly, the tangles can be fairly large. For instance,
the JRE 1.6.0_17 contains class tangles containing 2110 classes and weak package tangles
containing 228 packages. Secondly, how end users perceive a topology depends not
only on the graph, but also on the layout that is being used to render the graph: different
presentations of the same graph, particularly large graphs, hide different properties of
it. Thirdly, we are interested in automating the process of classifying tangles, which
makes a manual identification unsuitable.

This means that a set of metrics must be derived and used to classify tangles.
A particular challenge is the computational complexity of the classification: many
standard graph algorithms are in NP, which means that they are not suitable for the
classification of tangles of non-trivial size. We discuss several metrics, archetypes and a
classification algorithm based on these metrics in Section 4.5.

We cannot expect that large tangles are easily classified in the sense that they have
the exact shape conforming to a particular topology. A classification that is useful in
practice must have some robustness built into it. For example, instead of looking for
perfect cliques, we want to look for clique-like structures.

We first assess the robustness of our classifier by generating tangles that are perfect
archetypes of a particular topology, then subject these tangles to random modifications
and checking whether the classification result remains stable. This is done in Section 4.4.

Secondly, we investigate tangles in real world Java programs. For this purpose,
we use the Qualitas Corpus version 20101126 [127]. This is a set of 103 open source
projects that has been widely used in empirical studies. For many programs, the corpus
contains several versions. In this case, only the latest version is used. The class graphs
are extracted from the compiled programs using the Dependency Finder [115].

In some programs, classes with the same fully classified class name occur in multiple
jar files. In this case, it is not clear how the dependency graph should be built, as this
depends on how class loaders are used by the programs. In other words, building the
dependency graph requires semantic analysis. We therefore decided to remove these
programs from the data set we used. The eight systems where this is the case are listed
in Table 4.1.

4.2. Reference Topologies 45

aspectj-1.6.9 c_jdbc_2.0.2 castor-1.3.1 cayenne-3.0.1
drjava-stable-20100913 gt2-2.7-M3 jtopen-7.1 pooka-3.0-080505

Table 4.1 List of projects in Qualitas Corpus which contain multiple classes that have
the same qualified name.

4.2 Reference Topologies

We use a set of reference topologies to classify tangles. We expect that tangles with
the same topology share certain properties, including how change propagates through
these networks (“ripple effects”), and how easy it is to comprehend and break these
tangles. This is directly related to software maintenance issues. We describe these
topologies and how they can be characterised using the metrics discussed in Section 2.2
and 4.3.

We selected these topologies based on the following criteria:

1. Comprehensibility: a topology is associated with a common visual metaphor.
2. Computability: a topology can be described using a combination of metrics with

low computational complexity. This means that it is possible to build scalable
tools to decide whether tangles have this topology.

3. Relevance: tangles with a given topology occur in significant numbers in real
world programs. This will be shown in Section 4.7.

4. Stability: The values for the chosen combination of metrics remain robust under
small random modifications of the topology. This will be shown in Section 4.4.

We divide tangles into two main categories, which are symmetric and asymmetric,
(Figure 4.1 and 4.2 respectively). Symmetric topologies comprise tiny, circle, clique, chain
and star. Asymmetric topologies comprise semi–clique and multi–hub. These topologies
will be explained next.

4.2.1 Symmetric Topologies

Symmetric tangles (Figure 4.1) are composed of 1) tiny, 2) circle, 3) clique, 4) chain
and 5) star. Although these tangle shapes look perfectly symmetric, tangles in real
dependency graphs may contain minor alterations. Therefore, we consider a tangle
symmetric if a large proportion of it is symmetric.

4.2.1.1 Tiny

A tiny tangle is a tangle with two vertices. This implies its topology: there are exactly
two edges connecting the two vertices, one in either direction. Tiny tangles are

46 Chapter 4. Tangles Classification

Tiny Clique Circle Chain Star

Figure 4.1 Symmetric tangle topologies.

pathological cases that have the characteristics of most other topologies. In particular,
tiny tangles are simple cycles as well as cliques. This justifies treating them as a
separate category. Tiny tangles can be automatically generated using Listing 4.1.

public static Graph <Integer ,String > getTiny (){
Graph <Integer ,String > tiny = new DirectedSparseGraph <,>();
tiny.addEdge("0->1" ,0,1);
tiny.addEdge("1->0" ,1,0);
return tiny;

}

Listing 4.1 Tiny tangle generation function.

4.2.1.2 Circle

A circle tangle is a simple tangle structure where vertices {v1, v2, . . . , vn} are only
connected by edges linking adjacent vertices: E = {(vi, vi+1)} ∪ {(vn, v1)}. In simple
circles, the number of vertices equals the number of edges. We expect that circles exist
in small tangles. Circle tangles can be automatically generated using Listing 4.2.

public static Graph <Integer ,String > getCircle(int size){
Graph <Integer ,String > circle = new DirectedSparseGraph <,>();
for (int i = 1; i < size; i++) {

circle.addEdge(String.format("%d->%d", i, i + 1), i, i + 1);
}
circle.addEdge(String.format("%d->%d", size , 1), size , 1);
return circle;

}

Listing 4.2 Circle tangle generation function.

4.2.1.3 Clique

A clique tangle is a tangle where each vertex has an edge connecting it with any
other vertex. This indicates that |E| = |V| × (|V| − 1), which implies that edges are

4.2. Reference Topologies 47

quadratically proportional to the number of vertices. Finding very large perfect cliques
is unlikely due to the fact that they require a large number of links between software
components. Clique-like structures may appear due to the fact that features are added
to software systems gradually. Existing modules may not be modified as frequently as
newly introduced ones. Therefore, a clique cyclic dependency can occur if developers
reference new features in old ones and vice versa. Clique tangles can be automatically
generated using Listing 4.3.

public static Graph <Integer ,String > getClique(int size){
Graph <Integer ,String > clique = new DirectedSparseGraph <,>();
for (int i = 0; i < size; i++) {

for (int j = i+1; j < n; j++) {
clique.addEdge(String.format("%d->%d", i, j), i, j);
clique.addEdge(String.format("%d->%d", j, i), j, i);

}
}
return clique;

}

Listing 4.3 Clique tangle generation function.

4.2.1.4 Chain

A chain tangle is a sequential structure, with edges connecting adjacent vertices in both
directions. Sometimes, the start and end point of a chain are connected as well. Chain
tangles can be automatically generated using Listing 4.4.

public static Graph <Integer ,String > getChain(int size){
Graph <Integer ,String > chain = new DirectedSparseGraph <,>();
for (int i = 1; i < size; i++) {

chain.addEdge(String.format("%d->%d", i, i+1), i, i+1);
chain.addEdge(String.format("%d->%d", i+1, i), i+1, i);

}
return chain;

}

Listing 4.4 Chain tangle generation function.

4.2.1.5 Star

A star tangle is a topology with a central hub vertex, which is an endpoint (either
incoming or outgoing) for all edges in the tangle. Star tangles can be automatically
generated using Listing 4.5.

48 Chapter 4. Tangles Classification

public static Graph <Integer ,String > getStar(int size){
Graph <Integer ,String > star = new DirectedSparseGraph <,>();
for (int i = 2; i <= size; i++) {

star.addEdge(String.format("%d->%d", 1, i), 1, i);
star.addEdge(String.format("%d->%d", i, 1), i, 1);

}
return star;

}

Listing 4.5 Star tangle generation function.

4.2.2 Asymmetric Topologies

Asymmetric tangles (Figure 4.2) are composed of two types, which are 1) semi–clique
and 2) multi–hub. Initially, they are generated as symmetric and then altered, based on
the size of the graph, to make them asymmetric. Listing 4.6 shows the function used to
randomly add some edges to a tangle to make it asymmetric.

public static void noisify(Graph <Integer ,String > graph){

List <Integer > vs = new ArrayList <Integer >(graph.getVertices ());

int threshold=graph.getVertexCount ()/10;

for(int i=0;i<threshold;i++){

Collections.shuffle(vs);

Integer s = vs.get (0);

Integer t = vs.get (1);

String e = String.format("%d->%d", s, t);

if(graph.containsEdge(e) == false){

graph.addEdge(e, s, t);

}

}

}

Listing 4.6 Noisfy tangle function.

Multi-hub Semi-clique

Figure 4.2 Asymmetric tangle topologies.

4.3. A Set of Custom Metrics 49

4.2.2.1 Semi–clique

A semi-clique tangle is a tangle that has approximately half as many edges as a clique.
Semi-cliques are relatively dense tangles that lack the symmetric properties of any of
the topologies described above. Semi-clique tangles can be automatically generated
using Listing 4.7.

public static Graph <Integer ,String > getSemiClique(int size){

Graph <Integer ,String > semiClique = new DirectedSparseGraph <,>();

for (int i = 1; i <= size; i++) {

for (int j = i+1; j <= size; j++) {

semiClique.addEdge(String.format("%d->%d", i, j), i, j);

}

}

semiClique.addEdge(String.format("%d->%d", size , 1), size , 1);

noisify(semiClique);

return semiClique;

}

Listing 4.7 Semi-clique tangle generation function

4.2.2.2 Multi–hub

A multi–hub tangle is a tangle that contains more than one hub. A vertex is considered
as a hub if it has a relatively high betweenness than other vertices in the same tangle. In
order to automatically generate a multi–hub tangle, we generate a random number of
pure stars whose number of vertices in total equals to the requested multi–hub tangle
size. Then these stars are joined. Some arbitrary edges are added until the generated
tangle is strongly connected. Finally, some noise is added to the generated tangle to
disturb the symmetry of its shape using noisify(Graph) method.

4.3 A Set of Custom Metrics

We considered using some of the standard metrics from graph theory to classify the
tangles that were discussed in Section 2.2. However, we found such metrics
computationally inefficient in most cases. Therefore, we have developed an alternative
set of simple metrics that proves to be sufficient for our purpose, as demonstrated next.

4.3.1 The Depth of the SCC Decomposition Graph

A cycle is a directed path that starts and terminates at the same vertex. A cyclic path
is called elementary if every vertex in the path is visited once. For instance, Figure 4.3

50 Chapter 4. Tangles Classification

shows a graph which is composed of five vertices, nine edges and has six elementary
cycles, i.e. circuits. Note that the cycles (bdcb), (cbdc) and (dcbd) are permutations of
the same elementary cycle composed of the vertices {b, c, d}. Disjoint elementary cycles
are those which have no shared edges or vertices. We call cycles non-overlapping if
they do not share an edge. For instance, the following sets of cycles extracted from
Figure 4.3 are composed of cycles that are non-overlapping:

• S1 = {(aba), (bdcb), (ded)}
• S2 = {(aba), (bdecb)}
• S3 = {(ded), (bdcab)}

a

b

d

c

e

a

b

d

c

e

a

b

d

c

e

a

b

d

c

e

a

b

d

c

e

a

b

d

c

e

a

b

d

c

e

Figure 4.3 A SCC and its elementary cycles.

Figure 4.4 shows a decomposition graph of the SCC presented in Figure 4.3. The
decomposition graph of a SCC can be built as follows: vertices are the SCC and the
elementary cycles within the SCC, and edges are defined by set inclusion of vertices.
The height of the decomposition graph can be measured as the length of its diameter.

ab bcd de

abcd bcde

abcde

Figure 4.4 Decomposition graph.

