Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A MINERALOGICAL AND TEXTURAL STUDY

THE CENTRAL NORTH ISLAND TEPHRA, OKAREKA ASH

AND

ITS OVERLYING TEPHRIC LOESS DEPOSITS

A Thesis Presented as Partial Fulfillment for the Degree of Master of Science in Soil Science

bу

Lynette Anne Benny

Massey University, New Zealand

1982

ACKNOWLEDGEMENTS

I wish to thank my supervisors Dr. J.H. Kirkman, and Mr. R.B. Stewart for their guidance, encouragement and advice during my thesis work.

I wish also to extend my thanks to Dr. W.A. Pullar and Mr N.M. Kennedy, Soil Bureau, Rotorua, for their invaluable assistance in collecting soil samples for this study, and worthwhile discussion in the field.

I am grateful to Mr. D. Hopcroft and Mr. R.J. Bennett of the Electron Microscope Lab. D.S.I.R., for their technical assistance in the electron optical work, and printing of the electron micrographs.

To Miss. J.S. Rowarth and Mr. R.C. Wallace, my thanks for your critical reading of, and helpful comments about the manuscript.

I would also like to thank my mother, Mrs. A.F. Benny, who typed this thesis, and finally, both my parents for their continuing support.

 $\langle i \rangle$

ABSTRACT

In Central North Island, New Zealand, Post-Okareka tephric loess rests upon Okareka Ash (c.17,000 years B.P.). Tephric loess accumulation occurred under semiarid conditions which coincided with glacial advances in southern areas of New Zealand.

Morphological and grain-size evidence indicates the tephric loess has been derived from a localised source, most probably that of Okareka Ash material, reworked and redeposited by aeolian processes. Optical and electron optical evidence reveals that Okareka Ash particles are angular and relatively unweathered, whereas tephric loess grains are subangular and more weathered.

The sand and clay mineralogy of the tephra and tephric loess are similar. Sand fractions contain mainly rhyolitic volcanic glass, quartz, plagioclase feldspar, biotite, hypersthene, hornblende, titanomagnetite and traces of cristobalite, tridymite and augite, whereas clay fractions contain halloysite, allophane, imogolite and gibbsite in varying amounts.

Grain-size analysis reveals Okareka Ash deposits show decreasing mean grain-size with increasing distance from source, are poorly-sorted, fine-skewed, and lepto/platykurtic. In contrast to tephra, tephric loess samples exhibit a narrow mean grain-size range, and are better sorted, but show similar skewness and kurtosis values to ash. Grain-size results also indicate that due to minimal weathering of Okareka Ash and Post-Okareka loess, the distinction between the two deposits is less well-defined than data from similar deposits reported by Fisher (1966). Furthermore, where ash deposits are thin, in distal areas from source, and under certain environmental conditions, textural and morphological characteristics of the tephra are similar to those of the tephric loess. Nevertheless. grain-size parameters may be used to differentiate airfall tephra and tephric loess deposits, although this

differentiation is enhanced by post-depositional weathering.

The contrasting clay mineralogies of tephra and tephric loess samples from sections of similar topography, altitude, drainage and rainfall, illustrates the problems of field sampling in . weathering studies. TABLE OF CONTENTS

	Page No.	
Acknowledgements	ii	
Abstract	iii	
Table of Contents		
List of Tables	viii	
List of Figures	i×	
Nomenclature	×iii	
Abbreviations	×iv	
Chapter 1: Introduction	1	
SECTION A: <u>Mineralogy</u> and <u>Morphology</u>		
Chapter 2: Literature Review	3	
2.1 Distribution of airfall deposits in	З	
New Zealand		
2.2 Tephra and loess deposits of Central	L 6	
North Island		
2.3 Okareka Ash and overlying loess	10	
deposits		
2.4 Weathering studies of tephra and	12	
tephra-derived soils		
Chapter 3: Materials and Methods	19	
3.1 Field Techniques	19	
3.2 Instrumental Techniques	23	
6		
Chapter 4: Results	26	
4.1 Sand and silt mineralogy	26	
4.1.1 Okareka Ash Formation: Trunk Rd	' 26	
4.1.2 Okareka Ash: remaining sections	26	
4.1.3 Post-Okareka loess	28	
4.2 Sand and silt morphology	29	
4.2.1 Okareka Ash	29	
4.2.2 Post-Okareka loess	35	
4.3 Clay mineralogy	46	
4.3.1 Okareka Ash: Trunk Rd	46	
4.3.2 Okareka Ash: remaining sections	49	

