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Abstract

One of the open questions in relation to the control of amplitude and frequency

of breathing is why a particular pattern of breathing is observed. This thesis

explores the hypothesis that the particular combination of breathing frequency

and amplitude realised, is optimal with respect to some objective function. Several

objective functions have been suggested in the literature, such as the rate of work

during inhalation, the average force exerted by the respiratory muscles, and the

weighted sum of volumetric acceleration and work during inhalation; all of these

objective functions were studied using 1 D models and all provided physiologically

acceptable minima under normal conditions. The thesis investigates optimal

solutions of mathematical models that range from 2 D to 6D and re�ect more

accurately the coupling between lung mechanics and gas exchange. It shows how

published 6 D and 5D models can be reduced to new 3 D and 2D models. At its

simplest, the 2 D model consists of two piecewise linear differential equations.

The use of higher dimension models require a new de�nition of the optimization

problem as minimizing a given objective function subject to several constraints,

such as satisfying the differential equations and maintaining one of the variables

at a given average value. The optimal problem can be solved analytically in the

case of the simplest 2D model, using concepts from optimal control theory. The

analytical solution is used to verify a numerical algorithm that is then used to solve

the more complex models. Solutions of the optimization problem for the different

objective functions, previously suggested in the literature have been calculated. In

all the optimal solutions found in this thesis, the duration of inhalation is equal to

the duration of exhalation. However, under normal conditions, the time duration

of inhalation is expected to be shorter than that of exhalation. This might be

resolved by imposing additional constraints or by proposing a different hypothesis

to explain why a particular pattern of breathing is observed.
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Nomenclature

Variables and parameters used in this thesis

Symbol Meaning Unit

t Time (Independent variable) s
PL Pleural pressure mmHg
PA Alveolar pressure mmHg
VA Alveolar volume l
fo Alveolar concentration of O2

fc Alveolar concentration of CO2

po Partial pressure of O2 in the blood mmHg
pc Partial pressure of CO2 in the blood mmHg
pao Partial pressure of O2 in alveoli mmHg
pac Partial pressure of CO2 in alveoli mmHg
z Concentration of HCO3

q Air�ow though airways l s¡ 1

p̄o Average partial pressure of O2 in the blood mmHg
p̄c Average partial pressure of CO2 in the blood mmHg
R(t ) Ramp signal
xm Muscle displacement m
F Driving force (2 D Model ) l s¡ 1

Yc Linear transformation of fc (2D Model ) s¡ 1

Yo Linear transformation of fo (2D Model ) s¡ 1

Table 1: Variables used in the various models.



xvi Nomenclature

Symbol Meaning Value

k1 Recoil rate constant of muscles 2 s¡ 1

k2 Conversion constant 1 m s¡ 1

kp Conversion constant 2.5 mmHg m ¡ 1

Pm Mouth pressure 760 mmHg
pw Vapor pressure of water at 37 oC 47 mmHg
PL0 Constant related to pleural pressure 5.5 mmHg
E Lung's elasticity (Normal) 2.5 mmHg l ¡ 1

(Diseased) 1.4 mmHg l ¡ 1 ¤
R Resistance to �ow (Normal) 1.0 mmHg s l ¡ 1

(Diseased) 2.6 mmHg s l ¡ 1 ¤
fom Concentration of O2 in the mouth 0.21
fcm Concentration of CO2 in the mouth 0
VT Tidal volume 0.4 l
VD Dead space volume 0.15 l
Vc Capillaries volume 0.07 l
T Respiratory period 5 s
TL Heart beat period 60/72 s
! Respiratory angular frequency 2¼/4 r ad s¡ 1

Do Diffusion capacity of O2 (Normal) 3.5£ 10¡ 4 l s¡ 1 mmHg ¡ 1

(Diseased) 0.875£ 10¡ 4 l s¡ 1 mmHg ¡ 1 ¤
Dc Diffusion capacity of CO2 (Normal) 7.08£ 10¡ 3 l s¡ 1 mmHg ¡ 1

(Diseased) 1.77£ 10¡ 3 l s¡ 1 mmHg ¡ 1 ¤
Cu unit conversion factor 25.426l mol ¡ 1

¾ Solubility of O2 in plasma 1.4£ 10¡ 6 mol l ¡ 1 mmHg ¡ 1

¾c Solubility of CO2 in plasma 3.3£ 10¡ 5 mol l ¡ 1 mmHg ¡ 1

Th Concentration of hemoglobin 2£ 10¡ 3 mol l ¡ 1

h Concentration of H Å 10¡ 7.4 mol l ¡ 1

r 2 Dehydration reaction rate 0.12 s¡ 1

l 2 Hydration reaction rate 164£ 103 l s¡ 1 mol ¡ 1

± Acceleration rate 101.9

KT Equilibrium constant in 104 l mol ¡ 1

the hemoglobin saturation function
KR

00 3.6£ 106 l mol ¡ 1

L 00 1.712
® Parameter of the 2 D model 2.5 s¡ 1 ¤
¯ 00 2.295s¡ 1 ¤
° 00 ¡ 0.058mmHg l ¡ 1 s¡ 1 ¤

Table 2: Parameters used in the various models. All the values are taken from [ 7]
except values with * which have been estimated in this thesis.



Chapter 1

Introduction

Respiration in mammals is a continuous process, which starts from the moment of

birth until the end of life. The primary function of the respiratory system is to bring

air from the atmosphere into a close contact with blood in the lungs, where gas

exchange takes place. Blood circulation around the body delivers oxygen ( O2) from

the lungs to the tissues and carbon dioxide ( CO2) from the tissues to the lungs to

meet metabolic demands [ 35]. The breathing control system is set up to maintain

partial pressures of CO2 and O2 within a physiological range. Variations in blood

CO2 and O2 levels trigger a change in the rate and amplitude of breathing; in turn,

breathing affects the amount of CO2 and O2 in the blood.

The ventilatory response to lack of O2 or excess of CO2 can vary signi�cantly

between individuals. In some cases, the response consists mainly of an increase

in breathing amplitude, in others it consists mainly of an increase in breathing

frequency and in some cases, an increase in both amplitude and frequency is

observed. Furthermore, physiological levels of O2 and CO2 in the blood can be

achieved with multiple combinations of breathing frequency and tidal volume

(volume of air inhaled in one breath). But why a speci�c combination of amplitude

and frequency is observed remains a mystery.

The aim of this thesis is to check the hypothesis that the particular combina-

tion of breathing frequency and amplitude realized, is optimal with respect to

some objective function. Several objective functions are explored using a range

of mathematical models. In this Chapter, we review the relevant physiology of

the control system. We then discuss the optimization of the respiratory system



2 Introduction

and models that incorporate both mechanical and chemical components. At the

end we discuss the theory of optimal control and its application to the respiratory

system.

1.1 The Respiratory Control System and its Modelling

The respiratory control system consists of receptors, controller and affectors that

work collectively to ensure that physiological levels of O2 and CO2 are maintained

in the blood. There are two types of sensors that provide feedback to the respi-

ratory control system, chemical and mechanical, known as chemoreceptors and

mechanoreceptors respectively [ 10], [16]. These inputs play the most important

role in adjusting the respiration in terms of tidal volume and the duration of in-

halation and exhalation.

There are two types of chemoreceptors: the peripheral chemoreceptors and central

chemoreceptors. The peripheral chemoreceptors are located in the aortic and

carotid bodies [ 41], [52], [59]. They sense and react to variations in blood partial

pressure of O2 as well asCO2; a decrease in the blood partial pressure of oxygen

stimulates the carotid sinus nerve which leads to a change in ventilation and brings

the oxygen level back to normal [ 3], [72]. The central chemoreceptors are located

in the brainstem and are sensitive to changes in the level of partial pressure of CO2

and pH in their close environment [ 21], [26], [33]. The central chemoreceptors are

the main respiratory receptors in the breath-by-breath control of ventilation under

normal conditions [ 75]. However, in extreme conditions, O2 (through the periph-

eral chemoreceptors) also affects the breath-by-breath control of respiration.

Alongside these chemoreceptors, the mechanoreceptors are responsible for non-

chemical respiratory regulation. These receptors are located in the bronchi's wall 1

of the lungs [ 20]. The response of these sensors is higher with a decrease in lung

compliance (measure of the lung's ability to expand and stretch) [ 76]. During

in�ation, these sensors become active and send signals to the brainstem via the

vagus nerve [22]. There are pure de�ation activated receptors, which only respond

to de�ation of the lungs and are mainly observed in small mammals like mice, cat

and rabbit [1], [45], [54].

1Bronchi are the tubes through which the air travels to and from the lungs.
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The respiratory controllers are located jointly in the region of the medulla ob-

longata and pons in the brainstem [ 10], [16], [19], [48], [55]. Studies suggest that

the respiratory neurons have a dense population in three centers: (1) the dorsal

respiratory group (DRG) which is located in a dorsal portion of the medulla, (2) the

ventral respiratory group (VRG) located in ventrolateral portion of the medulla ,

and (3) the pontine respiratory region (PRG) located in pons [ 10], [30]. All together,

the DRG, VRC and PRG create the central pattern generator (CPG) of respiration

[44], [68]. They receive signals from respiratory related mechanoreceptors and

chemoreceptors, adjust the breathing pattern and send signals to the motor nerves

to generate movement of the respiratory muscles [18], [71].

Mathematical modelling of the respiratory system started after World War II, dur-

ing which many �elds of science and technology have emerged. One of them was

control theory which later was used to study the quantitative nature of ventilation

control. Gray [ 27] introduced the �rst model in which the controller as well as the

controlled system were considered as black boxes and the system was restricted

to a static view (steady state). This formed a simple relationship between lung

ventilation and partial pressures of O2 and CO2 in the arteries.

The �rst dynamical control model of the respiratory system was proposed by

Grodin et al. [ 29], where the arterial CO2 was considered as a respiratory regulator

and a variation in it affected the minute ventilation. In 1967, Grodin et al. [ 28]

upgraded their previous model by introducing several sources of delay along with

cerebral blood �ow and cerebrospinal �uid (CSF) compartment that exhibited the

effects of pH on ventilation. This upgraded model was tested for a few different

scenarios such as the increased inspired fraction of CO2, exercise test and holding

the breath. Mixed results were achieved in general, but the result of the exercise

test did not match the experimental observations. Saunders et al. [ 67] modi�ed

the model of [ 28] by incorporating cyclic ventilation, variable lung volume, dead

space volume, a blood shunt and a different equation of the controller along with

the elimination of CSF compartment. In 1999, Cabera et al. [ 12] presented a model

with four compartments including an alveolar compartment and different tissue

compartments such as skeletal muscle (muscles in the lower extremities), splanch-

nic (e.g. liver, stomach and intestines) and other tissues (which include the heart,
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brain, and the rest of the tissues). The model used the same ventilation controller

equations as those developed by [ 28] and [ 67]. Farhi and Rahn [ 23] proposed a

model of CO2 storage, in which the total CO2 of the body was stored in four com-

partments and connected through the circulation of blood. This model expressed

more accurately the impact of variation in ventilation on the stored CO2 at steady

state. However, during the initial few minutes of either hyperventilation or apnea

(pauses in breathing), the rate of change of CO2 was higher than those predicted

by other studies [ 14], [25]. A model with a nonlinear controller was used to study

the stability properties of the respiratory control system [ 40]. The model included

two compartments: lumped body tissues and lungs, which were connected by the

blood circulation. In 1991, this model was upgraded to stimulate breathing during

sleep [39]. The Grodin model was still used recently [58].

While the Grodin model evolved, other envelopments were taking place. The

publication of the Hodgkin Huxley model in 1952 [ 36] revolutionized the �eld of

physiology by introducing electro-physiology and modelling at the neural level.

More details about the respiratory neural network were discovered and models of

the respiratory central pattern generator (CPG) were developed. Of note is the dis-

covery of the Pre-Bötzinger Complex [ 70]- a population of excitatory neurons that

are essential for breathing. Models of the neural circuitry range from 3 equations

[11] to hundreds of equations [ 64], [65]. See [2], [24], [60] and [ 61] for a review of

the different models developed at the neural level. There were a few attempts to

couple the models at the neural level with models of the lungs [ 7], [8], [49]. How-

ever, none of these models can control both frequency and amplitude of breathing

in response to inputs from all the chemoreceptors and mechanoreceptors. For

example, in [ 8], amplitude is controlled in response to changes in O2 and CO2

but there is no control of frequency. While in [ 7] there is control of amplitude

and frequency but only in response to changes in CO2. One of the dif�culties in

coupling mechanical models of the lungs to models of the neural circuitry is our

lack of understanding of why a particular combination of breathing frequency and

amplitude is selected by the neural system.

This thesis is motivated by the need to understand how the respiratory CPG regu-

lates the breathing amplitude and frequency . Early and recent models that treated

the respiratory CPG as a black box provided some useful insights about the res-



1.2 Optimization of the Respiratory System 5

piratory system but did not distinguish between the frequency and amplitude of

breathing; instead they considered minute ventilation as a control variable. This

prevents the use of studies at the neural level which found that there is separate

control of amplitude and frequency of breathing. Observations of the breathing

response to changes in O2 and CO2 concentrations led physiologists to look out

for criteria by which the body sets a particular breathing frequency and amplitude.

We discuss these studies in the next section.

1.2 Optimization of the Respiratory System

Rohrer [62] was one of the �rst to indicate that the frequency of breathing may be

selected by minimizing the mechanical respiratory work rate with the assumptions

of passive expiration, equal durations of inspiration and expiration and constant

�ow rate during inhalation. He used a simple lung model in which the relationship

between the respiratory pressure and volume is given by:

Pr s ÆEr s V Å Rr s �V (1.1)

where, Pr s represents the respiratory pressure required for breathing. V represents

the lung's volume. Er s and Rr s represent the respiratory elastance and resistance

to air�ow respectively. Rohrer developed the following formula for the work rate

(energy consumption per unit time) of the respiratory muscles during inhalation:

W RRohrer Æ
µ
Er s

2f
Å 2Rr s

¶
¡

�VA Å f VD
¢2 (1.2)

where �VA, VD and f are the alveolar minute ventilation (the amount of air involved

in gas exchange per minute), dead space volume and respiratory frequency respec-

tively. The values obtained by minimizing Eq. (1.2) were similar to human resting

breathing frequency. Otis. et al. [ 53] added non-linear resistance into the model in

Eq. (1.1) and represented it as:

Pr s ÆEr s V Å Rr s �V Å Qr s �V 2 (1.3)

where Qr s represents the respiratory resistance due to turbulence. By considering

a sinusoidal air�ow pattern, this gave the following mathematical expression for
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the work rate during inhalation for a given constant alveolar ventilation [53]:

W ROti s Æ
µ
Er s

2f
Å

¼2

4
Rr s

¶
¡

�VA Å f VD
¢2 Å

2¼2

3
Qr s

¡
�VA Å f VD

¢3 (1.4)

The optimal breathing frequency that minimizes Eq. (1.4) was again consistent

with observations. The work rate criterion was con�rmed by observations during

light exercise [ 46], however, Mead [ 47] found that the work rate criterion did not

explain the variations in breathing frequency during light to severe exercise. So, he

came up with a new criterion ¡ that the optimal frequency is close to that which

minimizes the average force developed by the respiratory muscles. By considering

a sinusoidal air�ow and the resistance due to turbulence, he found the following

formula for the optimal frequency :

fMead Æ
µ �VA

VD

¶1/3 µ
Er s

2¼Rr s

¶2/3

(1.5)

The optimal frequency from the above expression is slightly higher than that which

optimizes Eq. (1.4). Mead found that the frequency from Eq. (1.5) is close to

human breathing frequency at all levels of exercise. This gave a better prediction

for breathing frequency than work rate mainly during exercise.

It was also suggested that neither the pressure integral nor the mechanical work

are individually minimized over an inspiration. This means that the optimization

criterion may involve the weighted sum of energy expenditure and work [ 4]. It was

believed that the quick variations in the rate of air�ow might have certain harmful

effects. The weighted criterion sum was introduced as [31]:

J( �VA) Æ
Z Ti

0

£
V̈ 2

A Å µ1Pr s �VA
¤
dt Å

Z T

Ti

£
V̈ 2

A Å µ2P2
r s

¤
dt (1.6)

where µ1 and µ2 represent the weights; T and Ti are the durations of inhalation and

whole breath respectively. In Eq. (1.6), the criterion for inspiration consists of the

weighted sum of the square of the alveolar acceleration and the mechanical work

produced by the respiratory muscles during inhalation while during expiration,

the term of mechanical work was substituted by the integral square of the driving

pressure. The cost function of inspiration was modi�ed further by adding a term

that was responsible for the ef�ciency loss of gas exchange with muscular load [ 32].
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It was suggested that an optimum controller might balance the energetic needs

with metabolic needs of the body [57].

In all of these studies, a simple lung model was used (see Eq. (1.1)) where the

function of gas exchange was not involved directly (instead, effective minute venti-

lation was used). In our study, we consider more detailed lung models, which can

calculate how a variation in breathing frequency leads to a change in alveolar gas

concentrations. The use of more detailed lung models requires a new de�nition

of the optimization problem which we introduce in Chapter 3. We then solve the

newly de�ned optimization problem directly (i.e. for a given driving function)

similar to what has been done before. In Chapter 4 and 5, we search for an optimal

“driving function”, i.e. we do not assume a particular shape of this function. This sig-

ni�es another difference between our work and previous studies and also requires

the development of new methodologies for solving the optimization problem. In

the following sections we describe the lung models we use that have already been

published in the literature. We then review the literature for solving an optimal

driving function.