Elementary cycles can be used to analyse and visualise cyclic dependencies between
software modules. Elementary cycles are easier to understand and visualise relative
to the whole SCC from which the cycle is extracted. As shown in Figure 4.3, the
cycles (aba) and (ded) are the simplest among other cycles, and therefore can be easily

4.3. A Set of Custom Metrics 51

understood. McCabe [111] asserts that the Cyclomatic complexity number for a strongly
connected graph G is equal to the maximum number of linearly independent circuits.

To the best of our knowledge, the most efficient algorithm that can enumerate all
simple cycles in a directed graph is Johnson’s algorithm [128] whose complexity is
O((|V|+ |E|)(|C|+ 1)) though the number of cycles |C| can be exponential [128, 129].

1

2

3
4

5

4

3

2

1 5

1

2

3 4

5

12 23 34 45 51

123 234 345 451

12345

12 23 34 45

123 234 345

12345

12 13 14 15

12345

(a) (b) (c)

Figure 4.5 SCC decomposition graphs of some tangles.

Figure 4.5 shows some SCC-decomposition graphs of different tangle shapes. Note
that the diameter of the decomposition graph is affected by the shape of the tangle. Due
to the high complexity of generating the maximal set of non-overlapping elementary
cycles from tangles, we considered this metric but did not use it.

4.3.2 Immediate Back-reference (BCKREF)

BCKREF has a similar flavour to TANGL (Section 2.2.8), but is faster to compute. It
measures the relative number of edges (v1, v2) ∈ E where the back-reference path
between v1 and v2 consists of a single edge, i.e. (v2, v1) ∈ E. BACKREF can be
computed using Equation 4.1. Using suitable data structures, BCKREF can be computed
in time O(|E|).

BCKREF(G) =
| { (v1, v2) ∈ E | (v2, v1) ∈ E } |

|E| (4.1)

4.3.3 Starness (STAR)

STAR is the ratio between the maximum degree of vertices in a tangle and the number
of edges. This metric is useful in detecting star-like topologies, similar to the tangles
caused by classes and their non-static inner classes. In order to calculate the maximum
degree, we sum the indegree and outdegree for each vertex. For a simple cycle or

52 Chapter 4. Tangles Classification

a clique, both very regular symmetric topologies, STAR will be a very small value,
tending to zero as |V| gets large, 2

|V| for a simple cycle and 1
|V| for a clique. For a star-like

tangle with a single high-degree central hub, STAR will be a value close to 1. STAR can
be computed using Equation 4.2.

STAR(G) =
maxv∈V (deg(v))

|E| (4.2)

Using suitable data structures, we can compute STAR in time O(|E|) by simply
considering each of the edges in turn and building up a degree count for each vertex.
We stipulate that a tangle classified as a star needs to have at least four vertices.

4.3.4 Chainness (CHAIN)

CHAIN is a measure designed to detect chains, i.e., tangles where each vertex
references only two neighbours and is only referenced by these two neighbours, (with
the exception of the two vertices at the end of the chain). We formally define CHAIN as
follows. For a given vertex v ∈ V, we call another vertex v′ ∈ V a friend of v iff
(v, v′) ∈ E and (v′, v) ∈ E. Let f riends(v) be the number of friends of a vertex in V.
Then CHAIN measures the relative number of vertices that have precisely two friends.
CHAIN can be computed using Equation 4.3.

CHAIN(G) =
minv∈V (|{v | f riends(v) = 2}|, |V − 2|)

|V − 2| (4.3)

For perfect chains, CHAIN is 1 (except where |V| = 4 and the chain is closed).
Otherwise, CHAIN is still 1 for closed chains, i.e. chains where the start and the end
vertices are connected. For both simple cycles and cliques with more than three vertices,
CHAIN is 0. CHAIN can be computed in time O(|E|), since both the incoming and
outgoing edges for each vertex must be considered.

4.3.5 Hubs (HUB)

HUB is a measure we used to detect the existence of hub vertices in tangles. We define
hubs in tangles as vertices with high ‘importance’. A vertex is considered a hub if it
has a higher betweenness score relative to other vertices in a tangle. The betweenness
centrality measure can indicate the likelihood of a vertex being passed through for all
of the possible shortest paths in the tangle. The presence of hubs can indicate unequal
distribution of betweenness for all vertices. Therefore, the distribution of betweenness
is expected to be skewed in tangles containing hubs.

4.3. A Set of Custom Metrics 53

Lin
e of Eq

uality

Lorenz curve

LLLoLoLLoLoorooorererereeeeennnnznzzzzzzz cccccucccuuuurrvrrvvvveveeeeee

commutative share of people
from lowest to highest incomes

co
m

m
ut

at
iv

e
sh

ar
e

of
in

co
m

e
ea

rn
ed

100%

10
0%

A

B

Figure 4.6 Graphical representation of the Gini coefficient.

In order to measure the skewness in vertex betweenness distribution, we use the
Gini coefficient which has been used successfully in economic studies [71, 73, 72]
and has also been applied in the measurement of skewness of software engineering
metrics, e.g. [130, 131]. The Gini coefficient, a.k.a. Gini index or Gini ratio is defined
mathematically, based on the Lorenz curve which plots the proportion of the total
income that is cumulatively earned by population (Figure 4.6) [69, p.22]. Allison [132]
defines the Gini coefficient as the ratio between the area formed between the line
of equality and Lorenz curve (A) over the total area (A+B), i.e. Gini = A/(A + B).
Lerman and Yitzhaki [133] define the Gini coefficient as “1 minus twice the area between
the Lorenz curve and the diagonal line representing perfect equality”. When we apply the Gini
coefficient measurement, we consider the vertices in the tangle to be the population
and the wealth is their betweenness centrality measure. In tangle shapes containing no
hubs such as circles and cliques, the Gini coefficient is 0 (perfectly equal distribution),
whereas tangle shapes with few hubs such as stars have a Gini coefficient value close
to 1. Figure 4.7 shows some graphs and the respective Gini coefficient values of the
betweenness scores. In cliques and simple circles, HUB is very close to 0 because the
betweenness scores for such tangles is distributed evenly.

0.1200 0.5000 0.7746 0.9000

Figure 4.7 Some example of tangles and their HUB values.

54 Chapter 4. Tangles Classification

There are some cases where the HUB metric might be misleading if it was used on
very dense structures. Dense tangles usually have a small diameter ≈ 1, which implies
that every vertex is linked to every other vertex. Therefore, almost all vertices have an
equal betweenness. If a vertex is added to the tangle, then the betweenness score of
the vertex that is linked directly to the newly added vertex strongly increases, and this
vertex is classified as a hub. Figure 4.8 illustrates this scenario and shows that the HUB
measure has been dramatically raised from 0 to 0.91.

0.00 0.91

Figure 4.8 HUB metric can be misleading on very dense tangles.

We experimented with each of the computationally tractable metrics described
above on a set of reference topologies, which are described in Section 4.2. We performed
a robustness analysis in order to identify the most useful metrics. The results of this are
given in Section 4.4.

4.4 Robustness Analysis

In order to test the ability of the metrics to detect tangles, we manually create tangles
of each topology that we have identified, initially with a variety of sizes (where we
define the size of a tangle by the number of vertices in it). The tangle that we initially
construct is a perfect example of the topology. However, this is clearly highly unlikely
in real software systems. We therefore modify our graphs by using a set of mutations:
vertex addition, vertex deletion, edge addition, or edge deletion. A set of modified graphs are
created by randomly by choosing vertices or edges to mutate (and which mutation to
apply at each point). After performing any kind of mutation, the graph is tested for
the SCC property, and mutations that result in the graph not being strongly connected
are not used. Note that the addition of a vertex entails adding two edges in order
to maintain strong connectivity, while removing vertices can easily break the strong
connectivity property of tangles.

Although vertex mutations have a greater effect on the shape of tangles, we decided
to apply an equal proportion of all mutations to simulate normal scenarios of software
change. The number of mutations applied is relative to the initial size of the tangle

4.4. Robustness Analysis 55

which is 10%. This has been taken into consideration in order to largely preserve the
structure and properties of each tangle topology.

Using the approach described in the Section 4.2, we created a set of graphs by
starting from tangles of each of the topologies described in the previous section (with
sizes between 5 and 100) and performing a number of mutations on each of them,
where the numbers of mutations was one-tenth of the initial tangle size. This generated
30 new graphs, which all had approximately, but not exactly, the same size, since some
had vertices added and some had vertices removed.

●

●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

a) Circle (High variability) b) Star (Low variability)

Figure 4.9 TANGL score for variations of the Circle and Star topologies. The x-axis
indicates the size of the tangle while the y-axis indicates the TANGL value.

Figure 4.9 shows a box plot (the black line is the median, the box shows the inter-
quartile range, and the whiskers the full range) of the values of the TANGL metric
for variations of the circle and star topologies, for different sizes of original tangles.
Mutations of a circle that break an edge can result in a graph that is no longer strongly
connected, therefore such an edge deletion mutation would not be applied. Edge
addition mutations result in a graph that becomes progressively more tangled. As a
result, the TANGL scores of the circle topology have wide ranges for all sizes. This high
variability means that the TANGL metric cannot be used to detect this type of topology.
However, for stars, the variability of TANGL is generally low. Since TANGL has a low
variability for stars, we consider it robust. RATIO is a robust measure that can be used
to detect circles.

Table 4.2 shows the box-plots matrix for the shapes of tangles and the metrics used.
The size of tangles used to generate these plots are within the range of 5 to 100. The
x-axis represents the size of the tangle while the y-axis represents the metric score. The
CHAIN metric is robust because the only topology that scores higher than 0.5 is the
chain topology while other topologies have a CHAIN score of, at most, 0.2. The range
of values of each metric on the different topologies are shown in Table 4.3. We use the
first quartile (Q1) and third quartile (Q3) bounds to determine the range of a metric for
each topology.

56 Chapter 4. Tangles Classification

chain circle clique star multi-hub semi-clique

BACKREF

●
●●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●
● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

CHAIN
●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●

●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

DENSE
●●● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

HUB
●● ●●

●

●●
●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

● ●

●●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

● ● ●

●

●● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

● ● ● ●
●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

●

●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

RATIO
●●
● ●●● ●●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●
● ●●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●●
●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●
●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

STAR
●
●●

● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●●

●●

●
●
● ●● ●●● ●● ●●● ●● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

● ●● ●
●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

●
●

● ●● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

TANGL

● ● ● ●●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0 ●● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

TRANS
●

● ● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●●●● ● ●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

●

●

10 40 70 100
0.0
0.2
0.4
0.6
0.8
1.0

Table 4.2 Boxplots of metrics scores on different tangles topologies. The x-axis indicates
the size of the tangle while the y-axis indicates the metrics value.

chain circle clique star multi-hub semi-clique
Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3

BACKREF 0.94 0.97 0.00 0.00 1.00 1.00 0.94 0.97 0.93 0.95 0.60 0.62
CHAIN 0.81 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DENSE 0.01 0.04 0.00 0.00 0.92 0.98 0.01 0.03 0.01 0.04 0.55 0.58
HUB 0.26 0.31 0.03 0.18 0.77 0.94 0.96 0.98 0.88 0.95 0.17 0.32
RATIO 0.50 0.52 0.94 0.98 0.01 0.04 0.50 0.52 0.49 0.51 0.02 0.05
STAR 0.04 0.09 0.03 0.09 0.03 0.07 0.95 0.98 0.28 0.42 0.03 0.07
TANGL 0.98 0.99 0.16 0.42 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
TRANS 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.01 0.60 0.62

Table 4.3 Metrics scores on different tangles topologies. Q1: first quartile, Q3: third
quartile.