		Page No.
	4.3.3 Post-Okareka loess: Trunk Rd	59
	4.3.4 Post-Okareka loess: Gavin Rd and	59
	Te Ngae sections	
	4.3.5 Post-Okareka loess: remaining	61
	sections	
	4.3.6 Gibbsite in clay fractions of ash	71
	and loess deposits	
Chapter	5: Discussion	77
	5.1 Okareka Ash sand and silt mineralogy	77
	5.2 Post-Okareka loess sand and silt	78
	mineralogy	
	5.3 Okareka Ash sand and silt morphology	80
	5.4 Post-Okareka loess sand and silt	81
	morphology	
	5.5 Weathering in Okareka Ash and Post-	82
	Okareka loess deposits	
	SECTION B: <u>Grain-size Analysis</u>	
Chapter	6: Literature Review	91
	6.1 Textural Studies	91
Chapter	7: Materials and Methods	95
	7.1 Analytical Techniques	95
Chapter	8: Results and Discussion	96
	8.1 Grain-size parameters	96
	8.1.1 Mean grain-size: Okareka Ash	96
	8.1.1 Mean grain-size: Post-Okareka loess	98
	8.1.2 Sorting	103
	8.1.3 Skewness	105
	8.1.4 Kurtosis	106
	8.1.5 Mean grain-size versus sorting	109
	8.1.6 Mean grain-size versus skewness,	111
	and kurtosis	
	8.1.7 Mean grain-size versus Mz / Mz + O	r 111
	8.1.8 Mean grain-size versus K_{G} / K_{G} + Mz	115

vii.

		Page No.
Chapter 9:	Conclusions	118
References		121
Appendices		131

ļ

viii.

LIST OF TABLES

<u>Table</u>	No.	<u>Page No</u> .
1	Correlation of late Pleistocene tephra	7
	deposits in Central North Island, with	
	North Westland glacial advances	
2	Frequency of mineral species (percent)	27
	in very fine sand (63 – 125,wm) and fine	
	sand (125 - 250mm) fractions from	
	selected beds in Okareka Ash Formation,	
	Trunk Rd section	
З	Summary of Mineralogical and Morphological	76
	Results	

Figur	<u>e No</u> .	<u>Page No</u> .
1	Generalised map of airfall deposits in	5
(e)	North Island, New Zealand	
2	Isopachs showing distribution of Okareka	11
	Ash	
З	Site locations, Rotorua district, Central	20
	North Island	
4	Stratigraphy of transect sections	21
5	Stratigraphy of Te Ngae, Trunk Rd and	22
	Gavin Rd sections	
6	Scanning electron micrographs of:	30
	A - rhyolitic volcanic glass particles,	
	B - plagioclase feldspar grain exhibiting	
	albite (multiple) twinning, separated from	
	Okareka Ash samples	
7	Scanning electron micrographs of:	31
	A – quartz grains, B – bipyramidal-shaped	
	quartz grain, separated from Okareka Ash sa	amples
В	Scanning electron micrographs of	32
	hypersthene grains separated from:	
	A - Okareka Ash samples, B - Post-Okareka	
	loess samples	
9	Scanning electron micrographs of	33
	hornblende grains separated from: A - Okan	reka
	Ash samples, B - Post-Okareka loess samples	3
10	Scanning electron micrographs of biotite	34
	mica grains separated from: A - Okareka As	sh
	samples, B - Post-Okareka loess samples	
11	Scanning electron micrographs of titano-	36
	magnetite grains separated from: A - Okare	eka
	Ash samples, B - Post-Okareka loess samples	5
12	Scanning electron micrographs of Okareka	37
	Ash particles separated from sections: A -	- close
	to source (R_{AI}) , B - intermediate (C_{A}) , and	£
	$C - furtherest (E_A)$ to ash source	
13	Scanning electron micrograph of plagioclase	e 38
	feldspar grains separated from Post-Okareka	Э
	loess samples	

<u>Figure No</u>.