1.3 A 6D Lung Model

In our study, we consider a �exible lung model with gas exchange and gas transport

developed by Ben-Tal [ 5]. It includes both mechanical (pressure, volume and

air�ow) and chemical (level of carbon dioxide and oxygen) components of the

respiratory system. In the �exible model, the airways are represented by a single

pipe with resistance R. The alveolar region is considered as a container with a

moving plate as shown in Fig. 1.1 (a). Gas exchange and gas transport are modelled

by a 'conveyor' model, shown in Fig. 1.1 (b), in which the transit time of blood in

the lungs (where gas exchange takes place) is the same as the interval between

two consecutive heart beats. The system of differential equations for the 6 D lung
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model is [5]:

dPA

dt
Æ

E

R
(Pm ¡ PA) Å

dPL

dt
(1.7)

d f c

dt
Æ

1

VA

£
Dc

¡
pc ¡ pac

¢
Å

¡
fci ¡ fc

¢
qi ¡ fc

¡
Do

¡
po ¡ pao

¢
Å Dc

¡
pc ¡ pac

¢¢¤
(1.8)

d f o

dt
Æ

1

VA

£
Do

¡
po ¡ pao

¢
Å

¡
foi ¡ fo

¢
qi ¡ fo

¡
Do

¡
po ¡ pao

¢
Å Dc

¡
pc ¡ pac

¢¢¤
(1.9)

dp c

dt
Æ

Dc

Cu ¾cVc
(pac ¡ pc) Å

±l 2

¾c
hz Å ±r 2pc (1.10)

dpo

dt
Æ

Do

Cu ¾Vc

µ
1Å

4Th

¾

dS(po)

dpo

¶¡ 1

(pao ¡ po) (1.11)

dz

d t
Æ±r 2¾cpc ¡ ±l 2hz (1.12)

Fig. 1.1: Schematic description of the 6 D model. (a) The lung is assumed to be a
single container with a moving plate. (b) Blood transport is modelled as a conveyor
model. R¡ overall resistance to air�ow; ks¡ spring constant (lung elastance, E, is
equivalent to ks/ s2, where s is the area of moving plate), q¡ air�ow. PA¡ pressure
in the lung, Pm ¡ pressure at the mouth. fo and fc are the concentrations of O2

and CO2 in the alveoli. pao and pac are the partial pressures of O2 and CO2 in the
alveoli. po and pc are the partial pressures of O2 and CO2 in the blood [5].

Where, PA is the pressure in the alveoli; fc and fo are the concentrations of carbon

dioxide and oxygen respectively in the alveoli; pc and po represent the blood partial

pressures of carbon dioxide and oxygen respectively; z is the blood concentration
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of bicarbonate, PL and Pm are the pleural and mouth pressures respectively (the

mouth pressure is assumed to be constant in this study); VA is the lung's volume.

The air�ow, q is assumed to be proportional to the pressure difference between

the mouth and the alveolar region; pac and pao are the alveolar partial pressures of

carbon dioxide and oxygen respectively- they are calculated as pac Æfc(PA ¡ pw )

and pao Æfo(PA ¡ pw ) where pw is the vapor pressure of water at 37 ±C. Dc and

Do are the diffusion capacities of carbon dioxide and oxygen respectively; qi is

the inspired air�ow; fci and foi are the inspired concentrations of oxygen and

carbon dioxide respectively; Vc is the capillary volume; ¾and ¾c are the solubility

of oxygen and carbon dioxide in plasma respectively; Th is the concentration of

hemoglobin; l 2 is the hydration reaction rate; ± is the acceleration rate; r 2 is the

dehydration reaction rate; h is the concentration of hydrogen ions and S(po) is the

saturation function of hemoglobin. The volume of the lungs VA is:

VA Æ
1

E
(PA ¡ PL) (1.13)

The air�ow, q is:

q Æ
1

R
(Pm ¡ PA) (1.14)

The inspired concentration of oxygen is:

foi Æ

(
fo VT Ç VD

1
VT

¡
foVD Å fom (VT ¡ VD )

¢
VT ¸ VD

(1.15)

where VT , VD and fom are the tidal volume, dead space and the concentration of

oxygen in the mouth. By replacing foi , fo and fom in Eq. (1.15) by fci , fc and fcm

respectively we get the inspired alveolar concentrations of carbon dioxide..

The saturation function of hemoglobin is [5], [50]:

S
¡
po

¢
Æ

LKT ¾po
¡
1Å KT ¾po

¢3 Å KR¾po
¡
1Å KR¾po

¢3

¡
1Å KT ¾po

¢4 Å
¡
1Å KR¾po

¢4 (1.16)

where L, KT and KR are parameters.

The model assumes that after every heartbeat, a new bolus of blood enters the

lungs. Therefore, we re-initialize po, pc and z after every heart period, TL . We
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also store the values of po and pc just before the re-initialization as poe and pce,

where, poe and pce represent the partial pressure of O2 and CO2 in the arterial

blood, which is supplied to the body.

1.4 A 5D Lung Model

The 6D lung model introduced in the previous section was later reduced by Ben-Tal

et al. [6]. This was done by averaging the partial pressure of O2 (po) and CO2 (pc)

over one heart period. In the 6 D model, we have to reinitialize the values of po and

pc after every heartbeat which makes them discontinuous. The 5 D model does

not require a re-initialization of the blood partial pressures, therefore it is easier to

�nd the optimal breathing pattern by using this model. This model is continuous

and smooth during inhalation and exhalation but not necessarily in the transition

from inhalation to exhalation.

Let TL be the transition time of the blood in the lungs, which is also assumed

to be the duration between two consecutive heartbeats. The average po and pc

during this transition time is represented by p̄o Æ 1
TL

RTL
0 podt and p̄c Æ 1

TL

RTL
0 pcdt .

By rearranging Eq. (1.11) and using dS
dpo

dpo
dt ÆdS

dt , we get:

dpo

dt
Æ

Do

Cu ¾Vc
(pao ¡ po) ¡

4Th

¾

dS(po)

d t
(1.17)

By using Eq. (1.10) and (1.12), we have:

dp c

dt
Æ

Dc

Cu ¾cVc
(pac ¡ pc) ¡

1

¾c

dz

dt
(1.18)

Now we integrate both sides of Eq. (1.17) and (1.18) from 0 to TL and by assuming

that the partial pressures of O2 and CO2 in the lungs do not change much during

this short transition time, the following system of differential equations is obtained
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[6]:

d p̄c

dt
Æ

Dc

Cu ¾cVc
(pac ¡ p̄c) Å

r 2

l 2hTL

£
pc0 ¡ p̄c

¤
(1.19)

d p̄o

dt
Æ

Do

Cu ¾Vc
(pao ¡ p̄o) Å

4Th

¾TL

£
S(po0) ¡ S(p̄o)

¤
(1.20)

where, pc0 and po0 represent the level of partial pressures of CO2 and O2 in the

blood when it enters the lungs for gas exchnage. The alveolar concentrations of

O2
¡
fo

¢
and CO2

¡
fc

¢
do not change much during the transition time. Therefore,

the differential equations for PA, fc and fo in this model are the same as for the 6 D

model. However, the variables pc and po are replaced by p̄c and p̄o respectively in

Eq. (1.8) and (1.9) and represented as:

d f c

dt
Æ

1

VA

£
Dc

¡
p̄c ¡ pac

¢
Å

¡
fci ¡ fc

¢
qi ¡ fc

¡
Do

¡
p̄o ¡ pao

¢
Å Dc

¡
p̄c ¡ pac

¢¢¤
(1.21)

d f o

dt
Æ

1

VA

£
Do

¡
p̄o ¡ pao

¢
Å

¡
foi ¡ fo

¢
qi ¡ fo

¡
Do

¡
p̄o ¡ pao

¢
Å Dc

¡
p̄c ¡ pac

¢¢¤

(1.22)

The differential equations for the 5 D model, consists of Eq. (1.7) and (1.19) -

(1.22). The expression representing the volume of the lungs, air�ow and inspired

concentration of O2 and CO2 are the same as in the 6D model (see Eq. (1.13), (1.14)

and (1.15)).

1.5 Optimal Control Theory

Optimal control theory of ordinary differential equations was �rst introduced

by Lev Semonovich Pontryagin and his students [ 56] and is now well known. It

is fundamentally an expansion of the classical variation technique of Lagrange,

Euler and Hamilton [ 15]. This method is used to �nd an optimal controller of a

dynamical system in the presence of constraints.

Consider the minimization of

W Æ
Z t f

t0

J(t ,x,u)d t (1.23)
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subject to the differential equation:

�x (t ) Æg(t ,x,u) (1.24)

with boundary conditions:

x (t0) Æx0, x
¡
t f

¢
Æxf

where x and u are the state and control variables respectively. Let H be the Hamil-

tonian of the problem which is:

H ÆJ(t ,x,u) Å ¸ > (t ) g(t ,x,u) (1.25)

where ¸ (t ) is an unknown adjoint vector function, also known as Lagrange multi-

plier. By substituting Eq. (1.25) into Eq. (1.23) we get:

W Æ
Z t f

t0

¡
H ¡ ¸ > (t ) �x (t )

¢
d t (1.26)

If t0 and t f are �xed and the system of differential equations is continuous, the

optimization problem can be transformed into a boundary value problem of an

augmented set of differential equations [ 56], [43]. The augmented set of differential

equations is:

�¸ i (t ) Æ ¡
@H

@xi
(1.27)

where, ¸ i is the Lagrange multiplier asociated with state variable xi .

The optimization problem can also be solved when the terminal time is free [ 42],

[73] and the state variables are �xed and/or free at the initial and terminal times ( x0

and/or xf are �xed and/or free) [ 42], [73] . The constrains can also be augmented

by adding an algebraic constraint (i.e. the control and state variables satisfy an

algebraic relationship) [ 9], [42] and an interior point constraint (a state variable

has a particular value at some point of time between the initial and terminal times)

[9], [34], [74], [17]. The optimization problem can also be solved if the system of

differential equations is piecewise continuous with �xed and free time durations

[37].

The idea of optimal control theory was used to study the breathing pattern. By
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considering a simple lung model (Eq. (1.1)) and minimizing the work of breathing,

the air�ow pattern during inhalation was found to be constant [ 77]. Similarly,

another study [ 63] showed that when the work rate was taken as a cost function,

the optimal �ow was a constant. The same study also investigated minimizing

the average force and found that there was no optimal solution for a constant

resistance. However, the optimal air �ow had a triangular shape (i.e. it increased

linearly with time during inspiration) for a dynamic resistance when Qr s was in-

cluded (see Eq. 1.3) [63]. When the work was optimized and the resistance to

�ow was taken as nonlinear (Eq. 1.3), an optimal ratio between the inhalation and

exhalation durations satis�ed the following cubic equation [38]:

µ
TI

TE

¶3

¡
RI

RE Å
³

2QEVT
TE

´
µ

TI

TE

¶
¡

QI

QE Å
³

RETE
2VT

´ Æ0 (1.28)

Here, subscripts I and E represent the parameters and variables during inhala-

tion and exhalation respectively. T is the time duration, R and Q represent the

resistance to air�ow and resistance to turbulent �ow respectively, and VT is the

tidal volume. By ignoring the resistance to turbulent �ow ( QI ÆQE Æ0) and as-

suming that the resistance to air�ow is the same during inhalation and exhalation

(RI ÆRE È 0), then the solution of Eq. (1.28) shows that the durations of inhalation

and exhalation are the same.

All the studies described in this section, where the optimal breathing pattern

(optimal shape of driving force) was found, have used a 1 D linear model for the

lungs in which gas exchange was not taken into account directly. In most of the

studies, the duration of inhalation and exhalation was considered as a �xed con-

stant value. Compared with more general optimal problems that have been solved

in the past, our problem has some additional dif�culties. Our system of differential

equations is piecewise and the transition between phases is de�ned by the rate

of change of one of the state variables. Additionally, one of the parameters in the

model (the tidal volume) as well as the time durations are part of the optimization

problem. We therefore had to develop some new methodologies for solving the

optimization problem which we describe in Chapter 4.
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1.6 Conclusions

Physiological levels of oxygen and carbon dioxide in the blood are tightly regu-

lated. This is mainly done by varying the frequency and amplitude of breathing.

Early models of respiratory control treated the system as a black box model, where

minute ventilation (the amount of inhaled air per minute) was taken as the con-

trolled variable. This did not provide a distinction between frequency and ampli-

tude of breathing because the same minute ventilation can be achieved by various

combinations of frequency and amplitude. Studies of breathing control at the

neural circuitry level found that there are distinct mechanisms for controlling the

amplitude and frequency of breathing. However, why a speci�c combination of

breathing frequency and amplitude is observed, remains a mystery. This thesis

explores the hypothesis that the observed combination of breathing frequency and

amplitude is optimal with respect to some objective function. Different objective

functions were studied previously such as the work rate and the average force

developed by the respiratory muscles during inhalation; all used 1 D models. In

this thesis, we consider higher dimension models that re�ect more accurately the

coupling between lung mechanics and gas exchange. We reviewed two previously

published models, which we will use in this thesis, labelled as the 6 D model (see

Section 1.3) and the 5D model (see Section 1.4). We present in Chapter 2 other

models we will use in this thesis that have not yet been published. These are

simpli�cations of the 5 D model and a slight modi�cation of the 6 D model. The

use of more detailed lung models requires a new de�nition of the optimization

problem, which we present in Chapter 3. We also show in Chapter 3 solutions of

the optimization problem when the driving force is a given function. Following

previous studies (see Section 1.2), we solve the problem for a sinusoidal driving

force. We go further by comparing solutions for other driving functions. The opti-

mization problem is more dif�cult when the driving force is not given. In Section

4.1, we reviewed methods for solving similar optimization problems using ideas

from optimal control theory. Our problem has additional dif�culties as the system

of differential equations contains piecewise nonlinear equations with a few of the

parameters (tidal volume, and the durations of inhalation and exhalation) that are

unknown. This requires the development of new methodologies for solving the

optimization problem, which we present in Chapter 4. We also show in Chapter

4 an analytical solution of the optimization problem for a 2D piecewise linear
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model and a numerical algorithm we developed and used to solve the optimization

problem when the objective function is the work of breathing. The methodology

developed in Chapter 4 is used in Chapter 5 to solve the optimization problem for

other objective functions.





Chapter 2

Lung Models

The respiratory system is a highly complex control system and it is very dif�cult

to de�ne or explain its behavior without the aid of some form of a mathematical

model. In this thesis, we use several models that represent the respiratory system at

various degrees of complexity. Some of these models have been published before

and have already been described in detail (see Sections 1.3 and 1.4). In this chapter,

we discuss additional modi�cations of the 6 D model. First we show how we couple

the 6D model to a neural signal. We then discuss a reduction of the 5 D model to

3D and 2D models. A summary of all the models we use in this thesis is given in

Fig. 2.3.

2.1 Coupling a Neural Signal with the 6D Model

To represent the pleural pressure more accurately, we couple the the 6 D model (see

Section 1.3) with a representation of a neural signal. Fig. 2.1 shows a schematic

description of the coupled model. In this model the brainstem transmits an electric

signal to generate contraction of the respiratory muscles. We assume that at the

muscle level, the force generator is in the waveform shown in Fig. 2.1 and depicted

by Rp (t ) (this mimics a "ramp signal"). The ramp signal enables us to generate a

more realistic pleural pressure with inspiration time different from expiration time.

The movement of the muscles xm is modelled by [7]:

dxm

dt
Æ ¡k1xm Å k2Rp (t ) (2.1)
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Fig. 2.1: Coupling a neural signal with the 6 D model. Rp is a representation of
ramp signal from the brainstem. All other symbols have been described in Fig. 1.1.

and the pleural pressure, PL is taken as [7]:

PL ÆPm ¡ PL0 ¡ kp xm (2.2)

where Pm and PL0 represent the pressure at the mouth and the pressure difference

that normally exists between the pleural cavity and the atmospheric pressure re-

spectively. k1 represents the recoil rate constant of muscles whereas k2 and kp are

conversion constants. The other equations of the 6 D model are unchanged and

are given in Section 1.3 (see Eq. 1.7 to 1.12).

Under normal conditions, the brainstem sends a signal to the breathing mus-

cle during inhalation only. We assume that the ramp signal starts with amplitude

kn and increases linearly as shown in Fig. 2.2. The parameter kn is also a control

parameter that changes the amplitude of the pleural pressure [ 7]. We also assume

that the rate of increase of the ramp signal during inhalation, ®, is constant and is

independent of other parameters.
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Fig. 2.2: The ramp signal, Rp . Ti and Te are the durations of inhalation and exhala-
tion respectively

The ramp signal Rp (t ) is:

Rp Æ

(
kn Å ®t 0 · t · Ti

0 Ti Ç t · T
(2.3)

By solving Eq. (2.1), the muscle movement becomes:

xm Æ

(
(xm0 ¡ A)e¡ k1t Å AÅ Bt 0 · t · Ti
¡
(xm0 ¡ A)e¡ k1Ti Å AÅ BTi

¢
e¡ k1(t ¡ Ti ) Ti Ç t · T

(2.4)

where, xm0 Æ
¡
¡ Ae¡ k1Ti ÅAÅBTi

¢
e¡ k1(T ¡ Ti )

1¡ e¡ k1Ti
, B Æk2®

k1
and A Æk2kn ¡ B

k1
. T and Ti represent

the breathing period and the duration of inhalation respectively. The plueral

pressure can then be written as:

PL ÆPm ¡ PL0 ¡ kp

8
>><

>>:

(xm0 ¡ A)e¡ k1t Å AÅ Bt 0 · t · Ti

¡
(xm0 ¡ A)e¡ k1Ti Å AÅ BTi

¢
e¡ k1(t ¡ Ti ) Ti Ç t · T

(2.5)
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2.2 Reduction of the 5D Model

The aim of model reduction is to replace a high dimensional model with a simpler

model that contains the essence of the original behavior under study. Therefore by

solving a simpler model one can still observe the behavior of the original model.