We performed random mutations on tangles in order to add some noise and test
the robustness of the metrics that were chosen for the classifier. However, adding a
vertex requires adding two edges, which can easily distort the shape of relatively small
tangles. Specifically, symmetric tangles can be easily affected by such mutation. This
has been done to simulate real world programs when some code change is applied.
The problem with applying random mutations is that the change in real software tends
not to be random.

4.5. Classification of Tangles 57

We used the robustness analysis to identify which metrics are robust for which
topologies, and also to set values that could be used in a classifier. This is described in
Section 4.5.

4.5 Classification of Tangles

We devised a classification algorithm based on some of the metrics discussed in both
Section 2.2 and Section 4.3. The algorithm is shown in Figure 4.10. The metrics used in
the algorithm were chosen based on their computational efficiency. The metric SIZE

refers to the number of vertices in the tangle. It is designed to satisfy three criteria: (1)
completeness - to be able to classify a high percentage of tangles, (2) scalability and (3)
stability/robustness.

start

SIZE = 2 Tiny

RATIO ≥ 0.75 Circle

BACKREF ≥ 0.75 DENSE ≥ 0.75 Clique

CHAIN ≥ 0.75 Chain

STAR ≥ 0.75 Star

HUB ≥ 0.5 Multi-hub

DENSE ≥ 0.45 Semi-clique

Unknown

YES

NO

NO

NO

NO

NO

YES

YES

YES YES

NO

YES

NO

YES

YES

NO

Figure 4.10 Classification algorithm

58 Chapter 4. Tangles Classification

4.6 Validating the Classifier

In order to validate the correctness of the classifier, we generated a set of 30 graphs
of each topology and size (8 topologies, 40 sizes ranging from 5 to 200 in steps of 5),
each graph being a mutated version of the ideal topology, as in Section 4.4. We then
classified this collection of graphs. The success rate of the classifier is given as the ratio
of correct classifications to the total number of classifications. In particular, in order
to test the correctness of the classifier, we used a confusion matrix (error matrix) [134].
Tables 4.4 and 4.5 show the confusion matrices for un-mutated and mutated sets of
tangles. The numbers shown in both tables represent percentages. We found that the
classification result remained stable in 96% of cases.

shape chain circle clique star multi--hub semi--clique unknown

chain 100
circle 100
clique 100
star 100
multi--hub 100
semi--clique 3 97

Table 4.4 Un-mutated tangles classification confusion matrix

shape chain circle clique star multi--hub semi--clique unknown

chain 95 5
circle 98 2
clique 93 7
star 95 1 4
multi--hub 100
semi--clique 4 93 3

Table 4.5 Mutated tangles classification confusion matrix

4.7 Classification of Qualitas Corpus Tangles

In order to test the classifier, we applied the classification algorithm presented in
Section 4.5. The specifications of the system used to run the experiments is shown in
Table 4.6. The execution time of the classifier, including the time required to load and
initialise graphs and then apply the classification, is shown in Table 4.7.

4.7. Classification of Qualitas Corpus Tangles 59

Property Value

Device iMac 24-inch,
Early 2008

Processor Intel Core 2 Duo
Speed 2.8 GHz
Architecture 64 bit kernel
Memory 4GB
Operating System Mac OSX 10.7.5
JRE settings build

1.7.0_21-b12,
Java HotSpot(TM)
64-Bit Server VM
(build 23.21-b01,
mixed mode) Java
Virtual Machine
(JVM) -Xms40m
-Xmx512m

Table 4.6 System specifications of the workstation used in performing the experiment.

Tangle type Time Avg Max

Class 41660 8.3 13234
Top-Level-Class 14828 10.4 2501
Weak Package 532 1.7 363
Strong Package 206 0.6 120
All together 59256 9 13234

Table 4.7 Execution time of the classification algorithm on the corpus in milli-seconds.

4.7.1 Raw Result Data

For each system in the corpus of Java programs, the dependency graphs are extracted
using Massey Architecture Explorer [126]. Then, the class, top-level class, weak package
and strong package dependency graphs are generated. We encoded the raw result
data in JavaScript Object Notation (JSON) format files, which can be accessed from
http://tanglez.googlecode.com/svn/data/raw/. Each record contains information
about the vertices and edges of each tangle, its type, topology and size, and the values
for the various metrics that were used to identify their topologies. Listing 4.8 shows
the data structure of an example system composed of two packages and three classes
(Figure 4.11).

60 Chapter 4. Tangles Classification

{
"system": "An example system composed of two packages and three classes",
"dependencyGraph": {

"vertices": [
{ "name": "A", "parent": "p1.A", "namespace": "p1" },
{ "name": "B", "parent": "p1.B", "namespace": "p1" },
{ "name": "C", "parent": "p2.C", "namespace": "p2" }

],
"edges": [

{ "src": "p1.A", "tar": "p1.B" },
{ "src": "p1.B", "tar": "p2.C" },
{ "src": "p2.C", "tar": "p1.A" }

]
},
"ctangles": [

{
"id": 1000,
"topology": "circle",
"vertices": ["p1.A", "p2.C", "p1.B"],
"edges": [

{ "src": "p1.A", "tar": "p1.B" },
{ "src": "p1.B", "tar": "p2.C" },
{ "src": "p2.C", "tar": "p1.A" }

],
"metrics": {

"V": 3.0, "E": 3.0, "RATIO": 1.0, "DENSE": 0.0, "TRANS": 0.0,
"HUB": 0.0, "STAR": 0.67, "CHAIN": 0.0, "BACKREF": 0.0

}
}

],
"tlctangles": [...],
"wptangles": [...],
"sptangles": [...]

}

Listing 4.8 Dependency graph, tangles and their topologies of a system stored in
JSON data format.

P1

A

B

P2

C
A

B

C

Class tangle

P1 P2

Package tangle

Figure 4.11 An example dependency graph of the system shown in Listing 4.8.

4.7.2 The Number of Tangles

The total number of tangles found in each type of graph is shown in Table 4.8 and
Figure 4.12. It can be seen that there are significantly more tangles in the class graph
than in the top level class graph. This means that most class tangles are caused by
inner classes. Surprisingly, there are moderately more strong package tangles (361)
than weak package tangles (305), which implies that a package can be a member of

4.7. Classification of Qualitas Corpus Tangles 61

more than one strong package tangle while a package is unique in weak package
tangles (Figure 4.13). This indicates that many package tangles may be the result of
incorrect package boundaries and therefore non-cohesive packages (Figure 4.14). In
many cases, these tangles could be removed by splitting packages or merging the
classes from which the strong package tangle was built into one package. There are
well-known examples for this scenario. For instance, the java.util package contains
several clusters of unrelated classes, in particular the collection types, and classes that
are part of the date and time API.

shape class top level class weak package strong package

tiny 2376 715 106 198
circle 723 198 29 34
chain 226 44 11 10
star 927 63 10 11
clique 8 4 7 2
multi-hub 687 366 138 96
semi-clique 10 5 1 1
unknown 47 36 3 9
total 5004 1431 305 361

Table 4.8 Breakdown of tangles and their topologies.

Class Top Level Class Weak Package Strong Package

Tiny Circle Chain Star

Clique Multi-Hub Semi-Clique Unknown

Figure 4.12 Distribution of tangle topologies on the corpus.

Figure 4.14 shows the relationship between package boundaries and strong package
tangles. The presence of large weak, but not strong, tangles indicates that classes are not
placed within correct packages, or perhaps classes needed to be merged into a single
package. The dashed line suggests splitting packages to overcome tangles between
packages.

62 Chapter 4. Tangles Classification

P1

A

B

P2

C

D

P3

E

F

Figure 4.13 A package can be a member of more than one strong package tangle. In this
UML diagram, two strong package tangles: {P1, P2}, {P2, P3} and one weak package tangle
{P1, P2, P3} are extracted from the same dependency graph.

P1

A

B

P2

C

D

P3

E

F

Figure 4.14 Package boundaries and strong package tangles.

4.7.3 The Size of Tangles

Tiny tangles represent about half of the class and top level class tangles and about one-
third of package tangles. This is good news: these tangles are easy to understand and
therefore easy to refactor. In many cases, this could be done by merging the respective
artefacts. The average size of tangles in each graph is shown in Tables 4.9 and 4.10. The
results summarised in Tables 4.9 and 4.10 indicate that tangles lose symmetry as they
get larger. Therefore, large tangles have more irregular topologies.

4.7. Classification of Qualitas Corpus Tangles 63

shape
class top level class

avg max sdv avg max sdv

chain 3.26 5.00 0.45 3.09 4.00 0.29
circle 3.03 6.00 0.21 3.12 6.00 0.39
star 7.50 97.00 6.39 7.71 88.00 12.75
clique 4.00 8.00 1.58 4.50 8.00 2.06
multi-hub 50.29 2698.00 174.11 54.33 1196.00 128.87
semi-clique 4.60 6.00 0.80 5.20 6.00 0.75
unknown 5.06 9.00 1.28 6.50 22.00 3.64

Table 4.9 The size of class tangles.

shape
weak package strong package

avg max sdv avg max sdv

circle 3.03 4.00 0.18 3.09 5.00 0.37
chain 3.00 3.00 0.00 3.10 4.00 0.30
star 5.20 9.00 1.78 4.64 8.00 1.23
clique 3.71 4.00 0.45 3.00 3.00 0.00
multi-hub 19.69 373.00 34.26 16.88 249.00 26.83
semi-clique 14.00 14.00 0.00 4.00 4.00 0.00
unknown 8.33 11.00 3.09 5.56 8.00 1.34

Table 4.10 The size of package tangles.

4.7.4 The Occurrence of Topologies

Simple cycles and cliques are rare in all graphs. The few cliques that exist in the package
graph are very small. The only common symmetric topology is chain, (Figure 4.12). Not
surprisingly, there are large number of stars in the class graph that disappear in the
top level class graph. These are the stars created by outer classes in the centre, with
multiple inner classes attached to them. Outer classes with a single inner class are
classified as tiny tangles.

In the four different levels of classification of tangle topologies, the tiny and multi–
hub topologies tend to be the most dominant. In addition, the topologies of tangles are
not uniformly distributed. Indeed, the distribution of the number of detected tangle
topology per system tends to be right skewed, which implies that few projects contain
most of the tangles (Figures 4.15).

A significant number of tangles in both package graphs have either a star or multi–
hub topology. This could be an indicator that tangles are formed around central core
packages. One explanation for this case is that packages tend to grow too large, and
sub-packages are created to keep large numbers of classes manageable.

An example where this occurs is the javax.swing package in the core Java API
(Figure 4.16). Swing contains several rather sophisticated components such as trees
(JTree) and tables (JTable). The APIs of these components contain numerous types

64 Chapter 4. Tangles Classification

●● ●

●●● ●

●●●●●●●●

●● ●● ●●●●

●●●●●●●●●●

●● ●● ● ●●●

●● ●●● ●● ●● ●●

●●●●●●

chain
circle
clique

multi−hub
semi−clique

star
tiny

unknown

0 50 100 150 200

tangles/system

●●●●

●●● ● ●●●●● ●●

●●●●

●●●● ● ●● ●● ●● ● ●

●●●●●

●●●●●

●●●● ● ●●● ●

●●

chain
circle
clique

multi−hub
semi−clique

star
tiny

unknown

0 10 20 30 40 50

tangles/system

(a) class (b) top-level-class

●●●●●●●● ●

●●● ●●● ●● ●● ●●●●●●● ●●

●●●●● ●

●● ●● ●● ●●●●●● ●●● ●●●● ● ●● ● ●●●● ●●● ●●●

●

●● ●●● ●

●●●● ●●●● ●●●● ●● ●

●●●

chain
circle
clique

multi−hub
semi−clique

star
tiny

unknown

0 5 10 15

tangles/system

●●●●●●●●●●

●●●●●●● ●●●●● ● ●●● ●●●●●

●●

●● ● ●●● ● ●●

●

● ● ●● ●●●

● ●● ●●● ● ●● ●●

●●●● ●●

chain
circle
clique

multi−hub
semi−clique

star
tiny

unknown

0 5 10 15

tangles/system

(c) weak package (d) strong package

Figure 4.15 The distribution of tangles topologies on the corpus. Note that the scale of
each figure is different. The x-axis show the number of tangles detected per system.

representing selection models, renderers, data models etc. These types are “outsourced”
into sub-packages. However, these sub-packages are closely integrated with the parent
package, and therefore form a strong package tangle.

