
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



" . .  

• 
... :"" .'" : '. : .. ;" r . ,' • '.. ' .  , •• ' 

, '� .,' :' . .  

." ., ' .' '" 

. .. . " " ' 
" ', I 

� . " 

: ' � 

�: . 

' : : ." 
' . .  " 

. � ' 
.. 

. ' '' , ,; 

'" " (, 
, ' ,� .. I " - . 

• 
, 

' ,' .,r 

, ': ' 

PREPARATION OF CHEMICALLY MODIFIED ' , 

BEAD CELLULOSE RESINS AND THEIR 

: ... ' . 
. ,: '.,:�

' ,-

0' " :. 

-', . 

. •..
. 

: .
.

. 

. 
. , 

.. , ' . 
,', I " . APPLICATION TO PROTEIN PURIFICATION " . ', . 

.' . " 
, ' 
t .

.. 

" . 

' ,' . 
I' ., ... ,' 

A thesis presented in partial fulfilment of the requirements for the degree of " 
' ./ " .  

Doctor of Philosophy in Biochemistry at Massey University 
" " . 

Simon Christopher Burton 

1995 

. , 
, , 

. ", ', 

:,") 
...

. 1 

, " 

.. . ... .' 

" 
. ' , 

• I '��. 
\t , .� 



I .... 

'i 

, , 
'f � • 

. ' 

, . " 

' . .  
, 

.... ! .:. 
• ,. O- , !' 

, " 

" 

, .� .. 

, . 

,. 

'. 
'{ .. 

',. 

" 
J '. 
" , 

ERRATA 

Page 39 

Page 55 

Page 56 

Page 61 

Page 72 

Page 118 

Page 120 

Page 129 

Page 139 

Page 153 

Page 161 

Page 164 

Page 169 

Page 171 

Page 171 

Page 180 

." 

: the legend for Table 2.7 (line 7) should refer to Table 2.6, not 2.7. 

: insert "+ 1 ml ethanol" (in paragraph 5), to dissolve ligands. 

: line 5 of paragraph 2 should read "0.7-1.0 ml/g". 

: the activation level should be "0.093 mMoles/g" in line 1, paragraph 2. 

: swap titration figures of AGE cysteamine (rows 6 and 7). 

: the figure caption should be " ... PPA (59%)". 

: delete ''for'', line 7, paragraph 1. 

: ''mMoles/g dry" should read "0.043 mMoles/g", line 1, paragraph 1. 

: change the legend labels for AMP to "(D)" and APIMID to "(C)". 

: change Figure 6.10 to Figure 6.11, lines 5 and 9, paragraph 2. 

: change "Figure 5.1" to "Figure 5.3", paragraph 1, line 4. 

: delete "and eluted", paragraph 1, line 4. 

: the legend's second sentence should read ''pH 5.2 and 7.5 respectively". 

: the percentage should be 50-70% paragraph 2, line 3. 

: change "Figure 7.6" to to "Figure 7.5", paragraphs 1 and 2. 

: the vinyl pyridine figure should be "$7.60". 

r, ' 
• , .A 

:./ ·r 



11 

ABSTRACT 

A bead cellulose matrix, Perloza™, was chemically modified to prepare inexpensive 

resins for chromatography. Conventional and novel resins were produced. Adsorption 

and elution methods suitable for industrial chromatography were developed. An agarose 

matrix, Sepharose TM, was used for comparison. 

Matrix activation with carbonyldiimidazole (CDI) was optimised for Sepharose and 

Perloza. Improved, reliable performance was obtained using column solvent exchange, 

with an imidazole tracer. Substitution efficiency of 75-98% was obtained for aminoacyl 

ligandslspacer arms by minimising water content. The aqueous carboxymethylation level 

obtained for Perloza was 0.3-0.4 mMoles/g dry. This was increased to 1.3-2 mMolesig 

dry, using 75-80% DMSO solvated Perloza. Epichlorohydrin and bisepoxide activation 

levels (+1- organic solvents) were low. 

Etherification of Perloza with allyl bromide or allyl glycidyl ether resulted in high 

allylation levels (> 1.50 mMoleslg), even in aqueous media. Matrix allyl groups were 

reacted with bromine water or aqueous N-bromosuccinimide, to produce 

(predominantly) bromohydroxypropyl groups. Subsequent attachment of amine and thiol 

ligands, by nucleophilic substitution, was simple and efficient. 

Allyl matrices were also used for free radical addition of sulphite and various thiols 

(mercaptoethanol, mercaptoacids, glutathione). Efficient addition was found without 

thermal or chemical catalysis. Addition of mercaptoacetic acid followed by carboxylate 

titration was the preferred measure of (allyl) activation level. Addition of several other 

thiols occurred at 60°C. 

The usefulness of allyl chemistries was exemplified by preparation of ion exchange 

reslDS. Their physical and chromatographic properties compared favourably with 

commercial resins. They combined good laboratory performance with high flow rates 

and simple, cheap preparation suited to large scale use. 

Mixed mode resins were prepared from CDI and allyl matrices. These contained charged 

(secondary amine or carboxylate) and hydrophobic (alkyl spacer arm and/or ligand) 

groups. The milk clotting enzyme chymosin, was adsorbed to these resins at high and 

low ionic strength. Near homogeneous chymosin was eluted by a pH change, which 

induced electrostatic repulsion. Alkyl carboxylate resins were preferred. They were 

simple to prepare, use and regenerate, despite the use of crude broths. 
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The presence of charged groups could cause non-specific adsorptio� interference with 

target protein adsorption and greater fouling. Weak acid and base hydrophobic groups 

(e.g. pyridyl) were attached to matrices and titration confirmed that uncharged and 

charged forms were obtained in a pH range (5-9) suitable for protein chromatography. 

At low ligand density, the salt promoted hydrophobic adsorption properties of these 

resins (uncharged from) were similar to those of Phenyl Sepharose. At higher ligand 

density, retention was longer, eventually leading to adsorption independent of ionic 

strength. Complete elution was obtained by pH adjustment (to the partially ionised resin 

form). Chymosin was strongly adsorbed to uncharged pyridyl (hydrophobic ionisable) 

resins and rapidly eluted by a small pH change. High ligand density (strong adsorption) 

is favourable for large scale use because the ionic strength of feedstreams does not need 

to be adjusted prior to loading. 

Strong adsorption to mixed mode and weakly ionisable resins was also found for 

amylase. Rapid elution (and significant purification) was again obtained by a small pH 

change. Subtilisin was adsorbed likewise by most hydrophobic ionisable resins and 

recovered efficiently at pH 5.2. However, subtilisin adsorption to mixed mode resins 

was comparatively weak, possibly reflecting the weaker hydrophobicity of subtilisin 

compared to amylase. 

The adsorption of catalase on Phenyl Sepharose and (low ligand density) pyridyl Perloza 

was equivalent, at pH 7.5. Catalase was eluted by a pH change from the Perloza res� 

whereas elution from Phenyl Sepharose required addition of ethylene glycol This 
indicated that pyridyl Perloza resins would be useful for chromatography of very 

hydrophobic proteins. 
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