In this section, we discuss the reduction of the 5 D model to 3 D and 2D models.

2.2.1 3D Models

By using Eq. (1.13) and Eq. (1.7), we get:

dVA

dt
Æ ¡

E

R
VA Å

1

R

³
Pm ¡ PL

´
(2.6)

Following [ 6], Assume that the rate of change of the alveolar volume represents the

air�ow
¡
q Æ �VA

¢
and the respiratory exchange ratio is one, that is Do

¡
po ¡ pao

¢
Æ

¡ Dc
¡
pc ¡ pac

¢
. This assumption decouples the components of CO2 and O2 in the

model, therefore, Eq. (1.21) and (1.22) become

d f c

dt
Æ

1

VA

·
Dc

¡
p̄c ¡ pac

¢
Å

µ
VT ¡ VD

VT

¶
¡
fcm ¡ fc

¢
�VAi

¸
(2.7)

and

d f o

dt
Æ

1

VA

·
Do

¡
p̄o ¡ pao

¢
Å

µ
VT ¡ VD

VT

¶
¡
fom ¡ fo

¢
�VAi

¸
(2.8)

where, �VAi Æ

(
�VA(t ) ; �VA(t ) È 0

0 ; �VA(t ) · 0

As we have pac Æfc(PA ¡ pw ) Æfc(EVA Å PL ¡ pw ), pao Æfo(EVA Å PL ¡ pw ) and

fcm Æ0, we get:

d f c

dt
Æ ¡Dc fc

·
E Å

(PL ¡ pw )

VA

¸
Å Dc

p̄c

VA
¡

fc

VA

µ
VT ¡ VD

VT

¶
�VAi (2.9)

and

d f o

dt
Æ ¡Do fo

·
E Å

(PL ¡ pw )

VA

¸
Å Do

p̄o

VA
Å

¡
fom ¡ fo

¢

VA

µ
VT ¡ VD

VT

¶
�VAi (2.10)
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Eq. (2.6), (2.9) and (1.19) represent the 3D model that explains the variation in

the level of CO2 in the lungs and blood during gas exchange, whereas Eq. (2.6),

(2.10) and (1.20) represent the 3D O2 model. These models are similar to a model

described in [ 6]. The difference is that here we assume that the air�ow is equal

to the rate of change of the alveolar volume ( q Æ �VA). Another difference is that

Eq. (2.6) describes the rate of change of the alveolar volume rather than the rate of

change of the alveolar pressure as is done in [6].

2.2.2 2D Models

Let us assume that the blood �ow in the lungs is so fast that there are no changes in

the level of partial pressures of CO2 and O2 in the blood during gas exchange. This

assumption further reduces the dimension of the models. Let ¯̄pc and ¯̄po represent

the constant value of the partial pressure of CO2 and O2 respectively. This gives:

d f c

dt
Æ ¡Dc fc

·
E Å

(PL ¡ pw )

VA

¸
Å Dc

¯̄pc

VA
¡

fc

VA

µ
VT ¡ VD

VT

¶
�VAi (2.11)

and

d f o

dt
Æ ¡Do fo

·
E Å

(PL ¡ pw )

VA

¸
Å Do

¯̄po

VA
Å

¡
fom ¡ fo

¢

VA

µ
VT ¡ VD

VT

¶
�VAi (2.12)

where, �VAi Æ

(
�VA(t ) ; �VA(t ) È 0

0 ; �VA(t ) · 0

Eq. (2.6) and (2.11) form the 2 D non-linear model , which represents the vari-

ation in the level of CO2 in the lungs during gas exchange. Similarly, Eq. (2.6) and

(2.12) represent the variation in the level of O2.

We now assume that the oscillations in
(PL ¡ pw )

VA
,

p̄c

VA
,

fc

VA
,

p̄o

VA
and

( fom ¡ fo)

VA
are relatively small compared to their average values. By taking these ratios as

constant we eliminate the non-linearity from the 2 D models. Let
(PL ¡ pw )

VA
ÆK1,

p̄c

VA
ÆK2, ¡

fc

VA
ÆK3,

p̄o

VA
ÆK4 and

( fom ¡ fo)

VA
ÆK5, we get:
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d f c

dt
Æ ¡Dc fc (E Å K1) Å DcK2 Å K3

µ
VT ¡ VD

VT

¶
�VAi (2.13)

and

d f o

dt
Æ ¡Do fo (E Å K1) Å DoK4 Å K5

µ
VT ¡ VD

VT

¶
�VAi (2.14)

Eq. (2.6) and (2.13) (or (2.14)) represent the 2 D linear model of gas exchange

for CO2 (or O2) in the lungs (here we assume that VT is constant). By using the

transformations Yc ÆDc fc (E Å K1) ¡ DcK2 and Yo ÆDo fo (E Å K1) ¡ DoK4, we can

rewrite the 2 D linear model in the form:

dYc

dt
Æ ¡Dc (E Å K1)Yc Å Dc (E Å K1)K3

µ
VT ¡ Vd

VT

¶
�VAi (2.15)

and

dYo

dt
Æ ¡Do (E Å K1)Yo Å Do (E Å K1)K5

µ
VT ¡ Vd

VT

¶
�VAi (2.16)

Now let F Æ
Pm ¡ PL

R
, ® Æ

E

R
, ¯ ÆDc (E Å K1) and ° ÆDc (E Å K1)K3, therefore we

have:

�VA (t ) Æ¡ ®VA (t ) Å F (t ) (2.17)

�Yc (t ) Æ¡ ¯ Yc (t ) Å

(
°

³
VT ¡ VD

VT

´
�VA(t ) ; �VA(t ) È 0

0 ; �VA(t ) · 0
(2.18)

If we assume that T is the period of F(t ), that is F(t Å T ) ÆF(t ) for all T and Ti 2

(0,T ) such that VA is strictly increasing in the interval (0 ,Ti ) and strictly decreasing

in the interval ( Ti ,T ) then equation (2.18) can be expressed as:

�Yc (t ) Æ¡ ¯ Yc (t ) Å

(
°

³
VT ¡ VD

VT

´
�VA(t ) ; 0 Ç t · Ti

0 ; Ti Ç t · T
(2.19)

and we add two more boundary values for VA(t ): VA(Ti ) ÆVT Å B and VA(T ) ÆB,

where B represents the volume at the end of expiration. When we substitute actual

values, we get ® and ¯ È 0 and ° Ç 0.
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Fig. 2.3: A summary of the models used in this thesis.

2.3 Checking the Assumptions We Made

In sectiom 2.3, we have reduced the 5 D model to the 3 D and 2D models by using

some assumptions. In this section, we discuss the effect of those assumptions on

the variables. For this, we consider the pleural pressure as a sinusoidal [5]:

PL ÆPm ¡ R!
VT

2
sin (! t ) ¡ E

µ
B ¡

VT

2

¶
cos(! t ) (2.20)

Now we solve the 5 D model by using the sinusoidal pleural pressure de�ned above.

We computed
PL ¡ pw

VA
,

fom ¡ fo

VA
,

p̄o

VA
,

fc

VA
and

p̄c

VA
. Fig. 2.4 shows the variation in

these ratios over time for the 5 D model, we have observed that the variations in

these ratios are within 5% of their average values.

For the 2D model, we consider these ratios as constants and take their average

values. Fig. 2.5 shows a comparison of the 5 D and the 2D models. It shows that

the average values of fc for the 5 D and 2D models are close to each other for the

same tidal volume ( VT ) and breathing frequency ( f ).
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Fig. 2.4: Variations in ratios over time for the 5 D model using a sinusoidal PL , when
VT Æ0.4 l and f Æ12

60 s¡ 1.

Fig. 2.5: Comparison of the solution of VA and fc for the 5 D and 2D models for a
sinusoidal PL , when VT Æ0.4 l and f Æ12

60 s¡ 1.



Chapter 3

Optimization Problem

Breathing frequency and amplitude are regulated so that gases levels in arterial

blood are maintained at physiological levels. It is therefore natural to raise the

question under what criteria the system selects a particular combination. In this

chapter, we explore the hypothesis that the selected combination of frequency and

amplitude of breathing is an optimal solution. First, we de�ne the optimization

problem in general and when the shape of the driving force for breathing is given.

We then solve the optimization problem with the prede�ned driving force for the

6D and 2D models.

3.1 General Formulation of the Optimization Problem

The aim of this study is to �nd the optimal combination of breathing frequency

( f ) and amplitude ( VT ) that minimizes some cost function (CF), with certain

constraints.

min
f ,VT

CF (3.1)

subject to:

(i) The model equations are satis�ed.

(ii) The system is at steady state. For our purpose this means periodic with period

T .

(iii) The average value of one or two variables at steady state are constants.
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In the 2 D linear model, constraint ( i i i ) refers to the average value of Yc (or Yo) over

one period, which is maintained at a constant given value, Yav ,

Yav Æ
1

T

Z T

0
Yc(t ) d t (3.2)

The variable Yc provides a measure of CO2 concentration in the lungs (recall that

Yc ÆDc(E Å K3) fc ¡ DcK1, where, fc is the concentration of CO2 in the lungs). Sim-

ilarly, Yo provides a measure of O2 concentration in the lungs. In the 6 D model,

constraint ( i i i ) refers to the average values of partial pressures of O2 and CO2 in

arterial blood which are maintained constant at steady state. This re�ects the

observation that the breathing pattern tightly regulates the blood levels of O2 and

and in particular the levels of CO2.

Solving the optimization problem using the 6 D model is too dif�cult, so we ad-

dress it instead in two steps. First, we compute the combinations of frequency and

amplitude of breathing that maintain speci�c level of gases in the blood. Then, we

substitute the calculated values into the given cost function and �nd its minimum.

Step 1: We compute the combinations of breathing frequency and amplitude that

minimize a new cost function: Â1

h
S(p̄oe)¡ S(p?

o )
S(p̄?

o ))

i 2
ÅÂ2

h
pce¡ p?

c )
p?

c )

i 2
, where p̄oe

µ
1

t

Rt
0 poed¿

¶

and p̄ce

µ
1

t

Rt
0 pced¿

¶
are the averages of poe and pce respectively over a long time,

p?
o and p?

c represent the �xed level of partial pressure of oxygen and carbon diox-

ide respectively which we try to maintain and S(p̄oe) represents the saturation

function of hemoglobin at p̄oe. It is observed that the ventilation of breathing is

more sensitive towards pce than to poe, that is why we have used the saturation

function of hemoglobin in our cost function instead of partial pressure of oxygen

directly. The constants Â1 and Â2 represent the weights for maintaining the level of

O2 and CO2 in the arterial blood. In order to maintain the speci�c level of poe only,

we need to substitute Â1 Æ1, Â2 Æ0, and Â1 Æ0, Â2 Æ1 for maintaining the level of

pce only.

We minimize this new cost function subject to the following constraints:

(a) The system of differential equations (1.7 – 1.12) is satis�ed.

(b) The system is at steady state with period T .
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(c) poe and pce have constant average values at steady state, p̄oe Æ1
T

RT
0 poedt and

p̄ce Æ1
T

RT
0 pcedt .

Step 2: We solve Expression (3.1) using the speci�c combinations of frequency

and amplitude we found in Step 1 and compute the optimal combination among

them that minimizes the mechanical cost of breathing. So,

min
f ,VT

CF (3.3)

Subject to the combinations of breathing frequency and amplitude from Step 1.

Our study is in two parts. In this chapter, we solve the optimization problem

as de�ned in expression 3.1 directly by providing the shape of the driving force

(PL(t ) for the 6 D model and F(t ) for the 2 D model) following Steps 1 and 2. In

Chapter 4, we �nd the optimal trajectory of the driving force by using ideas from

optimal control theory.

3.2 Direct Calculation Using the 6D Model

In this section we consider two different representations of the pleural pressure: a

sinusoidal function and a function that mimics the result of neural excitation.

3.2.1 Sinusoidal Pleural Pressure

The breathing of mammals is periodic in nature, hence, we consider the pleural

pressure as a sinusoidal function:

PL ÆPm ¡ PL0 ¡
A

2

£
1¡ cos(! t Å Á)

¤
(3.4)

where Pm is the mouth pressure, PL0 is the pressure difference that generally

exists between the mouth and the pleural cavity, A is the amplitude of the pleural

pressure and Á is a phase shift. After substituting PL into Eq. (1.7) and solving the

differential equation at steady state, we get:

PA(t ) ÆPm Å
AR!

2(E2 Å R2! 2)

£
R! cos(! t Å Á) ¡ E sin(! t Å Á)

¤
(3.5)
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From Eq. (1.13), the alveolar volume VA is:

VA(t ) Æ
AÅ 2P0

2E
¡

A

2(E2 Å R2! 2)

£
E cos(! t Å Á) ¡ R! sin(! t Å Á)

¤
(3.6)

Now, we can �nd a phase shift Á such that inhalation starts at t Æ0 regardless of

other parameters. By using dVA
dt

¯
¯
¯
t Æ0

Æ0 and d 2VA
dt 2

¯
¯
¯
t Æ0

È 0, we get Á Ætan ¡ 1
¡ R!

E

¢
.

Inhalation takes place from t Æ0 to t Æ ¼
! , therefore, the tidal volume can be

calculated as:

VT ÆVA

³ ¼

!

´
¡ VA

¡
0
¢

Æ
A

p
E2 Å R2! 2

(3.7)

this implies,

A ÆVT

p
E2 Å R2! 2 (3.8)

As ! Æ2¼f , the pleural pressure in terms of f and VT can be written as:

PL(t ) ÆPm ¡ P0 ¡
1

2
VT

q
E2 Å 4¼2 f 2R2

h
1¡ cos(2¼f t Å Á)

i
(3.9)

and

Á Ætan ¡ 1
µ
2¼f R

E

¶
(3.10)

Fig. 3.1: Numerical simulation of the 6 D model showing that breathing at the
same frequency with different amplitudes leads to different blood partial pressures.
(a) Arterial partial pressure of oxygen at the end of each heartbeat. (b) Arterial
partial pressure of carbon dioxide at the end of each heartbeat. In both �gures,¡
f Æ12

60s¡ 1, TL Æ60
72s

¢
. See Table 2, for all other values of parameters.
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We solved the 6D model with the pleural pressure given in Eq. (3.9) using the

built-in MatLab function ode15s. At the end of every heart period we stored the

values of po and pc as poe and pce respectively, and reinitialized po, pc and z.

These stored values represent the level of po and pc in arterial blood. Fig. 3.1

shows how the levels of partial pressure of O2 and CO2 in arterial blood vary due

to changes in the tidal volume with �xed breathing frequency and heart beat. Now,

we �nd the combinations of breathing amplitude and frequency that maintain

given levels of poe and pce.

Fig. 3.2: The combinations of frequency and tidal volume that maintain the speci�c
level of (a) arterial O2 only, (b) arterial CO2 only.

Fig. 3.2 shows the numerical relationship between the tidal volume and the breath-

ing frequency that maintains the speci�c level of partial pressure of O2 or CO2 in

arterial blood under normal conditions. It shows that in order to maintain the

speci�c level of gases in the blood, if the breathing rate increases the amount of

inhaled air during each breath (tidal volume) has to reduce as expected. Under

normal conditions, the partial pressures of O2 and CO2 in the blood arteries are

about 104 mmHg and 40 mmHg respectively. In other words, we minimize

·µ
S( ¯poe) ¡ S(104)

S(104)

¶2

Å
µ

¯pce ¡ 40

40

¶2¸
(3.11)

As the model is nonlinear, this optimization was done using the iterative numerical

algorithm that is the Nelder-Mead simplex method and the Gauss-Newton method
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Fig. 3.3: Combinations of frequency and tidal volume that minimize 3.11.

to evaluate the optimal value of tidal volume against the given frequency of breath-

ing. For this, the MatLab built-in tool called fminsearch which is an application

of the Nelder-Mead simplex method was used to estimate the tidal volume. Fig.

3.3 shows the numerical relationship between the breathing amplitude and fre-

quency that maintains arterial partial pressures of O2 and CO2 at 104 mmHg and

40 mmHg receptively by minimizing Eq. (3.11). Next, Eq. (3.3) gives the optimal

combination of tidal volume and breathing frequency among these, by minimizing

the mechanical cost CF. We tested different mechanical cost functions under

normal conditions as well as on disease-affected lungs to �nd which of them could

represent physiological observations better.

Work Rate of Breathing

The work rate of breathing is one of the costs functions previously suggested in the

literature (see Section 1.2). The differential expression for work is:

dW Æ¢ Pr s ¢dVA (3.12)

where, Pr s ÆPm ¡ PL is the respiratory pressure required for breathing and ¢ Pr s Æ

Pr s(t ) ¡ Pr s(0) represents the change in the respiratory pressure from the end of
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expiration. The work done by the respiratory muscles during inhalation is:

WI Æ
Z ¼

!

0
¢ Pr s ¢

dVA

dt
d t (3.13)

By substituting (3.6), (3.8) and (3.9) into Eq. (3.13) and calculating the integral, we

get:

WI Æ
V 2

T

8

¡
4cosÁ

¡
E cosÁ Å R! sin Á

¢
Å ¼R!

¢
(3.14)

Using tan Á ÆR!
E (see Eq. (3.10)), we get:

sin Á Æ
R!

p
E2 Å R2! 2

(3.15)

cosÁ Æ
E

p
E2 Å R2! 2

(3.16)

Let ! Æ2¼f and substituting Eq. (3.15) and (3.16) into Eq. (3.14), we get:

WI Æ
1

2
EV2

T Å
1

4
¼2 f RV 2

T (3.17)

Here, the �rst term in the above expression represents elastic work which shows

the work done by the diaphragm and the intercostal muscles and the second term

represents the work done against the resistance of air�ow. The work rate (power,

W RI ) is the work per breath times the frequency of breathing.