This is also an example of a multi–hub graph. The core AWT package java.awt

forms a similar star with its sub-packages, but there is a cyclic reference between
java.awt and javax.swing that is caused by a reference from javax.swing.JComponent

to java.awt.Component. Therefore Swing and AWT packages are part of one larger
tangle.

javax.swing

JTree

JTable

javax.swing.tree

TreeCellEditor

javax.swing.table

TableCellEditor

Figure 4.16 Star-like package dependencies in Swing.

4.7. Classification of Qualitas Corpus Tangles 65

4.7.5 Tangles Morphology

In order to verify the correctness of the figures presented about the number of tangles
in each level, we performed an experiment that counts the number of tangles by shape
when extracted from class to top-level-class, from top-level-class to strong package,
and from weak package to strong package tangles. Our other interest is to check
as to whether weak package tangles and strong package tangles are tightly related.
Indeed, the fact that the number of strong package tangles is higher than weak package
tangles has some significance in terms of the way classes are placed within packages.
In addition, we are interested in verifying the assumption that every strong package
tangle is contained within a weak one.

The results of tangles morphology are shown in Tables 4.11 and 4.12 for the change
in tangle topology from class to top-level-class tangles and from top-level-class to
strong package tangles respectively.

top-level-class

cl
as

s

shape untangled tiny circle chain star clique MH SC unknown

tiny 1891 485
circle 7 4 44
chain 531 56 63
star 600 89 5 28 1 1
clique 3 4
multi-hub 436 59 1 21 4 170 1 56
semi-clique 8 10
unknown 114 13 3 2 18 1 275

Table 4.11 Class to top-level-class tangles topologies change in morphology. MH:
multi–hub, SC: semi–clique.

strong package

to
p-

le
ve

l-
cl

as
s

shape untangled tiny circle chain star clique MH SC unknown

tiny 629 86
circle 34 12 1 1
chain 79 9 7
star 27 5 2
clique 4
multi-hub 139 32 6 1 8 3
semi-clique 11 1
unknown 146 53 3 13 2 2 46 10 59

Table 4.12 Top-level-class to strong package tangles topologies change in morphology.
MH: multi–hub, SC: semi–clique.

The number of untangled class tangles after removing inner classes is 1414, which
is less than the number of top-level-class tangles shown in Table 4.8 with 17 tangles.
This indicates that not every class tangle can be reduced to top-level-class tangle. For

66 Chapter 4. Tangles Classification

strong package

we
ak

pa
ck

ag
e

shape untangled tiny circle chain star clique MH SC unknown

tiny 76 32
circle 1
chain 8 5 5
star 1 1
clique 1 2 2
multi-hub 18 35 1 9 1 2 24 6 2
semi-clique 1 13 1 1 2 3
unknown 9 111 3 12 2 23 2 55

Table 4.13 Weak package to strong package tangles topologies change in morphology.
MH: multi–hub, SC: semi–clique.

instance, the class diagram shown in Figure 4.17, which is extracted from the Art of
Illusion (AOI-2.8.1), is not strongly connected. However, collapsing inner classes results
in a top-level-class tangle. This is due to the fact that the inner class is declared static,
and therefore there is a reference from the inner class to its outer class. However,
there is not an explicit reference from the inner class to its outer class because the
inner class is nested static one; see Section 3.1.3. Top-level-class tangles are formed
by collapsing all inner classes in a class graph. More than two thirds of the tangles
disappear when moving to a higher level (Figure 4.18). It is not surprising to see tangles
change from complex to simpler topologies when moving to a higher level. In an
analogy, a microscope can show millions of particles that are not visible to the naked
eye. Therefore, the majority of class level tangles collapse to tiny when moving to
package level tangles.

bsh

ClassGeneratorUtil

ClassGeneratorImpl

«static»
ClassGeneratorImpl$ClassNodeFilter

bsh

ClassGeneratorUtil

ClassGeneratorImpl

(a) Class graph is not tangled. (b) Top-level-class graph is tangled.

Figure 4.17 Top-level-class tangle derived from non tangled class graph.

Note that the packages involved in one weak package tangle can make multiple
strong package tangles (Figures 4.13 and 4.16). Unlike the other morphological change
tables from class to top-level-class and from top-level-class to strong package, which are

4.8. Conclusion 67

one-to-one, the change in morphology from weak package tangles to strong package
tangles (Table 4.13) can be one-to-many. The total number of strong package tangles
generated from weak package tangles is 361, which is equal to the number counted
directly from the dependency graph. Therefore, the untangled number in this table
refers to weak package tangles that contains no strong package tangles in them. The
summary of morphology results can be seen in Figure 4.18.

Class to
Top Level

Class

Top Level
Class to
Strong

Package

Weak
Package

to
Strong

Package

Untangled Unchanged Changed

Figure 4.18 Summary of tangles change in morphology. The ratio of changed tangles
topologies in the weak package to strong package is questionable because it is not one-to-one.

A total of 3590 class tangles disappeared when moving from class level to top-level-
class tangles, which suggests that the majority of class tangles are formed by their inner
classes. In addition, 1069 top-level-class tangles disappeared when moving to strong
package tangles level. In both levels of tangle morphology, about one-tenth of the
tangles remain in the same topology.

4.8 Conclusion

In conclusion, this chapter is an attempt to answer the first two research questions
which are related to the shapes of tangles and the ability to construct an efficient
algorithm to classify tangles based on their shapes. In particular, we presented the
reference topologies we used and the criteria followed to pick tangle shapes which are
divided based on the symmetry of tangles. The method to generate each tangle has
been presented. We also listed our contribution with some computationally efficient
metrics. We use these metrics in addition to other metrics defined in the background
chapter to build the classifier. Some results have been shown by using tabulated
data and statistical figures related to the distribution of tangles on different levels of
dependencies.

In the next chapter, we discuss the methods we followed to find the relationship
between the shape of tangles and the package containment trees.

CHAPTER 5

T A N G L E S A N D T H E PA C K A G E
C O N T A I N M E N T T R E E

If a cluttered desk is a sign of a cluttered mind, of what, then, is an empty desk a sign?
[Albert Einstein]

Contents

5.1 Introduction . 70

5.2 Parent Centrality . 70

5.3 The Shape of Tangles and the Package Containment Tree 71

5.4 Conclusion . 73

Summary – In this chapter, we attempt to answer the third research question, which is
about finding the relationship between the shape of tangles and the package
containment trees. We devise some metrics that allow us to check whether tangles are
confined to branches of the package containment tree, and analyse the shapes of these
tangles. We introduce a new measure to verify the assumption made by Laval et al.
[25] that the majority of cycles in package dependency graphs form in branches of the
package containment tree, and are therefore not critical.

69

70 Chapter 5. Tangles and the Package Containment Tree

5.1 Introduction

Software systems have different levels of packaging that are used to organise and sort
modules that interact together to build a larger system. In Java programs, multiple
classes can be bundled into what is called JARs. A single JAR can contain classes and
packages of classes. Packages can be used to group classes in order to improve access
time and avoid naming conflicts. Furthermore, two or more classes cannot have the
same name if placed under the same directory. In order to overcome this problem,
classes can be organised into namespaces or packages. Gosling et al. [80] suggest that
packages should be organised into a hierarchically structure. A package S is considered
as a sub-package of another package P if its fully qualified name is P.S. We assume
that systems in the Qualitas Corpus [135] follow the common convention for naming
packages.

5.2 Parent Centrality

We used the parent centrality measure to validate the correctness of the assumption
made by Laval et al. [25], which states that the majority of cyclic dependencies occur
within branches of the package containment tree. Parent centrality is a centrality measure
that is expressed as a ratio between the number of edges that link child packages and
their parents to the number of edges that move from a child with lower betweenness
to a parent with a higher betweenness measure. To illustrate, let Tp = (Vp, Ep) be a
package tangle. Child to parent is a set of edges Ecp ⊆ Ep given that c is a sub-package
of p and (c, p) ∈ Ep. Child to parent of higher betweenness centrality (BC) is a set of
edges defined as E+

cp = {(c′, p′) ∈ Ep|BC(c′) < BC(p′)}. The parent centrality can be
measured using Equation 5.1. The result of calculating the parent centrality on weak
and strong package tangles on the corpus is shown in Figure 5.1. In both tangle types, it
can be seen that PC is close to 1.0, which suggests that hubs usually form between child
and parent packages. Note that tiny tangles are not included because they only contain
two vertices of the same betweenness. Moreover, tangles that include no relationships
from child to parent packages are not considered.

PC(Tp) =
|E+

cp|
|Ecp| (5.1)

Out of the 305 weak package tangles extracted from the programs in the Qualitas
Corpus, we found that PC is undefined for 52 tangles (17%), and 1 for 73 tiny tangles.
The distribution of values for the remainder is shown in Figure 5.1.a. Out of the 361
strong package tangles, we found that PC is undefined for 92 tangles (25%) and 1 for

5.3. The Shape of Tangles and the Package Containment Tree 71

124 tiny tangles. The distribution of values for the remainder is shown in Figure 5.1.b.

●●●● ●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

(a) weak package (b) strong package

Figure 5.1 Parent centrality results on the corpus.

5.3 The Shape of Tangles and the Package Containment

Tree

We investigated the question of whether there is evidence in the data set that tangles
often consist of closely related packages and can therefore be regarded as less critical.
While there is no objective measure to quantify the (semantic) relatedness of packages,
the hierarchical structure of package names can be used to approximate this
relationship, assuming that packages with similar names are more closely related than
packages with very different names. It has been argued [25] that tangles consisting of
more closely related packages are often the result of splitting large packages for better
readability and are thus not critical. Packages with common parents are thought to be
semantically related and relatively coherent. For instance, packages such as
javax.swing and javax.swing.tree depend on each other. However, this relationship
is certainly less critical than the mutual dependency between javax.swing and
java.awt. This example also shows the weakness of this approach: the two (user
interface) packages javax.swing and java.awt are certainly “closer” than java.awt

and java.sql.

<root>

java javax

javax.swing

javax.swing.events

java.util java.awt

java.util.zip java.util.jar

Figure 5.2 The package containment tree for some selected core Java packages.

The shortest path length can be used to measure closeness within the package

72 Chapter 5. Tangles and the Package Containment Tree

containment tree. In particular, two metrics are of interest - the diameter (DIAM, longest
shortest path) indicating the maximum distance between packages within the PCT, and
the Average Shortest Path Length (ASPL). For instance, the diameter of the PCT shown
in Figure 5.2 is 6 (the distance between java.util.zip and javax.swing.events), while
the ASPL is 2.82. Note that ASPL works better for projects where all packages share
a long common prefix. We apply both metrics to each tangle and measure the ratios
between the respective metrics for the tangle and the respective metrics for the entire
graph.