1.4	Secondary electron signature of electron 20	
14	Scanning electron micrographs of pragio- 39	
	clase feldspar grains separated from Post-	
	Ukareka loess samples: A - feldspar prism	
	coated with short-range order material, and at	
	B - higher magnification, C - feldspar 40	
	prism showing dissolution etch marks, and	
	D - at higher magnification	
15	Scanning electron micrographs of: 42	
	A - exposed cleavage planes in a biotite mica	
	grain, and B - a pumiceous particle separated	
	from Post-Okareka loess samples	
16	Scanning electron micrographs of: 43	
	A - a silt-sized aggregate, with, B - clay-	
	size material forming on grain fragments within	
	the aggregate, which has been separated from	
	Post-Okareka loess samples	
17	Scanning electron micrographs of Post- 45	
	Okareka loess particles separated from sections:	:
	A - close (AL,), B - intermediate (CL_2), and	
	C - furtherest (EL.) to ash source	
18	X-ray diffraction patterns (A) of the clay 47	
	(<1.0mm) fraction from Okareka Ash.	
	Noongotaba section	
19	Infra-red spectra (cm^{-1}) of Okareka Ash 48	
	clay (<1. Dwm) fractions from selected	
	sections	
20	Transmission electron micrograph of <1 04m 50	
20	size clay of Okazaka Ach at Trupk Rd section	
	(P bod)	
24	Transmission electron microspech of <1 Dum 51	
21	riansmission electron micrograph of <1.0mm 51	
	(D L-1)	
2.2	(RAL Ded)	
22	Transmission electron micrograph of <1.0Mm 52	
	size clay of Ukareka Ash at Irunk Kd section,	
	showing surface boiling affects on halloysite	
	tubes and hexagonal-shaped material	
23	Differential thermal curves (C) of 53	
	Okareka Ash clay (<1.0µm) fractions from	

Page No.

Figure No.

selected sections

24	Transmission electron micrograph of <1.0µm	55
	size clay of Okareka Ash at Te Ngae section	
25	Transmission electron micrograph of <1.0µm	56
	size clay of Okareka Ash at Pukehangi Rd	
	section	
26	Transmission electron micrographs of <1.0µm	58
	size clay of Okareka Ash at: A - Tarukenga	
	and B - Highland Hill sections	
27	Transmission electron micrograph of <1.0Mm	60
	size clay of Post-Okareka loess at Trunk Rd	
	section	
28	Infra-red spectra (cm ⁻¹) of Post-Okareka	63
	loess clay (<1.0µm) fractions from selected	
	sections	
29	Differential thermal curves (^O C) of Post-	64
	Okareka loess clay (<1.0mm) fractions from	
	selected sections	
30	Transmission electron micrograph of <1.0µm	66
	size clay of Post-Okareka loess at Pukehangi	
	Rd section	
31	Transmission electron micrograph of <1.0µm	68
	size clay of Post-Okareka loess at Ngongotaha	1
	section	
32	Transmission electron micrograph of <1.0µm	69
	size clay of Post-Okareka loess at Tarukenga	
	section	
33	Transmission electron micrograph of <1.0µm	70
	size clay of Post-Okareka loess at Dalbeth Ro	ł
	section	
34	Transmission electron micrograph of <1.0µm	72
	size clay of Post-Okareka loess at Highland	
	Hill section	
35	Differential thermal curves (^O C) of Post-	73
	Okareka loess (basal sample) silt and clay	
	fractions at Dalbeth Rd section	
36	Differential thermal curve (^O C) of a	74
	crushed sample of well-ordered crystalline g	ibbsite

xi.