W RI Æf ¢WI Æ
1

2
E f VT

2 Å
1

4
¼2R f 2VT

2 (3.18)

The work rate during inhalation can be computed numerically by substituting the

function shown in Fig. 3.3 into Eq. (3.18). Fig. 3.4 shows the relationship between

W RI and the breathing frequency while maintaining the speci�c levels of gases in

the arterial blood. It shows that under normal conditions, the optimal frequency

is about 11.2 breaths per min and the corresponding tidal volume is 0.408 liters

(see Fig. 3.3), these values are within the observed physiological range for normal

conditions at rest.

We tested this mechanical cost function on disease-affected lungs, in which the
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Fig. 3.4: Work rate (W RI ) as a function of breathing frequency for normal condi-
tions. Calculations are done using the 6 D model for a sinusoidal pleural pressure.
See Table 2, for all values of the parameters.

patient loses the elasticity of the lungs and has dif�culty to breathe due to high

resistance to air�ow in and out of the lungs. The diffusion capacities of O2 and

CO2 reduce due to a decrease in the surface area between the alveoli and the blood

capillaries. This mimics a mild chronic obstructive pulmonary disease ( COPD)

condition.

Fig. 3.5: Comparison of work rate (W RI ) as a function of breathing frequency for
normal and diseased conditions. Calculations are done using the 6 D model for a
sinusoidal pleural pressure. See Table 2, for all values of the parameters.

It is observed that a patient with affected lungs breathe with a higher rate com-

pared to normal [ 51]. However, Fig. 3.5 shows that the optimal frequency for
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disease-affected lungs is lower than for the normal condition. Hence, this shows a

movement of the optimal frequency in the wrong direction.

Total Work of Breathing

The total work of breathing is the sum of the work done by the respiratory muscles

during inhalation and exhalation. If we assume that the same amount of work

against the resistance to air �ow must be overcome during expiration as during

inspiration, and that the elastic energy stored during inspiration is available to

aid expiration, then the inspiration work can be calculated by Eq. (3.17) and the

expiatory work by:

WE Æ ¡
1

2
EVT

2 Å
1

4
¼2R f VT

2 (3.19)

The �rst term in the above expression represents the release of energy which was

stored due to the elasticity of the lungs. The total work of respiration becomes

Total Work Æ
1

2
¼2R f VT

2 (3.20)

Fig. 3.6: Total work as a function of breathing frequency for (a) normal and (b)
diseased conditions. Calculations are done using the 6 D model with a sinusoidal
pleural pressure. See Table 2, for all values of the parameters.

Fig 3.6 shows the total work as a function of breathing frequency. Panel (a) shows

the total work under normal conditions and Panel (b) shows the total work in

diseased lungs. The optimal frequency in Fig. 3.6 (b) is about the same as the
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optimal value under normal conditions at rest. Hence, minimizing the WOB gives

a movement of the optimal frequency in the right direction. This cost function

might be worth considering with a different pleural pressure.

Weighted sum of the average square of volume acceleration and work

There is an hypothesis that the ef�ciency of muscle contraction is expected to

reduce with high accelerations as it does with high shortening velocities [ 13],

although there is no experimental evidence. The two-level hierarchical model [ 31]

used the following performance functional to be minimized during inspiration:

JI Æ
Z ¼/ !

0

£
V̈ 2

A Å ³ 1¢ Pr s �VA
¤
dt (3.21)

This criterion may be interpreted as a weighted sum of the average square of vol-

ume acceleration and the mechanical work performed by the respiratory muscles

during inhalation. The coef�cient ³ 1 is the weighting parameter and we used the

value calculated by [ 31] (³ 1=2.5 l s¡ 3 mmHg ¡ 1). By substituting for ¢ Pr s and VA,

we get:

JI Æ¼4 f 3V 2
T Å

1

2
³ 1EVT

2 Å
1

4
¼2³ 1 f RVT

2 (3.22)

Fig. 3.7: Weighted cost function and its components as a function of breathing
frequency under normal conditions. Calculations are done using the 6 D model
with a sinusoidal pleural pressure. See Table 2, for all values of the parameters.
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In Fig. 3.7, the blue and red lines represent the partition of the cost function due

to square volumetric acceleration and mechanical work respectively, and black

represents the total cost function. It also shows that at a low breathing rate, the

cost function is affected mostly by work done by the respiratory muscles because

the lung is almost maximally in�ated due to high tidal volume. However, with

the higher breathing frequency and lower tidal volume, most of the cost function

is due to volumetric acceleration, whereas the work done is reduced due to the

small tidal volume. The weighted cost function of breathing has its lowest value

within the physiological range for normal conditions at rest. However, when we

test this weighted cost function on disease effected lungs, the optimal frequency is

slightly lower than the one under normal conditions which shows a movement of

the optimal breathing frequency in the wrong direction as shown in Fig 3.8.

Fig. 3.8: Comparison of the weighted cost function (Eq. (3.22)) as a function of
breathing frequency under normal and diseased conditions. Calculations are done
using the 6D model with a sinusoidal pleural pressure. See Table 2, for all values of
the parameters.

3.2.2 Exponential Pleural Pressure

In the previous section we took the pleural pressure as sinusoidal with equal in-

spiration and expiration durations. In mammals, under normal conditions, the

durations of inhalation and exhalation are not the same and expiration is passive.
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Therefore, the sinusoidal function does not represent the breathing pattern ac-

curately. To address this we used an exponential pleural pressure calculated by

coupling a representation of a neural signal to the lungs (see Section 2.1) which

allows for variations in the durations of inspiration and exhalation.

We consider PL as de�ned in Eq. (2.5). We �x the duration of inspiration to

1.7, and let the variation in the breathing period be entirely due to the change in

the duration of exhalation 1. First, we solve Eq. (1.7) and (1.13) and �nd the tidal

volume at steady state for a particular breathing frequency and kn . Then we solve

the full system of differential equations (Eq. 1.7 - 1.12) by using the combination

of breathing frequency and kn and their corresponding tidal volume found in the

�rst step.

Fig. 3.9: Combinations of kn and breathing frequency
¡
f

¢
that minimize Eq. (3.11).

Calculations are done using the 6 D model with the exponential pleural pressure
(see Eq. (2.5)) for normal conditions. See Table 2, for all values of the parameters.

For a particular breathing frequency, the variation in kn leads to different arterial

partial pressures of oxygen and carbon dioxide. If the arterial partial pressure of O2

and CO2 are maintained at 104 mmHg and 40 mmHg respectively (see Eq. (3.11)),

we can calculate the breathing frequency as a function of kn (Fig. 3.9) and the tidal

volume as a function of breathing frequency (Fig. 3.10).

We then �nd the optimal combination of breathing frequency and tidal volume

among all the potential combinations shown in Fig. (3.10) for the cost functions

1If Ti is not �xed and instead the ratio between Ti and Te is �xed, there is no minimum.
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Fig. 3.10: Combinations of VT and f that minimize Eq. (3.11). Calculations are
done using the 6 D model with the exponential pleural pressure (see Eq. (2.5)) for
normal conditions. See Table 2, for all values of the parameters.

discussed in Section 3.2.1. Unlike the case of a sinusoidal pleural pressure, for the

exponential pleural pressure, there is no explicit analytical expression for those

cost functions. So, we solved numerically the complete system of differential equa-

tions (Eq. 1.7 - 1.12) and computed �VA at steady state. This enabled us to �nd

the volumetric acceleration by numerical differentiation. We then computed the

different cost functions by numerical integration; for this we used MatLab built-in

function tr apz .

Fig. 3.11: Comparison of �WI as a function of breathing frequency under normal
and diseased conditions. Calculations are done using the 6 D model with an expo-
nential pleural pressure. See Table 2, for all values of the parameters.
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Fig. 3.12: Total work as a function of breathing frequency for (a) normal and (b)
diseased conditions. Calculations are done using the 6 D model with an exponential
pleural pressure. See Table 2, for all values of the parameters.

Fig. 3.11, 3.12, and 3.13 show the work rate during inhalation, the total work and

weighted cost function respectively, all as functions of the breathing frequency.

They show that the optimal breathing frequencies associated with work rate and

the weighted cost function are within the physiological range (12-18 breaths per

minute) while the optimal frequency associated with the total work is slightly

higher under normal conditions. However, the optimal breathing frequencies

associated with these cost functions are lower than expected for diseased lungs.

Fig. 3.13: Comparison of the weighted cost function as a function of breathing
frequency under normal and diseased conditions. Calculations are done using the
6D model with an exponential pleural pressure. See Table 2, for all values of the
parameters.
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3.3 Calculation Using the 2D Model

In this section, we consider F(t ) as a prede�ned function. We solve the 2 D lin-

ear model analytically, and also �nd the optimal VT and T that minimizes the

given cost function, while maintaining a constant average value of Yc. As we

have Yc ÆDc fc (E Å K1) ¡ DcK2, where Dc, E, K1 and K2 are constants (see Section

2.2.2),maintaining a constant average value of Yc is equivalent to maintaining a

constant average value of concentration of CO2 in the lungs, fc.

3.3.1 A Sinusoidal F(t )

Let

F (t ) Æ
VT

2
(! sin ! t ¡ ®cos! t ) Å

®VT

2
Å ®B (3.23)

where, B represents the volume of the lungs at its minimum under the action of

F(t ). From equation (2.17), the alveolar volume is:

VA(t ) ÆB Å
VT

2

¡
1¡ cos! t

¢
(3.24)

It is clear from equation (3.24) that VA(t ) is an increasing function in the interval

t 2
¡
0, ¼

!

¢
and a deceasing function in the interval t 2

¡ ¼
! , 2¼

!

¢
with a period T Æ2¼

! .

By solving equation (2.19) we get an expression of Yc:

Yc(t ) Æ

(
C1 e¡ ¯ t Å ° (VT ¡ VD )!

2(¯ 2Å! 2)
£
¯ sin ! t ¡ ! cos! t

¤
; 0 Ç t · ¼

!

C2 e¡ ¯ t ; ¼
! Ç t · 2¼

!

(3.25)

where, C1 and C2 are constants. By imposing the conditions of continuity at t Æ¼
!

and periodicity of Yc, Yc(0) ÆYc
¡ 2¼

!

¢
, we get C1 and C2 as:

C1 Æ
° (VT ¡ VD ) ! 2e

¼¯
!

2
¡
! 2 Å ¯ 2

¢³
e

¼¯
! ¡ 1

´ and C2 Æ
° (VT ¡ VD ) ! 2e

2¼¯
!

2
¡
! 2 Å ¯ 2

¢³
e

¼¯
! ¡ 1

´ .

Let Yav be the average value of Yc that we have to maintain during each period at

steady state.

Yav Æ
!

2¼

Z 2¼
!

0
Yc(t ) d t (3.26)
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By substituting (3.25) into (3.26), the period T can be expressed as:

T Æ
° (VT ¡ VD )

¯ Yav
(3.27)

This gives a linear relationship between T and VT (with VT È VD ) that maintains

the speci�ed average value Yav . This relationship shows that the alveolar minute

ventilation
³

VT ¡ VD
T

´
is constant, which is one of the assumptions used by Otis et

al. [53]. Fig. 3.14 shows the solution for the alveolar volume VA and variable Yc for

two different combinations of VT and T that satisfy Eq. (3.27).

Fig. 3.14: Solutions of VA(t ), Yc(t ) and fc(t ) for two different values of VT . Both
solutions maintain a speci�c value of Yav Æ ¡0.0013, which is equivalent to fc Æ
6.1%. Calculations are done using the 2 D model with a sinusoidal F(t ). See Table
2, for all values of the parameters.
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The total work for the given sinusoidal function is:

W ÆR
Z 2¼

!

0
F �VAdt Æ

1

4
R¼! VT

2 Æ
¼2RVT

2

2T
(3.28)

Among all combinations of T and VT that satisfy Eq. (3.27), we need to �nd the

combination that minimizes the cost function (3.28). By substituting (3.27) into

(3.28), the cost function can be represented in terms of VT only.

W Æ
¼2¯ R YavVT

2

2° (VT ¡ VD )
(3.29)

Fig. 3.15: Total work (W ) as a function of VT for the 2 D model (see Eq. (3.29)). See
Table 2, for all values of the parameters.

For the optimal VT , we set @W
@VT

=0 which implies that the optimal VT is:

V ¤
T Æ2VD (3.30)

and the corresponding optimal period T is:

T ¤ Æ
° VD

¯ Yav
(3.31)

As can be seen, the optimal amplitude, only depends on the dead space, VD , while

the optimal period, T ¤ , depends on the dead space (VD ), the average value of Yc



42 Optimization Problem

and the constant °
¯ . Fig. 3.16 shows a comparison of the total work done during

each breath as a function of the tidal volume for the 6 D model and the 2 D linear

model. The concentration of CO2, fc , was maintained at 6 .1% and the driving

forces for both models are sinusoidal functions (see Eq. 3.4 and 3.23). As can be

seen both models have a minimum at VT Æ0.3 l which is VT Æ2VD .

Fig. 3.16: Comparison of total work as a function of VT for the 6 D model and 2 D
linear model. For both models, the driving forces are sinusoidal and the average
values of CO2 concentrations are maintained at 6 .1%. See Table 2, for all values of
the parameters

3.3.2 A Linear F(t )

In the previous section, we considered F(t ) as a sinusoidal function, in which the

duration of inhalation is half of the breathing period. In this section, we consider

F(t ) as a simple linear function in which both the breathing period and the duration

of inhalation are free. The motivation for choosing this function will become clear

in Section 4.2. Let

F(t ) Æ

(
®B Å VT

Ti
(1Å ®t ) ; 0 Ç t · Ti

®B Å VT
Ti ¡ T (1Å ®t ¡ ®T ) ; Ti Ç t · T

(3.32)
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Substituting Eq. (3.32) into equation (2.17) and solving for the alveolar volume we

get:

VA(t ) Æ

(
B Å VT

Ti
t ; 0 Ç t · Ti

B Å VT
T ¡ Ti

(T ¡ t ) ; Ti Ç t · T
(3.33)

The function VA(t ) is increasing in the interval 0 Ç t · Ti and decreasing in the

interval Ti Ç t · T . From equation (2.19) we get:

Yc(t ) Æ

(
C3 e¡ ¯ t Å ° (VT ¡ D)

¯ Ti
; 0 Ç t · Ti

C4 e¡ ¯ t ; Ti Ç t · T
(3.34)

where, C3 and C4 are constants. By imposing the conditions of continuity at t ÆTi

and periodicity of Y , Y (0) ÆY (T ), we get C3 and C4 as:

C3 Æ
° (VT ¡ VD )

¡
e¯ T ¡ e¯ Ti

¢

¯ Ti
¡
1¡ e¯ T

¢ and C4 Æ
° (VT ¡ VD )e¯ T

¡
1¡ e¯ Ti

¢

¯ Ti
¡
1¡ e¯ T

¢

AsYav is the average value of Yc(t ) that we maintain during each period at steady

state:

Yav Æ
1

T

Z T

0
Yc(t ) d t (3.35)

By substituting Eq. (3.34) into Eq. (3.35) and solving for the period T we get:

T Æ
° (VT ¡ VD )

¯ Yav
(3.36)

The relationship between T and VT in this case is the same as we got when F(t )

was sinusoidal (see Eq. (3.27)).

The total work is:

W ÆR
Z T

0
F �VAdt Æ

RTVT
2

T Ti ¡ T 2
i

(3.37)

By substituting T from Eq. (3.36) into Eq. (3.37), we get:

W Æ
° RVT

2(VT ¡ D)

Ti (° (VT ¡ VD ) ¡ ¯ Ti Yav )
(3.38)

By differentiating W with respect to VT and Ti separately and equating the deriva-

tives to zero we get the optimal amplitude V ¤
T Æ2VD and the duration of inhalation

T ¤
i Æ ° VD

2¯ Yav
. Substituting V ¤

T into Eq. (3.36) gives the optimal duration T ¤ Æ ° VD
¯ Yav

.
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The optimal amplitude V ¤
T only depends on the dead space and the optimal dura-

tion of inhalation T ¤
i is half of the period of breathing, which are the same results

as when F(t ) was sinusoidal.

Fig. 3.17: Trajectories of F(t ) and solutions of VA(t ) and Yc(t ) when F(t ) is sinu-
soidal and linear. Both solutions maintain a speci�c value of Yav Æ ¡0.0013, which
is equivalent to fc Æ6.1%. Calculations are done using the 2 D model. See Table 2,
for all values of the parameters.

The solutions obtained when F(t ) was linear and sinusoidal, are shown in Fig.

3.17 and the associated cost functions are plotted in Fig. 3.18. Notably, the phase

difference between F(t ) and VA(t ) that is seen in the sinusoidal case does not exist

in the linear case. However, the linear function is discontinuous at t Æ0, t ÆTi and

t ÆT . Fig. 3.18 also shows that for every VT , the linear function gives a lower total
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work per breath than the sinusoidal function.

Fig. 3.18: Comparison of the total work as a function of VT when F(t ) is sinusoidal
and linear. Both solutions maintain a speci�c value of Yav Æ ¡0.0013, which is
equivalent to fc Æ6.1%. Calculations are done using the 2 D model. See Table 2, for
all values of the parameters.

3.4 Effect of Breathing Pattern on Gas Exchange for

the 2D Model

Eq. (3.27) and (3.36) show that the relationship between the tidal volume and the

breathing period is the same for two different breathing patterns for our 2 D linear

model. In this section, we consider the alveolar volume ( VA) as a general Fourier

series and aim to �nd the relationship between T and VT that maintains a speci�c

average value of Yc, yav , while satisfying the continuity and steady state conditions

for VA and Yc.