This gives us a notion of a relative closeness of the packages within tangles. For
a given tangle t within a graph g, we call DIAM(t)/DIAM(g) diameter closeness
(DCLOSE(t)), and ASPL(t)/ASPL(g) average closeness (ACLOSE(t)).

Tangle type average DCLOSE average ACLOSE

weak 0.37 0.42
strong 0.29 0.34

Table 5.1 Package containment tree metrics.

0.0 0.2 0.4 0.6 0.8 1.0

●●●●●●●●●●●● ●●●● ●●●●●● ●● ●●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

(a) weak package (b) strong package

Figure 5.3 ACLOSE distribution in package tangles.

0.0 0.2 0.4 0.6 0.8 1.0

●● ●● ●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

(a) weak package (b) strong package

Figure 5.4 DCLOSE distribution in package tangles.

The results shown in Table 5.1 are computed by taking the average of the respective
values for all tangles in all graphs within the data set. The results show that packages
within a tangle are more closely related than randomly chosen packages within the
same graph. In other terms, tangles tend to form in branches of the PCT. This effect
is slightly stronger for strong package tangles. This reflects the fact that these tangles

5.4. Conclusion 73

are more coherent as they are created by class tangles. If we accept the assumption by
Laval et. al. [25] that tangles from packages within branches of the PCT are less critical,
then we can conclude that many tangles are not critical.

5.4 Conclusion

In summary, we have seen in Chapter 4 that multi–hubs and star tangles shapes are the
most common shapes if tiny tangles are excluded. The next thing that comes to mind is
to verify if there are any semantics in the presence of such hubs in these tangles. The
reason behind this was to find out if the cyclic references are made mainly between
parent packages and their children and grandchildren. If this is the case, then these
tangles are not critical according to Laval et al. [25]. We introduced a new measure
that we called the “parent centrality” which tests the flow of dependencies from child to
parent packages using betweenness centrality. We also used and applied the concept
of the package containment tree on the package tangles extracted from the Qualitas
corpus and measured the diameter and average shortest path. These two measures
tend to be small, which verifies the assumption that package tangles tend to form in
branches of the PCT.

In the next chapter, we summarise the key findings of our research and present
some conclusions and possible future directions of our research.

CHAPTER 6

C O N C L U S I O N S A N D F U T U R E W O R K

As long as there were no machines, programming was no problem at all; when we had weak computers,
programming became a mild problem and now that we have gigantic computers, programming has become an

equally gigantic problem.
[E. W. Dijkstra]

Contents

6.1 Conclusions . 76

6.2 Future Work . 77

Summary – In this chapter, we conclude our research and present a summary of the
key points of this research. We show the methods and experiments conducted to answer
the research questions and point out the areas that might be considered as a threat to
validity. Finally, we provide some future directions for this research.

75

76 Chapter 6. Conclusions and Future Work

6.1 Conclusions

Software systems grow in size and complexity over time. According to some researchers,
complexity may not be easily separated from the software system as it evolves. Some
of the new trends in software engineering are concerned with the aspect of modularity
as an approach to taming the complexity of software systems. Some of the methods
followed to control the complexity of software are the use of layered design and
avoiding cyclic references between compilation units. Parnas’s advice of “avoiding
cycles”, which dates back to early 1970s [15], seems to be ignored. Cyclic dependencies
have been considered a violation to proper design due to their effects on testability,
deployment and maintainability. Indeed, applying changes becomes an issue with
software systems that contain such a violation. This can be explained by the ripple effect
of change from one module to another. Specifically, the change spreads everywhere
in the presence of cyclic references and worse, the change might be applied more
than once to a single module. Another performance–related issue raised about cyclic
dependencies is the question of which module gets loaded before the other if they
depend on each other. Therefore, the shape of tangles can play an important role in
determining the degree to which a tangle is worse than the other. Nearly none of
the software systems used in this study are cycle–free. If cyclic dependencies were
detrimental to software quality and suppress software evolution, then such systems
would have never been considered modular and successful. Therefore, it might be
logical to rank such cyclic dependencies based on desirability.

We have studied the topology of tangles formed by cyclic dependencies in different
types of dependency graphs extracted from Java programs by deriving a set of metrics
that classifies different types of tangles and demonstrating this approach on a large,
representative data set that has been widely used in empirical studies. The results of
this analysis show that regular topologies are rare, that a significant number of tangles
are trivial (that is, they are tiny), and that many tangles have a structure that features
one or multiple hub nodes.

We have also found evidence that tangles tend to form in branches of the package
containment tree, which seems to indicate that there are many cases where tangles are
formed from parent packages together with their sub–packages. This raises the question
of which packages are critical and which should be removed through refactoring. The
prime candidates seem to be multi–hub tangles. An example for this is the tangle in the
strong package dependency graph extracted from the JRE version 1.6 that contains two
hubs: java.awt and javax.swing.

The distribution of tangles topologies shows that more than half of them are tiny.

6.2. Future Work 77

This raises the question of whether ignoring multiple edges was a good decision or
not. In addition, we do not differentiate between uses and extends as the relationship
between modules.

In Section 3.3 (p.40), we presented a case where the Java compiler copies constants
values to referencing classes instead of making a dynamic reference. This limitation of
the compiler may affect the shape of dependency graphs and also the tangles extracted
from those dependency graphs. Furthermore, if such references were dynamic and
detectable on the byte-code level, then we might have more cross-tree references than
what has been reported.

The results of our study have been taken by analysing open–source programs. Our
assumption is that the design and the architecture of the used programs in the corpus
simulate real world business or commercial applications.

6.2 Future Work

In our analysis we have used only unweighted graphs. In particular, when investigating
package tangles, it could be beneficial to add weights to edges to represent the number
of inter-class relationships that cause package dependencies. For the example discussed
in Section 5.3 (p.71), this would show a significant asymmetry: the dependency of the
Swing package on the Abstract Window Toolkit (AWT) package is much stronger than
the dependency of the AWT package on the Swing package (Figure 1.9 (p.8)). Another
area of interest is to investigate how change propagates through different topologies.

The types of dependency graphs used in this research are only class and package
levels. Class level graphs can be very large and contain too much detail. On the other
hand, package graphs hide a large bulk of information. Although the top-level-class
dependency graphs are relatively smaller than class graphs, the number of classes in one
package is not controlled. We would consider using another type of dependency graph
that we would call “Boundary Dependency Graph”, which would show the relationships
between anchor classes. A class is considered boundary if it has the greatest number
of incoming or outgoing references from outside the package within which it resides.
Therefore, a package may have at most two or three boundary classes. This dependency
graph can identify the entry points between packages. Cyclic dependencies within
packages are less problematic than those spanned over different packages. We plan to
see the distribution of topologies formed by this kind of graph on the Qualitas Corpus
and find out its significance.

Apart from linking cyclic dependencies to the package containment tree, this
research is mainly focused on the shape of cyclic dependencies. Therefore, the next

78 Chapter 6. Conclusions and Future Work

logical step is to study the semantics of such dependencies. We expect that in the
future our study will lead to better tools for distinguishing critical cyclic dependencies
from cyclic dependencies that are less problematic. It provides a different, and
complementary, view of software tangles to that of Laval et al. In the future, we plan to
combine these views in order to provide a deeper understanding of the underlying
structure of detrimental cyclic dependencies and how they can be avoided.

Another future direction of this research can be to determine the fault tolerance of
each of the tangle topologies that have been considered in the classification process.
A common argument against cyclic dependencies is that change causes ripple effects.
Clearly a very dense structure is worse than a sparse one. However, there is still not
enough information about what lies in between these extremes, such as chains and
stars. In medical fields, the rate of propagation is used to assess a certain infectious
disease which can be applied in a similar fashion to the way bugs spread between
software modules. Disease propagation models could be used to simulate these ripple
effects for different topologies.

B I B L I O G R A P H Y

[1] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch: A clustering
tool for the recovery and maintenance of software system structures,” in
Proceedings of the IEEE International Conference on Software Maintenance, ser. ICSM
’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 50–.

[2] R. S. Pressman, Software Engineering: A Practitioner’s Approach (McGraw-Hill Series
in Computer Science). McGraw Hill College Division, 2004.

[3] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and
shrinking diameters,” ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, Mar. 2007.

[4] F. P. Brooks, Jr., The Mythical Man-Month. New York, NY, USA: ACM, Apr. 1975,
vol. 10.

[5] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[6] M. M. Lehman, “Laws of software evolution revisited,” in Proceedings of the 5th
European Workshop on Software Process Technology, ser. EWSPT ’96. London, UK,
UK: Springer-Verlag, 1996, pp. 108–124.

[7] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Turski, “Metrics and laws of software evolution - the nineties view,” in
Proceedings of the 4th International Symposium on Software Metrics, ser. METRICS
’97. Washington, DC, USA: IEEE Computer Society, 1997, pp. 20–,
http://dl.acm.org/citation.cfm?id=823454.823901.

[8] C. Lilienthal, “Architectural complexity of large-scale software systems,”
in Proceedings of the 2009 European Conference on Software Maintenance and
Reengineering, ser. CSMR ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 17–26, http://dx.doi.org/10.1109/CSMR.2009.16.

[9] T. Zimmermann and C. Bird, “Collaborative software development in ten years:
Diversity, tools, and remix culture,” in Proceedings of the Workshop on the Future of
Collaborative Software Development, 2012.

79

80 Bibliography

[10] L. O’Brien. (2005, Dec) Knowing. net – how many lines of code in
windows? [Online]. Available: http://www.knowing.net/index.php/2005/12/
06/how-many-lines-of-code-in-windows/

[11] C. Izurieta and J. M. Bieman, “How software designs decay: A pilot study of
pattern evolution,” in Proceedings of the First International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 449–451.

[12] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. Elsevier Science
Ltd/North-Holland, Jun 1976.

[13] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf, 2013.

[14] E. W. Dijkstra, “The structure of the-multiprogramming system,” Communications
of the ACM, vol. 26, no. 1, pp. 49–52, 1983.

[15] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Communications of the ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[16] D. L. Parnas, “On a ‘buzzword’: Hierarchical structure,” in Software Pioneers,
M. Broy and E. Denert, Eds. New York, NY, USA: Springer-Verlag New York,
Inc., 2002, pp. 429–440.

[17] W. Stevens, G. Myers, and L. Constantine, Structured Design. Upper Saddle
River, NJ, USA: Yourdon Press, 1979.

[18] H. Zimmermann, “OSI reference model - the ISO model of architecture for open
systems interconnection,” IEEE Transactions on Communications, vol. 28, no. 4, pp.
425–432, 1980.

[19] N. Briscoe, “Understanding the OSI 7-layer model,” PC Network Advisor, vol. 120,
no. 2, 2000.

[20] D. L. Parnas, “Designing software for ease of extension and contraction,” in
Proceedings ICSE ’78. Piscataway, NJ, USA: IEEE Press, 1978, pp. 264–277.

[21] R. C. Martin, “Design principles and design patterns,” Object Mentor, pp. 1–34,
2000.

[22] H. Melton and E. Tempero, “An empirical study of cycles among classes in Java,”
Empirical Software Engineering, vol. 12, no. 4, pp. 389–415, Aug 2007.