Page No.

Figure	No. Pag	<u>e No</u> .
37	Mean grain-size of Okareka Ash and Post-	97
	Okareka loess deposits in relation to distanc	е
	from ash source	
38	Grain-size cumulative curves for Okareka	99
	Ash deposits .	
39	Variation in sand, silt and clay percent in	100
	Okareka Ash and Post-Okareka loess deposits	
	in relation to distance from ash source	
4 🛛	Grain-size cumulative curves for Post-	101
	Okareka loess deposits	
41	Grain-size cumulative curves of Okareka Ash	102
	and Post-Okareka loess deposits from	
	Ngongotaha section	
42	Sorting of Okareka Ash and Post-Okareka	104
	loess deposits in relation to distance from	
	ash source	
43	Skewness of Okareka Ash and Post-Okareka	107
	loess deposits in relation to distance from	
	ash source	
44	Kurtosis of Okareka Ash and Post-Okareka	108
	loess deposits in relation to distance from	
	ash source	
45	Mean grain-size versus sorting plots for	110
	Okareka Ash and Post-Okareka loess deposits	
46	Mean grain-size versus skewness plots for	112
	Okareka Ash and Post-Okareka loess deposits	
47	Mean grain-size versus kurtosis plots for	113
	Okareka Ash and Post-Okareka loess deposits	
48	Variation of mean grain-size versus the	114
	mean grain-size - sorting coefficient ratio	
	(Mz/Mz + 🔿 I) for Okareka Ash and Post-	
	Okareka loess deposits	
49	Variation of mean grain-size versus the	116
	kurtosis - mean grain-size coefficient ratio	
	(K _G /K _G + Mz) for Okareka Ash and Post-	
	Okareka loess deposits	

×ii.

NOMENCLATURE

Sections: (except for Trunk Rd, sections sampled are given a letter symbol, listed below, with increasing distance from Okareka Ash source) G Gavin Rd Okareka Quarry A I Lynmore H Te Ngae B Pukehangi Rd J Ngongotaha C Tarukenga Dalbeth Rd D E Highland Hill K Kuhatahi At Trunk Rd section, due to the thickness of Okareka Ash, samples were labelled according to firstly, the predominance of R rhyolitic (pale grey) B basaltic (dark grey-black) material or and secondly, the grain-size by a letter subscript -A ash L lapilli C coarse f fine Ash and Loess: loess samples were labelled -L loess A Ash and given a number subscript, from top to base, depending upon the number of samples taken -Okareka Quarry - section A e.g. AL1 upper AL2 mid Post-Okareka loess AL3 basal channel AA Okareka Ash sampled

ABBREVIATIONS

Al	Aluminium
A	angstrom (10 ⁻⁷ m)
An	anorthite
Cp×	augite
Bt	biotite mica
CM	centimetre (10 ⁻² m)
°C	degrees celsius
DTA	differential thermal analysis
Fds	feldspar (includes alkali and plagioclase)
g	gram
>	greater than
НЬ	hornblende
Н	hydrogen
Opx	hyperstheme
IR	infra-red spectroscopy
kHz	kilohertz
km	kilometre
Κw	kilowatt
ĸ _G	kurtosis
<	less than
Mz	mean grain-size
m	metre
Mm	micrometre (10 ⁻⁶ m)
mg	milligram (10 ⁻³ g)
mm	millimetre (10 ⁻³ m)
D	oxygen
%	percent
Qz	quartz
Ø	phi scale
(v)ps	(very) poorly-sorted
RI	refractive index
SEM	scanning electron microscope
Si	silica
SKI	skewness
(s)fs	(strongly) fine-skewed
sym	symmetrical
QI	sorting
8	the ta

- FeO titanomagnetite
- TEM transmission electron microscope
- VG volcanic glass (rhyolitic)
- XRD X-ray diffraction
- N.B. for consistency all grain-size calculations were carried out at μ m sizes to equal Ø (phi-scale) divisions (e.g. 63 μ m = 4.5Ø)