Let us consider VA(t ) as a Fourier series:

VA(t ) Æa0 Å
1X

nÆ1
[an cos(n ! t ) Å bn sin(n ! t )] (3.39)
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Here we assume that the Fourier series converges and can be differentiated term

by term; note that this will be the case for a wide range of functions.

By substituting Eq. (3.39) into (2.19), and solving the differential equation for

Yc, we get:

Yc(t ) Æ

8
>><

>>:

C1e¡ ¯ t Å ° (VT ¡ VD )
VT

P 1
nÆ1

n!
¯ 2Ån2! 2

h¡
n ! an Å ¯ bn

¢
cos(n ! t )

Å
¡
n ! bn ¡ ¯ an

¢
sin (n ! t )

i
0 · t · Ti

C2e¡ ¯ t Ti Ç t · T
(3.40)

where C1 and C2 are constants. By imposing the conditions of continuity at t ÆTi

and periodicity of Yc, Yc(0) ÆYc(T ), we get C1 and C2 as:

C1 Æ
° (VT ¡ VD )

VT
¡
1¡ e¯ T

¢
1X

nÆ1

n !

¯ 2 Å n2 ! 2

h¡
an n ! Å bn ¯

¢³
e¯ T ¡ e¯ Ti cos(n ! Ti )

´

¡
¡
bn n ! ¡ an ¯

¢
e¯ Ti sin (n ! t )

i
(3.41)

and

C2 Æ
° (VT ¡ VD )

VT
¡
1¡ e¡ ¯ T

¢
1X

nÆ1

n !

¯ 2 Å n2 ! 2

h¡
an n ! Å bn ¯

¢³
e¯ Ti cos(n ! Ti ) ¡ 1

´

Å
¡
bn n ! ¡ an ¯

¢
e¯ Ti sin (n ! t )

i
(3.42)

Let Yav be the average value of Yc that is maintained during each period at steady

state.

yav Æ ¡
1

T

Z T

0
Yc(t ) d t (3.43)

By substituting Yc(t ) from Eq. (3.40) into Eq. (3.43) and using (3.41) and (3.42), we

get:

yav Æ
° (VT ¡ VD )

T ¯ VT

1X

nÆ1

h
an (cos(n ! Ti ) ¡ 1) Å bn sin (n ! Ti )

i
(3.44)

From the condition VA(0) ÆB we get:

a0 Å
1X

nÆ1
an ÆB (3.45)
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and from the condition VA(Ti ) ÆB Å VT we get:

a0 Å
1X

nÆ1
[an cos(n ! Ti ) Å bn sin(n ! Ti )] ÆB Å VT (3.46)

Subracting Eq. (3.45) from (3.46) we get:

1X

nÆ1
[an (cos(n ! Ti ) ¡ an ) Å bn sin(n ! Ti )] ÆVT (3.47)

Subtituting Eq. (3.47) into (3.44), and after rearrangement we get:

T Æ
° (VT ¡ VD )

¯ yav
(3.48)

This relationship between the tidal volume and the breathing period is linear and

independent of any Fourier coef�cient. This shows that in the 2D linear model, the

average levels ofCO2 in the lungs are only affected by the tidal volume and the pe-

riod of breathing and are not affected by the shape of the driving force. This result

supports the physiological hypothesis that constant effective minute ventilation,
VT ¡ VD

T
, could represent constant gas exchange in the lungs [66], [53] and [47].





Chapter 4

Optimal Control Problem

In the previous chapter, we de�ned and solved the optimization problem when the

driving force was a given function, and the optimal values of VT and T (or alterna-

tively f ¡ 1) were unknown. In this chapter we develop the necessary conditions for

the solution of the optimal control problem, which enables us to �nd the optimal

driving force with optimal duration of whole breath ( T ) and inhalation ( Ti ) for a

given VT .

4.1 Solution of the Optimal Control Problem

Consider a piecewise system of ordinary differential equations

�x (t ) Æ

8
>><

>>:

g1 (t ,x,u) ; t0 Ç t · Ti

g2 (t ,x,u) ; Ti Ç t · T

(4.1)

where, x(t ) and u(t ) are the state and control variables respectively, such that

x(t ) 2 IRn and u(t ) 2 IR. Let us assume that u is periodic with period T , that is

u(t ) Æu(t Å T ), and that x(t ) has some speci�ed values at t Æt0, Ti and T .

We would like to �nd u(t ) and Ti such that the cost function W Æ
RT

t0
J(t ,x,u)d t is

minimized subject to the following constraints:

i The differential system (4.1) is satis�ed.

ii The system is in steady state. For our purpose this means periodic with period

T , that is, x(t0) Æx(t0 Å T ).
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Following ideas from [ 42], we assume that there exists an optimal solution u¤ (t )

and T ¤
i such that the cost function W is minimized, and that x¤ (t ) is the optimal

solution of the differential equations associated with u¤ (t ) and T ¤
i . Suppose h(t )

is an arbitrary function and ² and ± are small scalar parameters. A non-optimal

u(t ) can then be represented as u(t ,² ) Æu¤ (t ) Å ²h(t ) and the non-optimal value

of Ti can be represented as Ti ÆT ¤
i Å ±. The corresponding solution of the dif-

ferential equations (4.1) is x(t ,² ,±), and ² Æ± Æ0 provides the optimal solution

x(t ,0,0)Æx¤ (t ).

This representation of u(t ,² ,±), x(t ,² ,±) and Ti (±) leads to W being a function

of ² and ±. In addition, we add to the integrand the quantity: ¸ > g(t ,x,u ) ¡ ¸ > �x Æ0

where ¸ (t ) is an unknown vector function in the interval [ t0,T ]. The cost function

is then:

W (² ,±) Æ
Z Ti

t0

£
J(t ,x1,u1) Å ¸ >

1 (t ) g1 (t ,x1,u1) ¡ ¸ >
1 (t ) �x1

¤
dt

Å
Z T

Ti

£
J(t ,x2,u2) Å ¸ >

2 (t ) g2 (t ,x2,u2) ¡ ¸ >
2 (t ) �x2

¤
dt (4.2)

here, x1 and u1 represent the state and control variable in the interval t0 · t · Ti

respectively, whereas x2 and u2 represent these variables in the interval Ti Ç t · T .

We construct new quantities: H1 ÆJÅ ¸ >
1 g1 and H2 ÆJÅ ¸ >

2 g2 and get:

W (² ,±) Æ
Z Ti

t0

£
H1 (t ,x1,u1, ¸ 1) ¡ ¸ >

1 (t ) �x1
¤
dt

Å
Z T

Ti

£
H2 (t ,x2,u2, ¸ 2) ¡ ¸ >

2 (t ) �x2
¤
dt (4.3)

Asu Æu¤ , x Æx¤ and Ti ÆT ¤
i are optimal at ² Æ± Æ0, W (² ,±) is optimal when the

variation in W (² ,±) with respect to ² and ± is zero at ² Æ± Æ0. That is:

dW (² ,±)
¯
¯
¯
²Æ0,±Æ0

Æ0 (4.4)

where:

dW (² ,±) Æ
@W

@²
d² Å

@W

@±
d± (4.5)
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Differentiating Eq. (4.3) with respect to ² , by using Leibniz' integral rule, 1 we get:

@W

@²
Æ

Z Ti

t0

·
@H1

@x1

@x1

@²
Å

@H1

@u1

@u1

@²
¡ ¸ >

1 (t )
@�x1

@²

¸
d t

Å
Z T

Ti

·
@H2

@x2

@x2

@²
Å

@H2

@u2

@u2

@²
¡ ¸ >

2 (t )
@�x2

@²

¸
d t (4.6)

Using integration by parts we have:

@W

@²
Æ¡ ¸ >

1 (Ti )
@x1

@²

¯
¯
¯
¯
t ÆTi

Å ¸ >
1 (t0)

@x1

@²

¯
¯
¯
¯
t Æt0

¡ ¸ >
2 (T )

@x2

@²

¯
¯
¯
¯
t ÆT

Å ¸ >
2 (Ti )

@x2

@²

¯
¯
¯
¯
t ÆTi

Å
Z Ti

t0

·
@H1

@x1

@x1

@²
Å

@H1

@u1

@u1

@²
Å �̧ >

1 (t )
@x1

@²

¸
d t

Å
Z T

Ti

·
@H2

@x2

@x2

@²
Å

@H2

@u2

@u2

@²
Å �̧ >

2 (t )
@x2

@²

¸
d t (4.7)

Now, differentiating eq (4.3) with respect to ±, as Ti ÆT ¤
i Å ±, and using Libnitz'

rule, we get:

@W

@±
ÆH1 (Ti ) ¡ ¸ >

1 (Ti ) �x1 (Ti ) ¡ H2 (Ti ) Å ¸ >
2 (Ti ) �x2 (Ti )

Å
Z Ti

t0

·
@H1

@x1

@x1

@±
Å

@H1

@u1

@u1

@±
¡ ¸ >

1 (t )
@�x1

@±

¸
dt

Å
Z T

Ti

·
@H2

@x2

@x2

@±
Å

@H2

@u2

@u2

@±
¡ ¸ >

2 (t )
@�x2

@±

¸
dt (4.8)

Using integration by parts we have:

@W

@±
ÆH1 (Ti ) ¡ ¸ >

1 (Ti ) �x1 (Ti ) ¡ H2 (Ti ) Å ¸ >
2 (Ti ) �x2 (Ti )

¡ ¸ >
1 (Ti )

@x1

@±

¯
¯
¯
¯
t ÆTi

Å ¸ >
1 (t0)

@x1

@±

¯
¯
¯
¯
t Æt0

¡ ¸ >
2 (T )

@x2

@±

¯
¯
¯
¯
t ÆT

Å ¸ >
2 (Ti )

@x2

@±

¯
¯
¯
¯
t ÆTi

Å
Z Ti

t0

·
@H1

@x1

@x1

@±
Å

@H1

@u

@u

@±
Å �̧ >

1 (t )
@x1

@±

¸
dt

Å
Z T

Ti

·
@H2

@x2

@x2

@±
Å

@H2

@u

@u

@±
Å �̧ >

2 (t )
@x2

@±

¸
dt (4.9)

1Leibniz's rule for differentiation under the integral sign states that:

d

dx

Z v(x)

u(x)
f (x, t )d t Æf (x,v(x))

dv

dx
¡ f (x,u(x))

du

dx
Å

Z v(x)

u(x)

@f (x, t )

@x
dt
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By using Eq. (4.7) and (4.9), Eq. (4.5) can be written as:

dW (² ,±) Æ[H1 (Ti ) ¡ H2 (Ti )] d±

¡ ¸ >
1 (Ti ) [dx1 (Ti ) Å �x1 (Ti )d±]

Å ¸ >
2 (Ti ) [dx2 (Ti ) Å �x2 (Ti )d±]

Å ¸ >
1 (t0) dx1j t Æt0 ¡ ¸ >

2 (T ) dx1j t ÆT

Å
Z Ti

t0

·
@H1

@x1
dx1 Å

@H1

@u
du Å �̧ >

1 (t )dx1

¸
d t

Å
Z T

Ti

·
@H2

@x2
dx2 Å

@H2

@u
du Å �̧ >

2 (t )dx2

¸
d t (4.10)

From Eq. (4.4), the optimal dW (² ,±) is:

dW (² ,±)j²Æ0,±Æ0 Æ
£
H1

¡
T ¤

i

¢
¡ H2

¡
T ¤

i

¢¤
d±

¡ ¸ >
1

¡
T ¤

i

¢£
dx1

¡
T ¤

i

¢
Å �x1

¡
T ¤

i

¢
d±

¤

Å ¸ >
2

¡
T ¤

i

¢£
dx2

¡
T ¤

i

¢
Å �x2

¡
T ¤

i

¢
d±

¤

Å ¸ >
1 (t0) dx1j t Æt0 ¡ ¸ >

2 (T ) dx1j t ÆT

Å
Z T ¤

i

t0

·
@H1

@x1
dx1 Å

@H1

@u
du Å �̧ >

1 (t )dx1

¸
d t

Å
Z T

T ¤
i

·
@H2

@x2
dx2 Å

@H2

@u
du Å �̧ >

2 (t )dx2

¸
d t Æ0 (4.11)

Borrowing ideas from [ 43] and [ 73], we note that the variation in the optimal x¤ (t )

at time T ¤
i is (see Fig. 4.1):

dx(T ¤
i ) Æx(T ¤

i ) ¡ x¤ (T ¤
i ) Æ

@x

@²

¯
¯
¯
¯
t ÆT ¤

i

d² Å
@x

@±

¯
¯
¯
¯
t ÆT ¤

i

d± (4.12)

and the overall variation from the optimal state at T ¤
i is:

dxTi Æx(T ¤
i Å ±) ¡ x¤ (T ¤

i ) (4.13)
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To estimate the variation dxTi we expand the function x(T ¤
i Å ±) around x(T ¤

i ) by

using Taylor approximation and obtain:

dxTi Æx(T ¤
i ) Å �x(T ¤

i )± ¡ x¤ (T ¤
i )

Ædx(T ¤
i ) Å �x(T ¤

i ) ± (4.14)

Fig. 4.1: A graph showing the variation of the variable x from the optimum x¤ at
time T ¤

i .

Therefore, Eq. (4.11) can be written as:

dW (² ,±) Æ
£
H1

¡
T ¤

i

¢
¡ H2

¡
T ¤

i

¢¤
d± ¡ ¸ >

1

¡
T ¤

i

¢
dx1Ti

Å ¸ >
2

¡
T ¤

i

¢
dx2Ti

Å ¸ >
1 (t0)dx1 (t0) ¡ ¸ >

2 (T )dx2 (T )

Å
Z T ¤

i

t0

·
@H1

@x1
dx1 Å

@H1

@u1
du 1 Å �̧ >

1 (t )dx1

¸
d t

Å
Z T

T ¤
i

·
@H2

@x2
dx2 Å

@H2

@u2
du 2 Å �̧ >

2 (t )dx2

¸
d t (4.15)

For Eq. (4.4) to be satis�ed the following conditions are required:

(i )
@H1

@u1
Æ0 (i i ) �̧ >

1 Æ ¡
@H1

@x1

(i i i )
@H2

@u2
Æ0 (i v ) �̧ >

2 Æ ¡
@H2

@x2

(v) ¸ >
1 (t0)dx1 (t0) ¡ ¸ >

2 (T )dx2 (T ) Æ0

(vi ) ¸ >
1

¡
T ¤

i

¢
dx1Ti

¡ ¸ >
2

¡
T ¤

i

¢
dx2Ti

Æ0
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(vi i ) H1
¡
T ¤

i

¢
¡ H2

¡
T ¤

i

¢
Æ0

Conditions (i) and (iii) are used to �nd u1 and u2 as functions of x and ¸ . Conditions

(i i ) and ( i v ) are used to construct additional differential equations for the Lagrange

multiplier functions in the interval 0 Ç t · Ti and Ti Ç t · T respectively. If the state

variable x is �xed at any boundary point( t0, Ti and T ), then dx at this point is zero

and the associated Lagrange multiplier function at that point is free (unknown).

If the state variable is free at any boundary point, then the Lagrange multiplier

function at this point needs to be set to zero. However, if the boundary conditions

are periodic, that is dx1(t0) Ædx2(T ), condition ( v) implies that ¸ 1(t0) Æ¸ 2(T ).

Similarly, if the state variable is continuous and unknown at t ÆTi , then we expect

that dx1Ti
Ædx2Ti

and condition ( vi ) implies that ¸ 1(T ¤
i ) Æ¸ 2(T ¤

i ).

4.2 Calculating an Optimal Driving Force for the 2D

Model

In chapter 3 we solved the optimal problem de�ned in chapter 2 when F(t ) was a

given function, and the optimal values of VT and T were unknown. We now use

the conditions developed in Section (4.1) to solve the optimization problem when

F(t ), Ti and T are unknown for a given VT . We would like to minimize the cost

function:

W Æ
Z T

0
F(t ) �VA(t )d t (4.16)

which is equivalent to minimizing the total work done by the respiratory muscles

during one whole breath (see Eq. (3.28), where R is a constant), subject to the

following constraints:

i The differential equations (Eq. 2.17 and 2.19) are satis�ed.

ii The system of equations is in periodic steady state with period T , that is VA(0) Æ

VA(T ) and Yc(0) ÆYc(T ).

iii The initial value and amplitude of VA(t ) are given as B and VT respectively. That

is, VA(0) ÆB and VA(Ti ) ÆB Å VT , where Ti is the time to reach a maximum VA.

iv The average value of Yc is a given �xed value, yav Æ1
T

RT
0 Yc(t ) d t , where yav is

a constant.
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The constraint (iv) can be replaced by the differential equation

dM

dt
ÆYc (4.17)

with the boundary conditions M (0) Æ0 and M (T ) ÆT yav .

Following the general discussion in Section (4.1), let H1 and H2 be the Hamil-

tonians of the problem over the intervals 0 Ç t · Ti and Ti Ç t · T respectively

such that:

H1 ÆF1 �VA1 Å ¸ 11(t ) �VA1 Å ¸ 12(t ) �Yc1 Å ¸ 13(t ) �z1 (4.18)

H2 ÆF2 �VA2 Å ¸ 21(t ) �VA2 Å ¸ 22(t ) �Yc2 Å ¸ 23(t ) �z2 (4.19)

Here, ¸ i j are unknown adjoint functions of time (sometimes known as Lagrange

multipliers).