Bibliography 81

[23] J. Dietrich, C. McCartin, E. Tempero, and S. A. M. Shah, “Barriers to modularity -
an empirical study to assess the potential for modularisation of Java program,”
in Proceedings Qosa’10. Springer-verlag Berlin Heidelberg, 2010, to Appear.

[24] H. Melton and E. Tempero, “Static members and cycles in Java software,”
in Empirical Software Engineering and Measurement, 2007. ESEM 2007. First
International Symposium on. IEEE, 2007, pp. 136–145.

[25] J. Laval, J. Falleri, P. Vismara, and S. Ducasse, “Efficient retrieval and ranking of
undesired package cycles in large software systems,” Journal of Object Technology,
vol. 11, no. 1, pp. 4:1–24, Apr 2012.

[26] J. Dietrich. (2011) Dependency analysis and the modularisation of Java programs.
[Online]. Available: http://java.dzone.com/articles/dependency-analysis-and-1

[27] M. Newman, Networks: An Introduction. New York, NY, USA: Oxford University
Press, Inc., 2010.

[28] A. Xie and P. A. Beerel, “Implicit enumeration of strongly connected components,”
in Proceedings of the 1999 IEEE/ACM International Conference on Computer-aided
Design. IEEE Press, 1999, pp. 37–40.

[29] M. Dellnitz and O. Junge, “Set oriented numerical methods for dynamical
systems,” Handbook of Dynamical Systems, vol. 2, pp. 221–264, 2002.

[30] M. Sharir, “A strong-connectivity algorithm and its applications in data flow
analysis,” Computers & Mathematics with Applications, vol. 7, no. 1, pp. 67–72, 1981.

[31] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, “Dependence
graphs and compiler optimizations,” in Proceedings of the 8th ACM SIGPLAN-sigact
Symposium on Principles of Programming Languages. ACM, 1981, pp. 207–218.

[32] J. Purdom, Paul, “A transitive closure algorithm,” BIT Numerical Mathematics,
vol. 10, no. 1, pp. 76–94, 1970.

[33] E. W. Dijkstra, E. W. Dijkstra, E. W. Dijkstra, and E. W. Dijkstra, A Discipline of
Programming. Prentice-hall Englewood Cliffs, 1976, vol. 1.

[34] I. Munro, “Efficient determination of the transitive closure of a directed graph,”
Information Processing Letters, vol. 1, no. 2, pp. 56–58, 1971.

[35] J. Cheriyan and K. Mehlhorn, “Algorithms for dense graphs and networks on the
random access computer,” Algorithmica, vol. 15, no. 6, pp. 521–549, 1996.

82 Bibliography

[36] H. N. Gabow, “Path-based depth-first search for strong and biconnected
components,” Information Processing Letters, vol. 74, no. 3-4, pp. 107–114, May
2000.

[37] R. Tarjan, “Depth-first search and linear graph algorithm,” SIAM Journal on
Computing, vol. 1, no. 2, pp. 146–160, 1972.

[38] W. McLendon III, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger, “Finding
strongly connected components in distributed graphs,” J. Parallel Distrib. Comput.,
vol. 65, no. 8, pp. 901–910, aug 2005.

[39] J. Barnat, J. Chaloupka, and J. Van De Pol, “Distributed algorithms for scc
decomposition,” J. Log. and Comput., vol. 21, no. 1, pp. 23–44, Feb. 2011.

[40] L. Fleischer, B. Hendrickson, and A. Pinar, “On identifying strongly connected
components in parallel,” in Proceedings of the 15 IPDPS 2000 Workshops on Parallel
and Distributed Processing, ser. IPDPS ’00. London, UK, UK: Springer-Verlag,
2000, pp. 505–511.

[41] S. D. Nikolopoulos and L. Palios, “On the parallel computation of the biconnected
and strongly connected co-components of graphs,” Discrete Appl. Math., vol. 155,
no. 14, pp. 1858–1877, Sep. 2007.

[42] J. Barnat and P. Moravec, “Parallel algorithms for finding sccs in implicitly given
graphs,” in Proceedings of the 11th International Workshop, FMICS 2006 and 5th
International Workshop, PDMC Conference on Formal Methods: Applications and
Technology, ser. FMICS’06/PDMC’06. Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 316–330.

[43] J. Barnat, J. Chaloupka, and J. van de Pol, “Improved distributed algorithms for
scc decomposition,” Electron. Notes Theor. Comput. Sci., vol. 198, no. 1, pp. 63–77,
Feb. 2008.

[44] J. Barnat, P. Bauch, L. Brim, and M. Ceska, “Computing strongly connected
components in parallel on cuda,” in Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, ser. IPDPS ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 544–555.

[45] E. Nuutila and E. Soisalon-Soininen, “On finding the strongly connected
components in a directed graph,” Inf. Process. Lett., vol. 49, no. 1, pp. 9–14, Jan.
1994.

Bibliography 83

[46] R. Bloem, H. N. Gabow, and F. Somenzi, “An algorithm for strongly connected
component analysis in n log n symbolic steps,” in Proceedings of the Third
International Conference on Formal Methods in Computer-Aided Design, ser. FMCAD
’00. London, UK, UK: Springer-Verlag, 2000, pp. 37–54.

[47] R. Gentilini, C. Piazza, and A. Policriti, “Computing strongly connected
components in a linear number of symbolic steps,” in Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’03.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2003,
pp. 573–582.

[48] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller, “Mining version histories
to guide software changes,” IEEE Trans. Softw. Eng., vol. 31, no. 6, pp. 429–445,
Jun. 2005.

[49] M. Fowler, “Reducing coupling,” IEEE Softw., vol. 18, no. 4, pp. 102–104, Jul. 2001.

[50] M. Fowler, “Refactoring: Improving the design of existing code,” in Proceedings of
the Second XP Universe and First Agile Universe Conference on Extreme Programming
and Agile Methods - XP/Agile Universe 2002. London, UK, UK: Springer-Verlag,
2002, pp. 256–.

[51] S. W. Ambler, A. Vermeulen, and G. Bumgardner, The Elements of Java Style. New
York, NY, USA: Cambridge University Press, 1999.

[52] S. M. A. Shah, J. Dietrich, and C. McCartin, “Making smart moves to untangle
programs,” in Proceedings of the 2012 16th European Conference on Software
Maintenance and Reengineering, ser. CSMR ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 359–364.

[53] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[54] V. Ramachandran, “Finding a minimum feedback arc set in reducible flow
graphs,” J. Algorithms, vol. 9, no. 3, pp. 299–313, Sep. 1988.

[55] P. Eades, X. Lin, and W. F. Smyth, “A fast and effective heuristic for the feedback
arc set problem,” Inf. Process. Lett., vol. 47, no. 6, pp. 319–323, Oct. 1993.

[56] P. Charbit, S. Thomassé, and A. Yeo, “The minimum feedback arc set problem
is np-hard for tournaments,” Comb. Probab. Comput., vol. 16, no. 1, pp. 1–4, Jan.
2007.

84 Bibliography

[57] G. Even, J. S. Naor, B. Schieber, and M. Sudan, “Approximating minimum
feedback sets and multicuts in directed graphs,” Algorithmica, vol. 20, no. 2,
pp. 151–174, 1998.

[58] D. Younger, “Minimum feedback arc sets for a directed graph,” Circuit Theory,
IEEE Transactions on, vol. 10, no. 2, pp. 238–245, 1963.

[59] C. Demetrescu and I. Finocchi, “Combinatorial algorithms for feedback problems
in directed graphs,” Inf. Process. Lett., vol. 86, no. 3, pp. 129–136, may 2003.

[60] L. Roditty and V. Vassilevska Williams, “Fast approximation algorithms for the
diameter and radius of sparse graphs,” in Proceedings of the 45th Annual ACM
Symposium on Symposium on Theory of Computing, ser. STOC ’13. New York, NY,
USA: ACM, 2013, pp. 515–524.

[61] D. B. West, Introduction to Graph Theory, 2nd ed. Pearson, 2001.

[62] A. Ganesh and F. Xue, “On the connectivity and diameter of small-world
networks,” Advances in Applied Probability, vol. 39, no. 4, pp. 853–863, 2007.

[63] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[64] D. B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” J.
ACM, vol. 24, no. 1, pp. 1–13, Jan. 1977.

[65] D. Karger, R. Motwani, and G. Ramkumar, “On approximating the longest path
in a graph,” Algorithmica, vol. 18, no. 1, pp. 82–98, 1997.

[66] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry,
vol. 40, no. 1, pp. 35–41, Mar. 1977.

[67] M. E. Newman, “A measure of betweenness centrality based on random walks,”
Social Networks, vol. 27, no. 1, pp. 39–54, 2005.

[68] D. R. White and S. P. Borgatti, “Betweenness centrality measures for directed
graphs,” Social Networks, vol. 16, no. 4, pp. 335–346, 1994.

[69] F. Cowell, Measuring Inequality (LSE Perspectives in Economic Analysis). Oxford
University Press, USA, 2011.

[70] D. A. Verstegen, “Concepts and measures of fiscal inequality: A new approach
and effects for five states.” Journal of Education Finance, no. 2, p. 145, 1996.

Bibliography 85

[71] R. Bendel, S. Higgins, J. Teberg, and D. Pyke, “Comparison of skewness coefficient,
coefficient of variation, and gini coefficient as inequality measures within
populations,” Oecologia, vol. 78, no. 3, pp. 394–400, 1989.

[72] R. Dorfman, “A formula for the gini coefficient,” The Review of Economics and
Statistics, vol. 61, no. 1, pp. 146–149, 1979.

[73] S. Yitzhaki, “Relative deprivation and the gini coefficient,” The Quarterly Journal
of Economics, pp. 321–324, 1979.

[74] H. Theil, Economics and information theory., ser. Studies in mathematical and
managerial economics: v. 7. Amsterdam, North-Holland Pub. Co.; Chicago,
Rand McNally, 1967., 1967.

[75] J. G. Palma, “Globalizing inequality: ‘Centrifugal’ and ‘centripetal’ forces at
work,” Revue Tiers Monde, no. 35, Sep 2006.

[76] E. M. Hoover, “The measurement of industrial localization,” The Review of
Economics and Statistics, vol. 18, no. 4, pp. 162–171, 1936.

[77] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6, pp. 345–,
Jun. 1962.

[78] T. Schank and D. Wagner, “Approximating clustering coefficient and transitivity,”
Journal of Graph Algorithms and Applications, vol. 9, p. 2005, 2005.

[79] A. Lubiw, “Some np-complete problems similar to graph isomorphism.” SIAM J.
Comput., vol. 10, no. 1, pp. 11–21, 1981.

[80] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification, 3rd ed.
Addison-Wesley, 2005.

[81] E. Hautus, “Improving Java software through package structure analysis,” in 6th
IASTED International Conference on Software Engineering and Applications, 2002.

[82] O. Dictionaries, Oxford Dictionary of English. New York, NY , U.S.A.: Oxford:
Oxford University Press, 2010.

[83] N. Betzler, M. R. Fellows, C. Komusiewicz, and R. Niedermeier, “Parameterized
algorithms and hardness results for some graph motif problems,” in Proceedings
of the 19th Annual Symposium on Combinatorial Pattern Matching, ser. CPM ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 31–43.

86 Bibliography

[84] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” in Data Mining,
2001. ICDM 2001, Proceedings IEEE International Conference on. IEEE, 2001, pp.
313–320.

[85] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,
“Network motifs: Simple building blocks of complex networks,” Science, vol.
298, no. 5594, pp. 824–827, October 2002.