For the interval 0 Ç t · Ti we can construct three additional differential equa-

tions for Lagrange multipliers (see condition ( i i ) of section 4.1):

�̧ 11 Æ ¡
@H1

@VA1
Æ®F1 Å ®¸ 11 Å °̂¸ 12 (4.20)

�̧ 12 Æ ¡
@H1

@Yc1
Ǣ¸ 12 ¡ ¸ 13 (4.21)

�̧ 13 Æ ¡
@H1

@M1
Æ0 (4.22)

where °̂ Æ° (VT ¡ VD )
VT

. By using the condition @H1/ @F1 Æ0 (see condition ( i ) of section

4.1), we get:

F1 Æ
1

2

¡
®VA1 ¡ ¸ 11 ¡ °̂¸ 12

¢
(4.23)
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Substituting Eq. (4.23) into the differential equations (2.17), (2.19), (4.17) and

(4.20)-(4.22) yields the following system of differential equations:

�A1 Æ

2

6
6
6
6
6
6
6
6
6
6
4

¡ ®
2 0 0 ¡ 1

2 ¡ °̂
2 0

¡ ®°̂
2 ¡ ¯ 0 ¡ °̂

2 ¡ °̂ 2

2 0

0 1 0 0 0 0
®2

2 0 0 ®
2

®°̂
2 0

0 0 0 0 ¯ ¡ 1

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
5

A1 (4.24)

where A1 Æ
h
VA1 Yc1 M1 ¸ 11 ¸ 12 ¸ 13

i >

Similarly, for the interval Ti Ç t · T we can construct three additional differential

equations for Lagrange multipliers (see condition ( i v ) of section 4.1):

�̧ 21 Æ ¡
@H2

@VA2
Æ®F2 Å ®¸ 21 (4.25)

�̧ 22 Æ ¡
@H2

@Yc2
Ǣ¸ 22 ¡ ¸ 23 (4.26)

�̧ 23 Æ ¡
@H1

@M2
Æ0 (4.27)

By taking the condition @H2/ @F2 Æ0 (see condition ( i i i ) of section 4.1), we get:

F2 Æ
1

2
(®VA2 ¡ ¸ 21) (4.28)

Substituting Eq. (4.28) into the differential equations (2.17), (2.19), (4.17) and

(4.25)-(4.27) yields the following system of differential equations:

�A2 Æ

2

6
6
6
6
6
6
6
6
6
6
4

¡ ®
2 0 0 ¡ 1

2 0 0

0 ¡ ¯ 0 0 0 0

0 1 0 0 0 0
®2

2 0 0 ®
2 0 0

0 0 0 0 ¯ ¡ 1

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
5

A2 (4.29)

where A2 Æ
h
VA2 Yc2 M2 ¸ 21 ¸ 22 ¸ 23

i >
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By solving the equations (4.24) and (4.29), we obtain:

VA1 Æ ¡C2
°̂

®¯
Å C3

¯

°̂
¡ C4

2¯

®°̂
Å C4

¯

°̂
t ¡ C6

°̂

2¯
e¯ t (4.30)

Yc1 ÆC4 ¡ C5¯ e¡ ¯ t ¡ C6
°̂ 2

4¯
e¯ t (4.31)

M1 ÆC1
°̂

®¯
Å C3 Å C4t Å C5e¡ ¯ t ¡ C6

°̂ 2

4¯ 2 e¯ t (4.32)

¸ 11 Æ ¡C3
®¯

°̂
¡ C4

®¯

°̂
t Å C6

®°̂

2¯
e¯ t (4.33)

¸ 12 ÆC2
1

¯
Å C6e¯ t (4.34)

¸ 13 ÆC2 (4.35)

VA2 Æ ¡
C8

®
Å

2C9

®2 ¡
C9t

®
(4.36)

Yc2 Æ ¡C11¯ e¡ ¯ t (4.37)

M2 ÆC10 Å C11e¡ ¯ t (4.38)

¸ 21 ÆC8 Å C9t (4.39)

¸ 22 Æ
C7

¯
Å C12e¯ t (4.40)

¸ 23 ÆC7 (4.41)

We also have the following 12 boundary conditions (see section 4.1 for more details):

VA1(0) ÆB, VA1(Ti ) ÆB Å VT , VA2(Ti ) ÆB Å VT ,

VA2(T ) ÆB, Yc1(0) ÆYc2(T ), Yc1(Ti ) ÆYc2(Ti ),

M1(0) Æ0, M1(Ti ) ÆM2(Ti ), ¸ 12(0) Æ¸ 22(T ),

¸ 12(Ti ) Æ¸ 22(Ti ), ¸ 13(Ti ) Æ¸ 23(Ti ), ¸ 13(T ) Æ0

(4.42)

Recall that ¸ 1, ¸ 2 and ¸ 3 are the Lagrange multipliers associated with thevariables

VA, Yc and M respectively. As VA is �xed at t Æ0, Ti and T , the Lagrange multiplier

¸ 1 is free at these boundary points (see conditions ( v) and (vi ) of section 4.1). The

variable Yc is periodic and free hence ¸ 2 is also periodic and free (see conditions

(v) of section 4.1). Yc and M are continuous and free at t ÆTi , therefore ¸ 2 and

¸ 3 are also continuous and free at t ÆTi (see conditions ( vi ) of section 4.1). The

variable M is �xed at t Æ0, and free at t ÆT , so ¸ 3 is free at t Æ0 and zero at t ÆT .
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This allows us to �nd the coef�cients C1 to C12 by using conditions 4.42. We

get:

C1 Æ ¡®B Å
VT

¡
2¯ ¡ (®Å2¯ )e¯ T Å®e¯ Ti

¢

¯ Ti (e¯ T ¡ 1) , C2 Æ0,

C3 Æ °̂
®¯ Ti

(2VT Å ®BTi ) , C4 ÆVT °̂
¯ Ti

,

C5 ÆVT °̂ (e¯ T ¡ e¯ Ti )
¯ 2Ti (e¯ T ¡ 1)

, C6 Æ0,

C7 Æ0, C8 Æ ¡®B ¡ VT (®T ¡ 2)
T ¡ Ti

,

C9 Æ ®VT
T ¡ Ti

, C10 ÆVT °̂
¯ Å

VT °̂
¡
e¯ Ti ¡ 1

¢

¯ 2Ti (e¯ T ¡ 1) ,

C11 Æ
VT °̂ e¯ T ¡

1¡ e¯ Ti
¢

¯ 2Ti(e¯ T ¡ 1) , C12 Æ0

Substituting C1 to C12 into Eqs. (4.30) - (4.41), and by using Eqs. (4.23) and (4.28)

we then obtain the optimal function F(t ) for a given VT :

F(t ) Æ

8
>><

>>:

®B Å VT
Ti

(1Å ®t ) ; 0 Ç t · Ti

®B Å VT
Ti

(®T ¡ ®t ¡ 1) ; Ti Ç t · T

(4.43)

From the conditions u2(T ) ÆT yav and H1(Ti ) ÆH2(Ti ), the optimal durations T

and Ti are found:

T Æ
° (VT ¡ VD )

¯ yav
(4.44)

Ti Æ
° (VT ¡ VD )

2 ¯ yav
Æ

T

2
(4.45)

The optimal solution is linear and the optimal period we get by using optimal con-

trol theory is the same as that obtained when F(t ) was a given function. Likewise,

the optimal Ti is half the period, which is the same as was found in Section 3.4.

4.3 Numerical Solution of the Optimal Problem

The algorithm shown in Fig. 4.2, allows us to �nd the optimal combinations of

tidal volume ( VT ), breathing period ( T ) and duration of inhalation ( Ti ) numerically.

First, we provide a range of values for VT , such that VT min · VT · VT max . For

each value of VT , we initially guess T and Ti and solve the piecewise differential

equations (4.24) and (4.29) with boundary conditions (4.42) by using the Matlab

built-in function bvp4c. We then check the conditions M2(T ) ¡ T ¢yav Ç ² and

H1(Ti )¡ H2(Ti ) Ç ² , where ² is the error tolerance ( ² Æ10¡ 8 in all our computations).



4.3 Numerical Solution of the Optimal Problem 59

If these conditions are not satis�ed, we use Newton's method to correct the values

of T and Ti .

Fig. 4.2: Flowchart of the numerical algorithm.

In order to do this we de�ne the intial guesses as T 1and T 1
i and the subsequent

corrcetions as T n and T n
i , where n represents the n th iteration. We also de�ne

¿n Æ[T n , T n
i ]> and en Æ[en

1 , en
2 ]> , where en

1 ÆM2(T n )¡ T n ¢yav and en
2 ÆH1(T n

i )¡

H2(T n
i ). We then compute kn such that Jn ¢kn Æen , where Jn is the Jacobian matrix

computed by numerical differentiation, and update T n and T n
i using the equation:

¿nÅ1 Æ¿n ¡ kn . The boundary value problem is solved for each iteration n untill en
1

and en
2 are less than ² .
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Finally, W is calculated by numerical integration (we used the trapezoidal rule in

all our numerical calculations). Each time W is calculated for a new value of VT ,

we compare it with the value of W ¤ previously calculated (initially we provide a

high value of W ¤ ). If it has a lower value, we record it along with the corresponding

values of VT , T and Ti . The values we obtain at the end of this process are the

optimal values W ¤ , V ¤
T , T ¤ and T ¤

i . Fig. 4.3 shows a comparison between the

optimal numerical solution and the optimal analytical solution. As can be seen,

there is a good agreement between these two solutions.

Fig. 4.3: Comparision of the solutions F(t ), VA(t ) and Yc(t ) when calculated nu-
merically and analytically for the 2 D linear model (Eq. (2.17) and (2.19). See Table
2, for all values of the parameters.

As we discussed in Chapter 1, the 5D model approximates the 6 D model. The

same combination of breathing frequency and amplitude gives slightly a higher
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level of concentration of CO2 in the lungs for the 5 D model. To be able to compare

the optimal amplitude and frequency of both models, we chose to maintain the

concentration of CO2 in the lungs at about 6 .1% in the 5D model. If the same am-

plitude and frequency we used in the 5 D model with a sinusoidal pleural pressure

were used in the 6 D model with a sinusoidal pleural pressure, the lung concentra-

tion of CO2 would be 5.2%.

Fig. 4.4: Comparison of the optimal solution of PL , VA and fc for the 2 D, 3D and
5D models when VT Æ0.4 l and T Æ4.82 s. Here we �xed T and Ti which leads
to different average levels of fc. For the 2D model, PL ÆPm ¡ RF (see Section 2.3).
See Table 2, for all values of the parameters.

Next we solve the optimal control problem for the 3 D and 5D models. We have

obtained the optimal control problem for these models numerically, as the models

are nonlinear. First, we observe how these different models effect the average value
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of fc for a given �xed VT , Ti and T . Fig. 4.4 shows that the average value of fc for

the 3D and 5D models is approximately the same, but, for the 2 D linear model the

average value is slightly different. However, we have also observed an interesting

fact that the optimal driving force (pleural pressure) is the same for all models with

the given cost function (see Fig . 4.4). The simulations shown in Fig. 4.5 are for

maintaining the concentration of CO2 at 6.1%. This supports the hypothesis of a

constant effective minute ventilation for all models, as the relationship between

VT and T is linear for the 2D model and almost linear for the other models.

Fig. 4.5: Relationship between the tidal volume and breathing period for the 2 D,
3D and 5D models.

We found in this chapter that the optimal volume has a triangular shape with a

constant �ow rate (see Fig. 4.4). We showed in Fig. 3.18 that for any VT È VD ,

the sinusoidal pleural pressure ( PL) consumes about twenty-three percent more

energy than the optimal PL . However, the optimal PL is discontinuous. This sug-

gests that the work of breathing is not the optimization criterion for selecting a

particular breathing pattern. Nevertheless, some observational data show that the

human breathing pattern during exercise is triangular [ 69]. Thus, the criterion

of minimum total work of breathing could predict the human breathing pattern

under exercise conditions but not at rest.



Chapter 5

Solutions for other Cost Functions

In chapter 4, we found the optimal breathing pattern that minimizes the total work

done by the respiratory muscles during each breath using optimal control theory.

This gave an optimal pleural pressure that is discontinuous in time, and an optimal

duration of inspiration equal to the duration of expiration. In this chapter we

discuss some other mechanical cost functions that have been proposed previously

in the literature for respiratory control optimization.

First, we de�ne a weighted function that merges several of the previously sug-

gested cost functions, speci�cally, the average square volumetric acceleration,

work rate and average square force developed by the respiratory muscles. We then

solve several special cases in which some of the functions are neglected. We show

that the breathing pattern optimised by considering the work rate only is discon-

tinuous and there is no optimal solution which minimizes the average square

force. Finally, we �nd the breathing patterns associated with different weighting

coef�cients.

5.1 Weighted Cost Function

Hämäläinen and Viljanen [ 31] were the �rst to discuss two separate mechanical

cost functions for the inhalation and exhalation phases of respiration. During

inhalation, they merged weighted functions of the average square volumetric

acceleration and work rate. During expiration they replaced the work rate term

with the average square of the respiratory pressure. In this section, we consider

various mechanical cost functions used previously to �nd the optimal breathing
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pattern, as weighted functions in a single expression. The single cost function is

represented as:

JI Æ
1

T

Z Ti

0

h
´ 1V̈A

2 Å ´ 2 (Pm ¡ PL) �VA Å ´ 3 (Pm ¡ PL)2
i

d t , (5.1)

JE Æ
1

T

Z T

Ti

£
´ 1V̈ 2

A Å ´ 2R �V 2
A Å ´ 3 (Pm ¡ PL)2¤

dt , (5.2)

JI and JE represent the cost function during inhalation and exhalation respec-

tively. These cost functions interpreted as the weighted sum of the average square

volumetric acceleration, work rate and the average square force developed by

the respiratory muscles. During exhalation, the respiratory muscles relax and

release the elastic energy that was stored during inhalation. So, there is no need

to consider the elastic work during exhalation and we only consider the work

caused by the air�ow resistance during exhalation. The parameters ´ 1, ´ 2 and ´ 3

represent the weights for the average volumetric acceleration, work rate and the

average square force respectively. The parameters ´ 1, ´ 2 and ´ 3 have the units

l ¡ 2s4, mmHg ¡ 1l ¡ 1s and mmHg ¡ 2 respectively. This gives a non-dimensional

cost function.

The cost function includes V̈A, so we present V̈A in terms of other variables. By

differentiating Eq. (2.6) with respect to time and substituting �VA, we get:

V̈A Æ
E2

R2VA ¡
E

R2 (Pm ¡ PL) ¡
1

R
�PL (5.3)

Now, we can represent Eq. (5.3) as a system of two �rst order differential equations.

Let:

�PL Æ ¡G (5.4)

�VA ÆW (5.5)

this implies that Eq. (5.3) can be written as:

�W Æ
E2

R2VA ¡
E

R2 (Pm ¡ PL) Å G (5.6)
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Here, W represents the air�ow rate and G is the input control variable with condi-

tions W (0) ÆW (Ti ) ÆW (T ) Æ0 and PL(0) ÆPL(T ).

For the 2D model, the cost functions (5.1) and (5.2) are represented as:

JI Æ
1

T

Z Ti

0

h
´ 1V̈A

2 Å ´ 2F �VA Å ´ 3F2
i

d t , (5.7)

JE Æ
1

T

Z T

Ti

£
´ 1V̈ 2

A Å ´ 2R �V 2
A Å ´ 3F2¤

dt , (5.8)

and Eq. (5.5) is the same as for the 5D model, however, Eq. (5.4) and (5.6) are

replaced with:

�F ÆG (5.9)

�W Æ®2VA ¡ ®F Å G (5.10)

with conditions W (0) ÆW (Ti ) ÆW (T ) Æ0 and F(0) ÆF(T ).

We solve the optimization problem for the 2 D model that minimizes the cost

function (5.7) and (5.8) when G(t ), Ti and T are unknown for a given VT during

one whole breath, subject to the following constraints:

i The differential equations (Eq. (2.19), (5.5), (5.9) and (5.10)) are satis�ed.

ii The system of equations is in a periodic steady state with period T , that is

VA(0) ÆVA(T ), W (0) ÆW (T ), Yc(0) ÆYc(T ) and F(0) ÆF(T ) .

iii The initial value and amplitude of VA(t ) are given as B and VT respectively. That

is, VA(0) ÆB and VA(Ti ) ÆB Å VT , where Ti is the time to reach a maximum VA.

iv The average value of Yc is a given �xed value, yav Æ1
T

RT
0 Yc(t ) d t , where yav is a

constant. (Recall that the variable Yc provides a measure of CO2 concentration

in the lungs, Yc ÆDc(E Å K1) fc ¡ DcK2, see Section 2.2.2).