[86] J. Dietrich and C. McCartin, “Scalable motif detection and aggregation,”
in Proceedings of the Twenty-third Australasian Database Conference-volume 124.
Australian Computer Society, Inc., 2012, pp. 31–40.

[87] J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah, “On the existence of high-
impact refactoring opportunities in programs,” in Proceedings of the Thirty-fifth
Australasian Computer Science Conference - Volume 122, ser. ACSC ’12. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2012, pp. 37–48.

[88] H. Bunke and K. Riesen, “A family of novel graph kernels for structural pattern
recognition,” in Progress in Pattern Recognition, Image Analysis and Applications.
Springer, 2007, pp. 20–31.

[89] H. Kashima and A. Inokuchi, “Kernels for graph classification,” in ICDM
Workshop on Active Mining, vol. 2002. Citeseer, 2002.

[90] G. Li, M. Semerci, B. Yener, and M. J. Zaki, “Graph classification via topological
and label attributes,” in 9th Workshop on Mining and Learning with Graphs (with
SIGKDD), Aug. 2011.

[91] G. Li, M. Semerci, B. Yener, and M. J. Zaki, “Effective graph classification based on
topological and label attributes,” Stat. Anal. Data Min., vol. 5, no. 4, pp. 265–283,
Aug. 2012.

[92] T. Kudo, E. Maeda, and Y. Matsumoto, “An application of boosting to graph
classification,” in Advances in Neural Information Processing Systems, 2004, pp.
729–736.

[93] L. Zhu, W. K. Ng, and S. Han, “Classifying graphs using theoretical metrics: A
study of feasibility,” in Proceedings of the 16th International Conference on Database
Systems for Advanced Applications, ser. DASFAA’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 53–64.

[94] H. Melton and E. Tempero, “The crss metric for package design quality,” in
Proceedings of the Thirtieth Australasian Conference on Computer Science - Volume 62,

Bibliography 87

ser. ACSC ’07. Darlinghurst, Australia, Australia: Australian Computer Society,
Inc., 2007, pp. 201–210.

[95] H. Melton and E. Tempero, “Towards assessing modularity,” in Assessment of
Contemporary Modularization Techniques, 2007. ICSE Workshops Acom’07. First
International Workshop on. IEEE, 2007, pp. 3–3.

[96] H. Melton, “On the usage and usefulness of oo design principles,” in Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems,
Languages, and Applications. ACM, 2006, pp. 770–771.

[97] T. J. Parr and R. W. Quong, “ANTLR: A predicated-LL (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, Jul. 1995.

[98] C. Bauer and G. King, Hibernate in Action (In Action Series). Greenwich, CT, USA:
Manning Publications Co., 2004.

[99] F. Bourqun and R. K. Keller, “High-impact refactoring based on architecture
violations,” in Proceedings CSMR ’07. Washington, Dc, USA: IEEE Computer
Society, 2007, pp. 149–158.

[100] F. Simon, F. Steinbrueckner, and C. Lewerentz, “Metrics based refactoring,” in
Proceedings CSMR’01. IEEE Computer Society, 2001, p. 30.

[101] H. Melton and E. Tempero, “Identifying refactoring opportunities by identifying
dependency cycles,” in Proceedings of the 29th Australasian Computer Science
Conference-volume 48. Australian Computer Society, Inc., 2006, pp. 35–41.

[102] N. Moha, “Detection and correction of design defects in object-oriented designs,”
in OOPSLA ’07: Companion to the 22nd ACM SIGPLAN Conference on Object
Oriented Programming Systems and Applications Companion. New York, NY, USA:
ACM, 2007, pp. 949–950.

[103] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui, “Automatic package coupling
and cycle minimization,” in Proceedings of the 2009 16th Working Conference on
Reverse Engineering, ser. WCRE ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 103–112.

[104] J. Dietrich, C. McCartin, E. Tempero, and S. Shah, “on the detection of high-impact
refactoring opportunities in program,” Arxiv Preprint Arxiv:1006.1747, 2010.

[105] S. M. A. Shah, J. Dietrich, and C. McCartin, “On the automated modularisation
of Java programs using service locators,” in Software Composition, ser. Lecture

88 Bibliography

Notes in Computer Science, T. Gschwind, F. Paoli, V. Gruhn, and M. Book, Eds.
Springer Berlin Heidelberg, 2012, vol. 7306, pp. 132–147.

[106] S. Jungmayr, “Testability measurement and software dependencies,” in
Proceedings of the 12th International Workshop on Software Measurement, 2002, pp.
179–202.

[107] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph
and its use in optimization,” ACM Transactions on Programming Languages and
Systems, vol. 9, pp. 319–349, 1987.

[108] K. J. Ottenstein and L. M. Ottenstein, “The program dependence graph in a
software development environment,” in ACM SIGPLAN Notices, vol. 19. ACM,
1984, pp. 177–184.

[109] S. Horwitz and T. Reps, “The use of program dependence graphs in software
engineering,” in Proceedings of the 14th International Conference on Software
Engineering. ACM, 1992, pp. 392–411.

[110] F. Balmas, “Displaying dependence graphs: A hierarchical approach,” Journal
of Software Maintenance and Evolution: Research and Practice, vol. 16, no. 3, pp.
151–185, 2004.

[111] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE Transactions on,
no. 4, pp. 308–320, 1976.

[112] B. G. Ryder, “Constructing the call graph of a program,” Software Engineering,
IEEE Transactions on, no. 3, pp. 216–226, 1979.

[113] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution
profiler,” ACM SIGPLAN Notices, vol. 17, no. 6, pp. 120–126, 1982.

[114] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java(TM) Language
Specification – Java SE 7 Edition (Java Series). Addison-Wesley Professional, 2013.

[115] J. Tessier. Dependency Finder. [Online]. Available: http://depfind.sourceforge.
net/

[116] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[117] D. E. Knuth, “A generalization of dijkstra’s algorithm,” Information Processing
Letters, vol. 6, no. 1, pp. 1–5, 1977.

Bibliography 89

[118] H. Melton and E. Tempero, “Jooj: Real-time support for avoiding cyclic
dependencies,” in Proceedings of the Thirtieth Australasian Conference on Computer
Science - Volume 62, ser. ACSC ’07. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2007, pp. 87–95.

[119] F.-J. E. Elmer. (2012) Classycle: Analysing tools for Java class and package
dependencies. [Online]. Available: http://classycle.sourceforge.net/

[120] G. Inc. (2013, sep) Java developer tools: CodePro Analytix – dependency analysis.
[Online]. Available: https://developers.google.com/java-dev-tools/codepro/
doc/

[121] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding program comprehension
by static and dynamic feature analysis,” in Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), ser. ICSM ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 602–.

[122] M. Clark. (2009, sep) JDepend: Dependency analyser. [Online]. Available:
http://clarkware.com/software/JDepend.html

[123] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using dependency models to
manage software architecture,” in Companion to the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 164–165.

[124] J. Laval and J. Falleri. (2012) Popsycle. [Online]. Available: https://popsycle.
googlecode.com/

[125] S. Sarkar, G. M. Rama, and R. Shubha, “A method for detecting and measuring
architectural layering violations in source code,” in Software Engineering
Conference, 2006. Apsec 2006. 13th Asia Pacific. IEEE, 2006, pp. 165–172.

[126] J. Dietrich. (2012, sep) Massey architecture explorer. [Online]. Available:
http://xplrarc.massey.ac.nz/

[127] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble, “The qualitas corpus: A curated collection of Java code for empirical
studies,” in Proceedings of the 2010 Asia Pacific Software Engineering Conference, ser.
APSEC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 336–345.

[128] D. B. Johnson, “Finding all the elementary circuits of a directed graph.” SIAM
Journal of Computing, no. 1, p. 77, 1975.

90 Bibliography

[129] R. Tarjan, “Enumeration of the elementary circuits of a directed graph,” SIAM
Journal on Computing, vol. 2, no. 3, pp. 211–216, 1973.

[130] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis of
evolving software systems using the gini coefficient,” in Software Maintenance,
2009. ICSM 2009. IEEE International Conference on. IEEE, 2009, pp. 179–188.

[131] B. Vasilescu, A. Serebrenik, and M. van den Brand, “By no means: A study on
aggregating software metrics,” in Proceedings of the 2nd International Workshop on
Emerging Trends in Software Metrics, ser. WETSoM ’11. ACM, 2011, pp. 23–26.

[132] P. D. Allison, “Measures of inequality,” American Sociological Review, vol. 43, no. 6,
pp. 865–880, 1978.

[133] R. I. Lerman and S. Yitzhaki, “A note on the calculation and interpretation of the
gini index,” Economics Letters, vol. 15, no. 3, pp. 363–368, 1984.

[134] S. V. Stehman, “Selecting and interpreting measures of thematic classification
accuracy,” Remote sensing of Environment, vol. 62, no. 1, pp. 77–89, 1997.

[135] Q. R. Group, “Qualitas corpus,” The University of Auckland, 2013. [Online].
Available: http://www.qualitascorpus.com/

A P P E N D I C E S

91

APPENDIX A

G L O S S A R I E S

Directed Graph

In graph theory, a directed graph a.k.a DiGraph G = (V, E) is a graph composed
of finite set of vertices V and edges E. Each edge is a binary nonsymmetric relation
between two distinct vertices. Therefore, the set of edges can be mathematically noted
as E = {(u, v)|u, v ∈ V} ⊂ V × V. In this study, graphs are simplicial, i.e., loops
(reflexive relations) and multiple edges are not considered.

Shortest Path

A walk (sequence of vertices) from any vertex v to any other vertex u where v, u ∈ V is
called a path. It can be noted as (v1, v2, v3, · · · , vk) where v1 and vk are the source and
target nodes respectively and (vi, vi+1) ∈ E. The path is simple if it has no duplicate
vertices. The shortest path between vi and vj is the path that links them and has the
lowest number of in-between vertices. Since the algorithm used to calculate the shortest
path in this study is Dijkstra algorithm, the shortest path is noted as δ((s, t), G) where
s, t are the source and the target vertices respectively. If there is no possible directed
path between vi and vj, then δ((vi, vj), G) = ∞.

Degree

The degree of a vertex noted as d(v) is the number of incident edges on that vertex.
In a directed graph, the indegree d−(v) is the number of edges pointing to v and the
outdegree d+(v) is the number of edges pointing out of v. The degree of a vertex is the
sum of its indegree and outdegree d(v) = d−(v) + d+(v). The degree of a graph d(G)

is the maximum of degree of all vertices.

Circuit or cycle

A circuit is a path that starts and ends at the same node is called a circuit or cycle. A
circuit is elementary if it has no duplicate nodes. A circuit is also called a closed path.
A graph is cyclic if the number of vertices is equal to the number of edges.

93

94 Appendix A. Glossaries

Strongly connected component

A digraph G = (V, E) is strongly connected if G is cyclic and every two distinct vertices
are linked by a path, i.e. δ((vi, vj), G) �= ∞ ∧ δ((vj, vi), G) �= ∞ ∀ vi, vj ∈ V ∧ i �= j.

Strongly connectedness is a feature that can be represented in cyclic directed graph
when a path exists between any two vertices. Figure A.1 shows a directed graph with
three strongly connected components namely {{a, b, e}, { f , g}, {c, d, h}}. Dotted edges
indicate a path that has no back reference. We use the term tangle to denote a directed
graph in which every edge has a back reference.

a b

e f g

c d

h

Figure A.1 Strongly connected components extracted from dependency graph.