The constraint ( i v ) can be replaced by the differential equation

dM

dt
ÆYc (5.11)

with the boundary conditions M (0) Æ0 and M (T ) ÆT yav .
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5.2 Average Square Volumetric Acceleration

In this section, we �rst derive the optimal breathing pattern that minimizes the

average square volumetric acceleration for the 2 D model. By substituting ´ 1 Æ1,

´ 2 Æ0 and ´ 3 Æ0 into Eqs. (5.1) and (5.2), we get the cost function:

J Æ
1

T

Z T

0
V̈ 2

Adt , (5.12)

Let H1 and H2 be the Hamiltonians during inhalation (0 Ç t · Ti ) and exhalation

(Ti Ç t · T ) respectively, that is:

H1 Æ
1

T
V̈ 2

A1 Å ¸ 11(t ) �F1 Å ¸ 12(t ) �VA1 Å ¸ 13(t ) �W1 Å ¸ 14(t ) �Yc1 Å ¸ 15(t ) �M1 (5.13)

H2 Æ
1

T
V̈ 2

A2 Å ¸ 21(t ) �F2 Å ¸ 22(t ) �VA2 Å ¸ 23(t ) �W2 Å ¸ 24(t ) �Yc2 Å ¸ 25(t ) �M2 (5.14)

where, ¸ i j are unknown adjoint functions of time (known as Lagrange multipli-

ers). During inhalation (0 Ç t · Ti ), we can construct �ve additional differential

equations for the Lagrange multipliers (see condition ( i i ) of section 4.1):

�̧ 11 Æ ¡
@H1

@F1
Æ¡

2®2

T
F1 Å

2®3

T
VA1 Å

2®

T
G1 Å ®¸ 13 (5.15)

�̧ 12 Æ ¡
@H1

@VA1
Æ

2®3

T
F1 ¡

2®4

T
VA1 ¡

2®2

T
G1 ¡ ®2¸ 13 (5.16)

�̧ 13 Æ ¡
@H1

@W1
Æ¡ ¸ 12 Å °̂¸ 14 (5.17)

�̧ 14 Æ ¡
@H1

@Yc1
Ǣ¸ 14 ¡ ¸ 15 (5.18)

�̧ 15 Æ ¡
@H1

@M1
Æ0 (5.19)

Similarly, during exhalation ( Ti Ç t · T ), we can construct differential equations

for the Lagrange multipliers (see condition ( i v ) of section 4.1):

�̧ 12 Æ ¡
@H2

@F2
Æ¡

2®2

T
F2 Å

2®3

T
VA2 Å

2®

T
G2 Å ®¸ 23 (5.20)

�̧ 22 Æ ¡
@H2

@VA2
Æ

2®3

T
F2 ¡

2®4

T
VA2 ¡

2®2

T
G2 ¡ ®2¸ 23 (5.21)

�̧ 23 Æ ¡
@H2

@W2
Æ¡ ¸ 22 (5.22)
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�̧ 24 Æ ¡
@H2

@Yc2
Ǣ¸ 24 ¡ ¸ 25 (5.23)

�̧ 25 Æ ¡
@H2

@M2
Æ0 (5.24)

where G1 and G2 are the control variables during inhalation and exhalation respec-

tively. By using the conditions @H1/ @G1 Æ0 and @H2/ @G2 Æ0 (see condition ( i )

and (i i i ) of section 4.1), we get:

G1 Æ®F1 ¡ ®2VA1 ¡
T

2
¸ 11 ¡

T

2
¸ 13 (5.25)

G2 Æ®F2 ¡ ®2VA2 ¡
T

2
¸ 21 ¡

T

2
¸ 23 (5.26)

By using (5.25) and (5.26), we get the following differential system:

�B1 Æ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

® ¡ ®2 0 0 0 ¡ T
2 0 ¡ T

2 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 ¡ T
2 0 ¡ T

2 0 0

0 0 °̂ ¡ ¯ 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 ¡ ® 0 0 0 0

0 0 0 0 0 ®2 0 0 0 0

0 0 0 0 0 0 ¡ 1 0 ¡ °̂ 0

0 0 0 0 0 0 0 0 ¯ ¡ 1

0 0 0 0 0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

B1 (5.27)

�B2 Æ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

® ¡ ®2 0 0 0 ¡ T
2 0 ¡ T

2 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 ¡ T
2 0 ¡ T

2 0 0

0 0 0 ¡ ¯ 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 ¡ ® 0 0 0 0

0 0 0 0 0 ®2 0 0 0 0

0 0 0 0 0 0 ¡ 1 0 0 0

0 0 0 0 0 0 0 0 ¯ ¡ 1

0 0 0 0 0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

B2 (5.28)
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where °̂ Æ°
³

VT ¡ VD
VT

´
, B1 Æ

h
F1 VA1 W1 Yc1 M1 ¸ 11 ¸ 12 ¸ 13 ¸ 14 ¸ 15

i >

and B2 Æ
h
F2 VA2 W2 Yc2 M2 ¸ 21 ¸ 22 ¸ 23 ¸ 24 ¸ 25

i >
. We also have the

following 20 boundary conditions for the state variables and Lagrange multipliers,

¸ i j :

F1(0) ÆF2(T ), F1(Ti ) ÆF2(Ti ), VA1(0) ÆB,

VA2(T ) ÆB, VA1(Ti ) ÆB Å VT , VA2(Ti ) ÆB Å VT ,

W1(0) Æ0, W1(Ti ) Æ0, W2(Ti ) Æ0,

W2(T ) Æ0, Yc1(0) ÆYc2(T ), Yc1(Ti ) ÆYc2(Ti ),

u1(0) Æ0, u1(Ti ) Æu2(Ti ), ¸ 11(0) Æ¸ 21(T ),

¸ 11(Ti ) Æ¸ 21(Ti ), ¸ 14(0) Æ¸ 24(T ), ¸ 14(Ti ) Æ¸ 24(Ti ),

¸ 15(Ti ) Æ¸ 25(Ti ), ¸ 25(T ) Æ0.

Recall that ¸ 1, ¸ 2, ¸ 3, ¸ 4 and ¸ 5 are the Lagrange multipliers associated with the

variables F, VA, W , Yc and M respectively (see Eqs. (5.13) and (5.14)). AsVA and

W are �xed at t Æ0, Ti and T , it follows that ¸ 2 and ¸ 3 are free at these boundary

points (see conditions ( v) and (vi ) of section 4.1). The variables F and Yc are

periodic and free, hence ¸ 1 and ¸ 4 are also periodic and free (see conditions ( v) of

section 4.1). F, Yc and M are continuous and free at t ÆTi , therefore ¸ 1, ¸ 2 and

¸ 3 are also continuous and free at t ÆTi (see conditions ( vi ) of section 4.1). The

variable M is �xed at t Æ0, and free at t ÆT , so ¸ 3 is free at t Æ0 and zero at t ÆT .

Solving the differential equations (Eq. (5.27) and (5.28))and using the above condi-

tions, we get the optimal driving force F(t ) for a given VT :

F(t ) Æ

8
>>><

>>>:

®B ¡ 6VT t (t ¡ Ti )
T 3

i
Å ®VT t 2(3Ti ¡ 2t )

T 3
i

; 0 Ç t · Ti

®B ¡ 6VT (t ¡ T )(t ¡ Ti )
(Ti ¡ T )3 Å ®VT (t ¡ T )2(3Ti ¡ 2t ¡ T )

(Ti ¡ T )3 ; Ti Ç t · T

(5.29)

and the corresponding alveolar volume:

VA(t ) Æ

8
>>><

>>>:

B Å VT
t 2(3Ti ¡ 2t )

T 3
i

; 0 Ç t · Ti

B Å VT
(t ¡ T )2(3Ti ¡ 2t ¡ T )

(Ti ¡ T )3 ; Ti Ç t · T

(5.30)
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Fig. 5.1: Comparisons between trajectories of F(t ), VA(t ), W (t ) and Yc(t ) for sinu-
soidal and optimal air�ows that minimizes Eq. (5.12). Calculations are done using
the 2D linear model and both solutions maintain a speci�c value of Yav Æ ¡0.0013,
which is equivalent to fc Æ6.1%. See Table 2, for all values of the arameters.

Using the conditions M2(T ) ÆT yav and H1(Ti ) ÆH2(Ti ), the optimal durations T

and Ti are:

T Æ
° (VT ¡ VD )

¯ yav
(5.31)

Ti Æ
° (VT ¡ VD )

2 ¯ yav
Æ

T

2
(5.32)

The optimal solution is a piecewise cubic function of time and the optimal Ti

is half the period, which is the same result as when the total work was taken as

the cost function. Figure (5.1) shows a comparison between trajectories derived

for a sinusoidal air�ow and the optimal piecewise cubic function constrained to

maintaining the average concentration of CO2 at 6.1%. The optimal air�ow is

symmetrical as is the sinusoidal signal, but it has a slightly lower peak.

Next we solve this optimal control problem for the 5 D model. Figure 5.2 shows a

comparison of the solutions of the 2 D and 5D models for a given VT and T . As can

be seen, the shape of the breathing pattern is the same for both models, however,
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the average level of concentration of CO2 in the lungs is slightly lower for the 5 D

model. Figure 5.3 shows the optimal solution of the 2 D and 5D model when the

concentration of CO2 in the lungs is maintained at 6 .1%. In order to achieve the

same optimal duration, the breathing amplitude is lower for the 5 D model ( VT =

0.375l ) than for the 2 D model ( VT = 0.4 l ).

Fig. 5.2: Comparison of the optimal solution for the 2 D linear model and 5 D model
for VT Æ0.4 l and T Æ4.82 s that minimizes Eq. (5.12). Here we �xed T and Ti

which leads to different average levels of fc. For the 2D linear model, PL ÆPm ¡ RF
(see Section 2.3). See Table 2, for all values of the parameters.

The optimal average square volume acceleration, when we solve the 2 D model is:

J Æ
1

T

Z T

0
V̈ 2

Adt Æ
192¯ YcavV 2

T

° 4 (VT ¡ VD )4 (5.33)

For maintaining the same levels of CO2, the average square volume acceleration

for the sinusoidal air�ow pattern is:

J Æ
2¼4¯ YcavV 2

T

° 4 (VT ¡ VD )4 ¼
195¯ YcavV 2

T

° 4 (VT ¡ VD )4 (5.34)
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It is clear from Eqs. (5.33) and (5.34) that for every tidal volume, VT , the optimal

function gives a lower average square volumetric acceleration than the sinusoidal

function. The average square volumetric acceleration is a strictly decreasing func-

tion of VT (if VT È VD ), therefore there is no optimal VT that minimizes Eq. (5.33).

Fig. 5.3: Comparison of the optimal solution for the 2 D linear model and 5 D model
for VT Æ0.4 l that minimizes Eq. (5.12). For the 2 D linear model, PL ÆPm ¡ RF
(see Section 2.3). Both solutions maintain a speci�c value of fc Æ6.1%. See Table 2,
for all values of parameters.

5.3 Work Rate

In this section, we derive the optimal breathing pattern that minimizes the work

rate during a whole breathing period. By substituting ´ 1 Æ0, ´ 2 Æ1 and ´ 3 Æ0 into
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Eq. (5.1) and (5.2), the cost function becomes:

JI Æ
1

T

Z Ti

0
F(t ) �VAdt , (5.35)

JE Æ
1

T

Z T

Ti

R �V 2
Adt , (5.36)

Let H1 and H2 be the Hamiltonians of the problem over the intervals 0 Ç t · Ti and

Ti Ç t · T respectively such that:

H1 Æ
1

T
F1(t ) �VA1(t ) Å ¸ 11(t ) �VA1(t ) Å ¸ 12(t ) �Yc1(t ) Å ¸ 13(t ) �M1(t ) (5.37)

H2 Æ
1

T
R �V 2

A2
Å ¸ 21(t ) �VA2(t ) Å ¸ 22(t ) �Yc2(t ) Å ¸ 23(t ) �M2(t ) (5.38)

By using the conditions @H1/ @F1 Æ0 and @H2/ @F2 Æ0, we get:

F1 Æ
1

2

¡
®VA1 ¡ T ¸ 11 Å °̂ T ¸ 12

¢
(5.39)

F2 Æ®VA2 ¡
T

2R
¸ 21 (5.40)

We can construct additional differential equations for the Lagrange multipliers, ¸ i j

during inhalation, Ti Ç t · T , (see condition ( i i ) of section 4.1):

�̧ 11 Æ ¡
@H1

@VA1
Æ

®

T
F1 Å ®¸ 11 ¡ ®°̂¸ 12 (5.41)

�̧ 12 Æ ¡
@H1

@Yc1
Ǣ¸ 12 ¡ ¸ 13 (5.42)

�̧ 13 Æ ¡
@H1

@M1
Æ0 (5.43)

Similarly, during exhalation, Ti Ç t · T , we can construct differential equations for

the Lagrange multipliers (see condition ( i v ) of section 4.1):

�̧ 12 Æ ¡
@H2

@VA2
Æ

2®R

T
F2 ¡

2®2R

T
VA2 Å ®¸ 12 (5.44)

�̧ 22 Æ ¡
@H2

@Yc2
Ǣ¸ 22 ¡ ¸ 23 (5.45)

�̧ 23 Æ ¡
@H2

@M2
Æ0 (5.46)
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Substituting Eq. (5.39) and Eq. (5.40) into the differential equations (2.17), (2.19),

(4.17) and (5.41)-(5.46) yields the following systems of differential equations:

�A1 Æ

2

6
6
6
6
6
6
6
6
6
6
4

¡ ®
2 0 0 ¡ T

2
°̂ T
2 0

®°̂
2 ¡ ¯ 0 °̂ T

2 ¡ °̂ 2T
2 0

0 1 0 0 0 0
®2

2T 0 0 ®
2 ¡ ®°̂

2 0

0 0 0 0 ¯ ¡ 1

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
5

A1 (5.47)

and

�A2 Æ

2

6
6
6
6
6
6
6
6
6
6
4

0 0 0 ¡ T
2R 0 0

0 ¡ ¯ 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ¯ ¡ 1

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
5

A2 (5.48)

We solve the differential equations (5.47) and (5.48) with boundary conditions

(4.42) and obtain the optimal function F(t ) for a given VT :

F(t ) Æ

8
>><

>>:

®B Å VT
Ti

(1Å ®t ) ; 0 Ç t · Ti

®B Å VT
Ti

(®T ¡ ®t ¡ 1) ; Ti Ç t · T

(5.49)

From the conditions M2(T ) ÆT yav and H1(Ti ) ÆH2(Ti ), the optimal durations T

and Ti are found:

T Æ
° (VT ¡ VD )

¯ yav
(5.50)

Ti Æ
° (VT ¡ VD )

2 ¯ yav
Æ

T

2
(5.51)

The optimal solution and duration that minimizes the total work rate are the same

as that which minimizes the total work done by the respiratory muscles (see Eq.

4.43).
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5.4 Average Square Force

Here we derive the optimal breathing pattern that minimizes the average square

force developed by the respiratory muscles. By substituting ´ 1 Æ0, ´ 2 Æ0 and

´ 3 Æ1 into Eq. (5.1) and (5.2), the cost function becomes:

J Æ
1

T

Z T

0
F(t )2dt , (5.52)

Let H1 and H2 be the Hamiltonians of the problem over the intervals 0 Ç t · Ti and

Ti Ç t · T respectively such that:

H1 Æ
1

T
F2

1 (t ) Å ¸ 11(t ) �VA1(t ) Å ¸ 12(t ) �Yc1(t ) Å ¸ 13(t ) �M1(t ) (5.53)

H2 Æ
1

T
F2

2 (t ) Å ¸ 21(t ) �VA2(t ) Å ¸ 22(t ) �Yc2(t ) Å ¸ 23(t ) �M2(t ) (5.54)

By using the conditions @H1/ @F1 Æ0 and @H2/ @F2 Æ0, we get: (see conditions ( i )

and (i i i ) of section 4.1)

F1 Æ
T

2

¡
¸ 11 Å °̂¸ 12

¢
(5.55)

F2 Æ
T

2
¸ 21 (5.56)

We can construct additional differential equations for the Lagrange multipliers, ¸ i j

during inhalation, Ti Ç t · T , (see condition ( i i ) of section 4.1):

�̧ 11 Æ ¡
@H1

@VA1

Æ®¸ 11 ¡ ®°̂¸ 12 (5.57)

�̧ 12 Æ ¡
@H1

@Yc1

Ǣ¸ 12 Å ¸ 13 (5.58)

�̧ 13 Æ ¡
@H1

@M1
Æ0 (5.59)

Similarly, during exhalation, Ti Ç t · T , we can construct differential equations for

the Lagrange multipliers (see condition ( i v ) of section 4.1):

�̧ 12 Æ ¡
@H2

@VA2

Æ®¸ 21 (5.60)

�̧ 22 Æ ¡
@H2

@Yc2

Ǣ¸ 22 Å ¸ 23 (5.61)
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�̧ 23 Æ ¡
@H2

@M2
Æ0 (5.62)

Substituting Eq. (5.55) and Eq. (5.56) into the differential equations (2.17), (2.19),

(4.17) and (5.57)-(5.62) yields the following systems of differential equations:

�A1 Æ

2

6
6
6
6
6
6
6
6
6
6
4

¡ ® 0 0 ¡ T
2

°̂ T
2 0

®°̂ ¡ ¯ 0 °̂ T
2 ¡ °̂ 2T

2 0

0 1 0 0 0 0

0 0 0 ® ¡ ®°̂ 0

0 0 0 0 ¯ ¡ 1

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
5

A1 (5.63)

and

�A2 Æ

2

6
6
6
6
6
6
6
6
6
6
4

¡ ® 0 0 ¡ T
2 0 0

0 ¡ ¯ 0 0 0 0

0 1 0 0 0 0

0 0 0 ® 0 0

0 0 0 0 ¯ ¡ 1

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
5

A2 (5.64)

where, A1 Æ
h
VA1 Yc1 M1 ¸ 11 ¸ 12 ¸ 13

i >

and A2 Æ
h
VA2 Yc2 M2 ¸ 21 ¸ 22 ¸ 23

i >

By solving the differential equations (5.63) and (5.64), we get:

VA1 ÆC3e¡ ®t ¡ C4
T

4®
e®t ¡ C5

¯ °̂ T

2
¡
®2 ¡ ¯ 2

¢e¯ t (5.65)

Yc1 ÆC1 ¡
C2

¯
e¡ ¯ t ¡ C3

°̂

®¡ ¯
e¡ ®t Å C4

T °̂

4®
¡
®Å ¯

¢e®t Å C5
°̂ 2T

4
¡
®2 ¡ ¯ 2

¢e¯ t (5.66)

M1 ÆC2e¡ ¯ t ¡ C3
®°̂

®¡ ¯
e¡ ®t Å C4

T °̂

4
¡
®Å ¯

¢e®t Å C5
¯ °̂ 2T

4
¡
®2 ¡ ¯ 2

¢e¯ t (5.67)

¸ 11 Æ ¡C3
®¯

°̂
¡ C4

®¯

°̂
t Å C6

®°̂

2¯
e¯ t (5.68)

¸ 12 ÆC5e¯ t Å
C6

¯
(5.69)