Back Reference Path

In a strongly connected digraph G = (V, E), the back reference path between two
vertices v and u where {v, u} ⊂ V such that (v, u) ∈ E and v �= u is the shortest path
from u to v. It is noted as backre f (v, u) = δ(u, v). The back reference path is immediate
if the (u, v) ∈ E. In Figure A.1, the back reference path of (a, b) is {(b, e), (e, a)}.

Topology

The study of qualitative properties of certain objects (called topological spaces) that are
invariant under a certain kind of transformation, especially those properties that are
invariant under a certain kind of equivalence (called homeomorphism).

Software Dependency Graph

The dependency graph is a directed graph containing a finite set of nodes (software
units) and finite set of edges (dependency relationships) between nodes. Multiple and
self dependencies are disregarded in this study.

Software Tangle

A tangle is a collection of software units/components which are linked to each other in
a cyclic dependency, i.e. strongly connected.

95

Minimum Feedback Edge Set (MFES)

MFES is the minimal set of edges needed to be removed from a directed cyclic graph to
break all its cycles. In other words, MFES is the minimal edge cut that makes a directed
cyclic graph acyclic.

APPENDIX B

A N T L R A N D H I B E R N AT E V E R S I O N D ATA

B.1 ANTLR

Date Version #P #D #C CR #SCCs LSCCS LSCCR
09-1998 2.4.0 5 7 4 57% 3 3 60%
03-1999 2.6.0 4 6 4 66% 2 3 75%
01-2003 2.7.2 8 19 17 89% 2 7 87%
09-2006 2.7.7 12 29 26 89% 3 10 83%
08-2007 3.0 9 31 31 100% 2 7 77%
05-2008 3.1 27 94 68 72% 12 10 37%
09-2009 3.2 31 116 97 83% 12 10 32%
11-2010 3.3 31 116 96 82% 12 10 32%

Table B.1 Some measures among different versions of ANTLR system.

B.2 Hibernate

Date Version #P #D #C CR #SCCs LSCCS LSCCR
12-2001 0.8.1 8 25 10 40% 5 4 50%
09-2002 1.1.0 23 87 58 66% 9 15 65%
06-2003 2.0.0 31 184 151 82% 9 23 74%
12-2003 2.1.0 28 201 181 90% 5 24 85%
08-2004 2.1.5 29 205 182 88% 6 24 82%
01-2005 2.1.8 29 215 189 87% 6 24 82%
03-2005 3.0.0 51 442 427 96% 6 44 86%
10-2006 3.2.0 76 684 659 96% 7 70 92%

Table B.2 Some measures among different versions of Hibernate system.

#P: number of packages #D: number of dependencies

#C: number of cyclic references CR: ratio of cyclic references to all dependencies

LSCCS: size of the largest SCC LSCCR: ratio of packages in the largest SCC.

97

APPENDIX C

Q U A L I T A S C O R P U S D A T A S E T

The dataset used in this research is a collection of open-source Java software systems
that can be obtained from http://www.qualitascorpus.com/. The version of corpus
used is 20120401. The following are some information about each system in the dataset.

Full Name Recent
version

Domain Number
of Classes

LOC Release Date

Ant 1.8.2 parsers/generators/make 1286 109127 2010-12-27

ANTLR 3.4 parsers/generators/make 339 27112 2011-07-18

AOI 2.8.1 3D/graphics/media 862 111725 2010-01-03

ArgoUML 0.34 diagram generator/data
visualisation

2560 192410 2011-12-15

AspectJ 1.6.9 programming language 2624 412394 2010-07-05

Axion 1.0-M2 database 261 23744 2003-07-11

Vuze 4.7.0.2 database 7249 457152 2011-12-02

Batik SVG
Toolkit

1.7 3D/graphics/media 2599 17848 2008-01-09

C-JDBC 2.0.2 database 586 81306 2005-09-16

Castor 1.3.1 middleware 1327 115543 2010-01-03

Apache
Cayenne

3.0.1 database 2171 127529 2010-08-26

Checkstyle 5.1 IDE 349 23316 2010-02-16

Cobertura 1.9.4.1 testing 122 51860 2010-03-03

Apache
Commons
Collections

3.2.1 tool 458 27635 2008-04-15

Colt 1.2.0 SDK 593 38625 2004-09-10

Columba 1.0 tool 1190 71680 2005-09-18

Compiere 330 tool 2534 400257 2010-06-01

99

100 Appendix C. Qualitas Corpus Dataset

Full Name Recent
version

Domain Number
of Classes

LOC Release Date

Derby 10.6.1.0 database 2995 592817 2010-05-17

Display Tag
Library

1.2 diagram generator/data
visualisation

131 11832 2008-12-27

drawswf 1.2.9 3D/graphics/media 319 27008 2004-06-08

DrJava 20100913-
r5387

IDE 1866 62380 2010-09-13

eclipse_SDK 3.7.1 IDE 32615 2330479 2011-09-10

EMMA: a
free Java code
coverage tool

2.0.5312 testing 330 25806 2005-06-12

Exo Platform v1.0.2 diagram generator/data
visualisation

1225 56805 2006-05-16

Find Bugs 1.3.9 testing 1715 109096 2009-08-21

fitjava 1.1 testing 61 2240 2004-04-07

FitLibrary 20100806 testing 892 27539 2010-08-06

freecol 0.10.3 games 1225 93239 2011-09-27

FreeCS 1.3.20100406 tool 147 23012 2010-04-06

FreeMind 0.9.0 diagram generator/data
visualisation

912 50198 2011-02-19

Galleon 2.3.0 3D/graphics/media 790 52653 2006-04-15

Gantt Project 2.0.9 tool 1058 47051 2009-03-31

GeoTools 2.7-M3 SDK 5593 446863 2010-09-02

Hadoop
Common

1.0.0 middleware 2069 142790 2011-12-27

Heritrix 1.14.4 tool 703 61681 2010-05-10

Hibernate 4.1.0 database 3242 196995 2012-02-08

HyperSQL 2.0.0 database 535 123268 2010-06-07

HtmlUnit 2.8 testing 556 40004 2010-08-05

Informa 0.7.0-
alpha2

middleware 170 9722 2007-01-06

IReport 3.7.5 diagram generator/data
visualisation

3381 221490 2010-09-22

101

Full Name Recent
version

Domain Number
of Classes

LOC Release Date

iText PDF 5.0.3 diagram generator/data
visualisation

544 76369 2010-07-22

ivata op 0.11.3 middleware 222 23786 2005-10-10

jFin Date Math R1.0.1 SDK 62 4807 2010-02-19

JAG 6.1 tool 255 15733 2006-05-25

James 2.2.0 tool 340 27003 2004-06-15

Java Assembling
Language

0.10 tool 49 5732 2006-05-23

JasperReports 3.7.3 diagram generator/data
visualisation

1844 170064 2010-07-20

javacc 5.0 parsers/generators/make 100 13772 2009-10-20

jboss 5.1.0 middleware 3612 281643 2009-05-23

jchempaint 3.0.1 SDK 1045 90831 2010-02-13

jEdit 4.3.2 tool 1128 107469 2010-05-09

Jena 2.6.3 middleware 1392 70948 2010-06-01

jext 5.0 diagram generator/data
visualisation

504 26565 2004-07-07

JFreeChart 1.0.13 tool 649 98078 2009-04-20

jgraph 5.13.0.0 tool 187 22758 2009-09-28

jgraphpad 5.10.0.2 tool 431 23750 2006-11-09

JGraphT 0.8.1 tool 255 11931 2009-07-04

JGroups 2.10.0 tool 1211 96325 2010-07-12

jhotdraw 7.5.1 3D/graphics/media 1070 75958 2010-08-01

JMeter 2.5.1 testing 1003 79917 2011-09-29

jmoney 0.4.4 tool 193 8197 2003-09-29

joggplayer 1.1.4s 3D/graphics/media 130 14936 2002-04-26

jparse 0.96 parsers/generators/make 69 12559 2004-07-17

JPF 1.5.1 SDK 189 13246 2007-05-19

Java Runtime
Analysis Toolkit

0.6 testing 250 14146 2003-09-14

JRE 1.6.0 programming language 10714 922958 2010-06-22

102 Appendix C. Qualitas Corpus Dataset

Full Name Recent
version

Domain Number
of Classes

LOC Release Date

jrefactory 2.9.19 tool 1553 113427 2004-05-09

Java powered
Ruby
implementation

1.5.2 programming language 4664 160360 2010-08-20

jsXe 04_beta tool 107 8829 2006-04-25

JSP Wiki 2.8.4 middleware 455 43326 2010-05-08

JTOpen 7.1 middleware 2054 397220 2010-08-25

JUNG 2.0.1 diagram generator/data
visualisation

858 37989 2010-01-25

JUnit 4.10 testing 219 6568 2011-09-29

Log4j 1.2.16 testing 308 20637 2010-03-30

Lucene 3.5.0 tool 2309 172338 2011-11-20

Marauroa 3.8.1 games 204 13823 2010-07-25

maven 3.0 parsers/generators/make 697 54336 2010-10-04

MegaMek 0.35.18 games 2185 258957 2010-08-31

mvnForum 1.2.2-ga tool 273 51034 2010-08-17

MyFaces Core 2.0.2 middleware 1365 119529 2010-09-25

Naked Objects 4.0.0 IDE 3002 110378 2009-08-11

NekoHTML 1.9.14 parsers/generators/make 55 6625 2010-02-02

Netbeans 6.9.1 IDE 31023 1890536 2010-08-23

OpenJMS 0.7.7-
beta-1

middleware 560 33905 2007-03-14

OSCache 2.4.1 middleware 75 6198 2007-07-07

PicoContainer 2.10.2 middleware 242 9259 2010-02-25

PMD 4.2.5 testing 926 60875 2009-02-08

POI 3.6 tool 1785 143507 2009-12-15

Pooka 3.0-
080505

tool 849 44474 2008-05-05

ProGuard 4.5.1 tool 658 55567 2010-07-08

Quartz 1.8.3 middleware 286 26819 2010-06-22

QuickServer 1.4.7 middleware 111 10885 2006-03-01

103

Full Name Recent
version

Domain Number
of Classes

LOC Release Date

Quilt 0.6-a-5 testing 77 5683 2003-10-20

The Roller
Weblogger

4.0.1 tool 587 50980 2009-01-13

RSSOwl 2.0.5 tool 1682 73230 2010-06-01

SableCC 3.2 parsers/generators/make 285 28394 2005-12-24

sandmark 3.4 tool 1088 90121 2004-08-11

Spring
Framework

3.0.5 middleware 3089 160302 2010-10-20

SQuirrel SQL 3.1.2 database 169 6944 2010-06-15

Struts 2.2.1 middleware 1074 74670 2010-08-16

sunflow 0.07.2 3D/graphics/media 221 21648 2007-02-08

Tapestry 5.1.0.5 middleware 1502 53367 2009-05-06

Tomcat 7.0.2 middleware 1739 166478 2010-08-11

Trove 2.1.0 SDK 34 2196 2009-08-14

Velocity Engine 1.6.4 diagram generator/data
visualisation

261 26854 2010-05-10

Web Curator
Tool

1.5.2 tool 724 49933 2011-08-22

WebMail 0.7.10 tool 104 8212 2002-10-07

Weka 3.6.6 tool 2122 256454 2011-10-28

Xalan 2.7.1 parsers/generators/make 1238 189462 2007-11-27

Xerces 2.10.0 parsers/generators/make 948 129164 2010-06-18

XMOJO 5.0.0 middleware 135 17669 2003-07-17