¸ 13 ÆC6 (5.70)
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VA2 ÆC7e¡ ®t ¡ C10
T

4®
e®t (5.71)

Yc2 ÆC9e¡ ¯ t (5.72)

M2 ÆC8 ¡
C9

¯
e¡ ¯ t (5.73)

¸ 21 ÆC10e®t (5.74)

¸ 22 Æ
C12

¯
Å C11e¯ t (5.75)

¸ 23 ÆC12 (5.76)

We have the same boundary conditions as Eq. (4.42). In terms of coef�cients, the

equations generated from those conditions are linear, so the augmented matrix is:
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0 B B B B B B B B B B B B B B B B B B B B B B B B B B B B B @

0
0

1
¡

T 4®
¯

°̂
T

2 (
¯

2
¡

®
2
)

0
0

0
0

0
0

0
B

0
0

e¡
®

T
i

¡
T

e®
T

i

4®
¯

°̂
T

e¯
T

i

2 (
¯

2
¡

®
2
)

0
0

0
0

0
0

0
A

Å
B

0
0

0
0

0
0

e¡
®

T
i

0
0

¡
T

e®
T

i

4®
0

0
A

Å
B

0
0

0
0

0
0

e¡
®

T
0

0
¡

T
e®

T

4®
0

0
B

0
1

¡
®

°̂
®

¡
¯

°̂
T

4(
®

Å
¯

)
¯

°̂
2
T

4(
®

2
¡

¯
2
)

0
0

0
¡

e¡
¯

T
0

0
0

0

0
e¡

¯
T

i
¡

®
°̂

e¡
®

T
i

®
¡

¯
°̂

T
e®

T
i

4(
®

Å
¯

)
¯

°̂
2
T

e¯
T

i

4(
®

2
¡

¯
2
)

0
0

0
¡

e¡
¯

T
i

0
0

0
0

1
¡

1 ¯
°̂

®
¡

¯
T

°̂
4®

(®
Å

¯
)

°̂
2
T

4(
®

2
¡

¯
2
)

0
0

0
0

0
0

0
0

1
¡

e¡
¯

T
i

¯
°̂

e¡
®

T
i

®
¡

¯
°̂

T
e®

T
i

4®
(®

Å
¯

)
°̂

2
T

e¯
T

i

4(
®

2
¡

¯
2
)

0
0

¡
1

e¡
¯

T
i

¯
0

0
0

0

0
0

0
0

1
1 ¯

0
0

0
0

¡
e¯

T
¡

1 ¯
0

0
0

0
0

e¯
T

i
1 ¯

0
0

0
0

¡
e¯

T
i

¡
1 ¯

0

0
0

0
0

0
1

0
0

0
0

0
¡

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0

1 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A

(5
.7

7)
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In order to solve for the coef�cients we performed row operations on the aug-

mented matrix that yields:

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 0 0 0 0 0 · 1 0 0 0 0

0 1 0 0 0 0 0 0 ®Å2e Ti (®Å¯ )¡ T ¯ ¯ ¡ ¯ ¡ e2 T i ®(®Å¯ )
· 2

0 0 0 0

0 0 1 0 0 0 0 0 ¡
e2 T i ®¡ T ¯ ¡

¡ 1ÅeT ¯ ¢
(®2¡ ¯ 2)

· 2®°̂ 0 0 0 0

0 0 0 1 0 0 0 0
4e¡ T ¯ ¡

¡ 1ÅeT ¯ ¢
(¯ 2¡ ®2)

· 2T °̂ 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 · 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(5.78)

where,

· 2 Æ ¡®Å ¯ ¡ 2¯ eTi (®Å¯ ) Å (®Å ¯ )e2®Ti and · 1 Æ ¡ e¡ ¯ T

¯

³
(®2¡ ¯ 2)

¡
e¯ T ¡ 1

¢¡
e2®Ti ¡ 1

¢

®· 2
Å 1

´
.

The reduced augmented matrix shows that there is no combination of coef�cients

that satis�es all the boundary conditions. We therefore conclude that there exists

no optimal solution that minimizes the average square force only.

5.5 Solution of the Weighted Cost Function

In section 5.2, we showed that there is no optimal VT that minimizes the average

volumetric acceleration. We also found that the optimal pleural pressure that

minimizes the total work rate is discontinuous (see section 5.3) and no optimal

solution exists that minimizes the average square force developed by the respira-

tory muscles (see section 5.4). None of these cost functions can account for the

breathing pattern by themselves.

In this section, we discuss how the weighted sum of these cost functions affects

the breathing pattern. We solve the optimization problem for the 5 D model that

minimizes Eq. (5.1) and (5.2), subject to the following constraints:



5.5 Solution of the Weighted Cost Function 79

i The differential equations (Eqs. (1.8), (1.9), (1.19), (1.20), (5.4), (5.5) and (5.6))

are satis�ed.

ii The system of equations is in a periodic steady state with period T , that

is VA(0) ÆVA(T ), PL(0) ÆPL(T ), W (0) ÆW (T ), fc(0) Æfc(T ), fo(0) Æfo(T ),

pc(0) Æpc(T ) and po(0) Æpo(T ).

iii The initial value and amplitude of VA(t ) are given as B and VT respectively. That

is, VA(0) ÆB and VA(Ti ) ÆB Å VT , where Ti is the time to reach a maximum VA.

iv The average value of the concentration of CO2 in the lung, fc, is a given �xed

value, fcav Æ1
T

RT
0 fc(t ) d t , where fcav is a constant.

The constraint ( i v ) can be replaced by the differential equation

dM

dt
Æfc (5.79)

with the boundary conditions M (0) Æ0 and M (T ) ÆT fcav .

Let H1 and H2 be the Hamiltonians of the problem during inhalation and ex-

halation respectively such that:

H1 Ǽ 1V̈ 2
A1 Å ´ 2 (Pm ¡ PL1) �VA1 Å ´ 3 (Pm ¡ PL1)2 Å ¸ 11(t ) �PL1 Å ¸ 12(t ) �VA1 Å ¸ 13(t ) �W1

Å ¸ 14(t ) �fc1 Å ¸ 15(t ) �̄pc1 Å ¸ 16(t ) �fo1 Å ¸ 17(t ) �̄po1 Å ¸ 18(t ) �M1 (5.80)

H2 Ǽ 1V̈ 2
A2 Å ´ 2 R �V 2

A2 Å ´ 3 (Pm ¡ PL2)2 Å ¸ 21(t ) �PL2 Å ¸ 22(t ) �VA2 Å ¸ 23(t ) �W2 Å ¸ 24(t ) �fc2

Å ¸ 25(t ) �̄pc2 Å ¸ 26(t ) �fo2 Å ¸ 27(t ) �̄po2 Å ¸ 28(t ) �M2 (5.81)

Here subscripts 1 and 2 represent the variables in the interval 0 Ç t · Ti (inhalation)

and Ti Ç t · T (exhalation) respectively and ¸ i j are the Lagrange multipliers. As

G1 and G2 are the control variables during inhalation and exhalation respectively,

by using the conditions @H1/ @G1 Æ0 and @H2/ @G2 Æ0 (see condition ( i ) and ( i i i )

of section 4.1), we �nd G1 and G2 as:

G1 Æ
RT

2´ 1
(¸ 13 ¡ R¸ 11) Å

E

R
(PL1 ¡ Pm Å EVA1) (5.82)

G2 Æ
RT

2´ 2
(¸ 23 ¡ R¸ 21) Å

E

R
(PL2 ¡ Pm Å EVA2) (5.83)
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We construct sixteen additional differential equations (eight for each phase) for

the Lagrange multiplier, ¸ i j (see conditions ( i i ) and ( i v ) of section 4.1).

�¸ 11 Æ ¡
@H1

@PL1
Æ

2´ 1E

R4T

¡
RG1 ¡ E (PL1 ¡ Pm Å EVA1)

¢
Å

´ 2

T
W1 Å

´ 3

T

¡
1¡ 2PL1 Å 2Pm

¢

¡
Do

VA1
fo1

¡
fc1¸ 14 Å

¡
fo1 ¡ 1

¢
¸ 16

¢
¡

Dc

VA1
fc1

¡
fo1¸ 16 Å

¡
fc1 ¡ 1

¢
¸ 14

¢

¡
1

CuVc

µ
Do fo1¸ 17

¾
Å

Dc fc1¸ 15

¾c

¶
¡

E

R2 ¸ 13 (5.84)

�¸ 12 Æ ¡
@H1

@VA1
Æ

2´ 1E2

R4T

¡
R G1 ¡ E (PL1 ¡ Pm Å EVA1)

¢
Å

E

CuVc

µ
Do fo1¸ 17

¾
Å

Dc fc1¸ 15

¾c

¶

Å
Do

V 2
A

¡
fc1¸ 14 Å

¡
fo1 ¡ 1

¢
¸ 16

¢¡
fo1

¡
PL1 ¡ pw

¢
¡ po1

¢

Å
Dc

V 2
A1

¡
fo1¸ 16 Å

¡
fc1 ¡ 1

¢
¸ 14

¢¡
fc1

¡
PL1 ¡ pw

¢
¡ pc1

¢
¡

E2

R2 ¸ 13

¡
W1

V 2
A1

¡
fc1¸ 14 Å ( fo1 ¡ fom )¸ 16

¢
µ
1¡

VD

VT

¶
(5.85)

�¸ 13 Æ ¡
@H1

@W1
Æ

´ 2

T
(PL1 ¡ Pm ) Å

1

VA1

µ
1¡

VD

VT

¶
¡
fc1¸ 14 Å

¡
fo1 ¡ fom

¢
¸ 16

¢
¡ ¸ 12

(5.86)

�¸ 14 Æ ¡
@H1

@fc1
Æ

¡
pw ¡ PL1 ¡ EVA1

¢

VA1

¡
Do fo1¸ 14 Å Dc fo1¸ 16 Å Dc

¡
2fc1 ¡ 1

¢
¸ 14

¢

Å
Dc

Cu ¾Vc
¸ 15

¡
pw ¡ PL1 ¡ EVA1

¢
Å

¸ 14

VA1

¡
Dcpc1 Å Dopo1

¢
¡ ¸ 18

Å
µ
1¡

VD

VT

¶
W1¸ 14

VA1
(5.87)

�¸ 15 Æ ¡
@H1

@pc1
Æ

µ
r 2

hl 2TL
Å

Dc

Cu ¾cVc

¶
¸ 15 Å

Dc

VA1

¡¡
fc1 ¡ 1

¢
¸ 14 Å fo1¸ 16

¢
(5.88)

�¸ 16 Æ ¡
@H1

@fo1
Æ

¡
pw ¡ PL1 ¡ EVA1

¢

VA1

¡
Do fc1¸ 14 Å Dc fc1¸ 16 Å Do

¡
2fo1 ¡ 1

¢
¸ 16

¢

Å
Do

Cu ¾Vc
¸ 17

¡
pw ¡ PL1 ¡ EVA1

¢
Å

¸ 16

VA1

¡
Dcpc1 Å Dopo1

¢

Å
µ
1¡

VD

VT

¶
W1¸ 16

VA1
(5.89)

�¸ 17 Æ ¡
@H1

@po1
Æ

Do

VA1

¡
fc1¸ 14 Å ( fo1 ¡ 1)¸ 16

¢
Å

Do

Cu ¾Vc
¸ 17 Å

4Th

¾TL
¸ 27S0(po1) (5.90)

�¸ 18 Æ ¡
@H1

@M1
Æ0 (5.91)
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�¸ 21 Æ ¡
@H2

@PL2
Æ

2´ 1E

R4T

¡
RG2 ¡ E (PL2 ¡ Pm Å EVA2)

¢
Å

´ 3

T

¡
1¡ 2PL2 Å 2Pm

¢

¡
Do

VA2
fo2

¡
fc2¸ 24 Å

¡
fo2 ¡ 1

¢
¸ 26

¢
¡

Dc

VA2
fc2

¡
fo2¸ 26 Å

¡
fc2 ¡ 1

¢
¸ 24

¢

¡
1

CuVc

µ
Do fo2¸ 27

¾
Å

Dc fc2¸ 25

¾c

¶
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¡
fc2¸ 24 Å ( fo2 ¡ 1)¸ 26

¢
Å
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�¸ 28 Æ ¡
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@M2
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We also have the following 32 boundary conditions (see section 4.1 for more de-

tails):

PL1(0) ÆPL2(T ), PL1(Ti ) ÆPL2(Ti ), VA1(0) ÆB, VA2(T ) ÆB,

VA1(Ti ) ÆB Å VT , VA2(Ti ) ÆB Å VT , W1(0) Æ0, W1(Ti ) Æ0,

W2(Ti ) Æ0, W2(T ) Æ0, fc1(0) Æfc2(T ), fc1(Ti ) Æfc2(Ti ),

pc1(0) Æpc2(T ), pc1(Ti ) Æpc2(Ti ), fo1(0) Æfo2(T ), fo1(Ti ) Æfo2(Ti ),

po1(0) Æpo2(T ), po1(Ti ) Æpo2(Ti ), M1(0) Æ0, M1(Ti ) ÆM2(Ti ),
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¸ 11(0) Æ¸ 21(T ), ¸ 11(Ti ) Æ¸ 21(Ti ), ¸ 14(0) Æ¸ 24(T ), ¸ 14(Ti ) Æ¸ 24(Ti ),

¸ 15(0) Æ¸ 25(T ), ¸ 15(Ti ) Æ¸ 25(Ti ), ¸ 16(0) Æ¸ 26(T ), ¸ 16(Ti ) Æ¸ 26(Ti ),

¸ 17(0) Æ¸ 27(T ), ¸ 17(Ti ) Æ¸ 27(Ti ), ¸ 18(Ti ) Æ¸ 28(Ti ), ¸ 28(T ) Æ0.

From Eqs. (5.80) and (5.81), we know that ¸ 1, ¸ 2, ¸ 3, ¸ 4, ¸ 5, ¸ 6, ¸ 7 and ¸ 5 are the

Lagrange multipliers associated with variables PL , VA, W , fc, p̄c, fo, p̄o and M

respectively. As VA and W are �xed at t Æ0, Ti and T , it follows that ¸ 2 and ¸ 3

are free at these boundary points (see conditions ( v) and (vi ) of section 4.1). The

variables PL , fc, p̄c, fo and p̄o are periodic and free, hence ¸ 1, ¸ 4, ¸ 5, ¸ 6 and ¸ 7

are also periodic and free (see conditions ( v) of section 4.1). PL , fc, p̄c, fo, p̄o and

M are continuous and free at t ÆTi , therefore ¸ 1, ¸ 4, ¸ 5, ¸ 6, ¸ 7 and ¸ 8 are also

continuous and free at t ÆTi (see conditions ( vi ) of section 4.1). The variable M is

�xed at t Æ0, and free at t ÆT , so ¸ 3 is free at t Æ0 and zero at t ÆT .

Fig. 5.4: The optimal solution for different values of ´ 2 with ´ 1 Æ1 and ´ 3 Æ0 that
minimizes Eq. (5.1) and (5.2) for VT Æ0.4 l . All solutions maintain a speci�c value
of fc Æ6.1%. All calculations are done using the 6 D model. See Table 2, for all
values of the parameters.

Figure (5.4) shows that for all values of the weighting parameter associated with the

work rate ( ´ 2), the optimal air�ow, W is symmetric. As ´ 2 increases, the optimal

air�ow peak reduces and the optimal volume approaches a triangular shape. For
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all values of the weighting parameter associated with average square force ( ´ 3 È 0),

the optimal air�ow is not symmetric during inhalation (the peak of the optimal

air�ow shifts from the middle) as shown in Fig. (5.5). As ´ 3 increases, the air�ow

peak increases; there is no solution when ´ 3 is high enough. We have also found

that the optimal value of T associated with VT such that fcav is maintained at a

given value, does not vary due to changes in ´ 2 and ´ 3 and the optimal duration of

inhalation ( Ti ) is half of T for all cases.

Fig. 5.5: The optimal solution for different values of the ´ 3 when ´ 1 Æ1 and ´ 2 Æ0
that minimizes Eq. (5.1) and (5.2) for VT Æ0.4 l . All solutions maintain a speci�c
value of fc Æ6.1%. All calculations are done using the 6 D model. See Table 2, for
all values of the parameters.

Fig. (5.6) shows the optimal solution of the special case that minimizes the sum of

Eq. (5.1) and (5.2), when the weights associated with each component has equal

magnitude, ´ 1 Æ1, ´ 2 Æ1 and ´ 3 Æ1. Once again the optimal solution has equal

durations of inhalation and exhalation. This breathing pattern is similar to the one

we got when ´ 2 Æ0. This shows that in equal weights the cost is dominated by the

volumetric acceleration and the average square force.
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Fig. 5.6: The optimal solution that minimizes Eq. (5.1) and (5.2) while maintaining
fc at 6.1% for VT Æ0.4 l when ´ 1 Æ1, ´ 2 Æ1 and ´ 3 Æ1. All calculations are done
using the 6D model. See Table 2, for all values of parameters.



Chapter 6

Conclusion

The main aim of this thesis was to check the hypothesis that an observed com-

bination of breathing frequency and amplitude is optimal with respect to some

objective function. Many previous studies of the respiratory system considered

neural control of breathing as a black box and used the total minute ventilation

(product of rate and amplitude of breathing) as a variable, hence did not distin-

guish between the amplitude and frequency of breathing. Studies concerning

the question at the centre of this thesis, were able to �nd optimal amplitude and

frequency within physiologically acceptable range. However, this was achieved

with different objective functions and by using 1 D models that do not take into

account gas exchange directly.

The models we used in this thesis ranged from 2 D to 6D. We used the previ-

ously published 6 D and 5D models that explain more accurately the coupling

between lung mechanics and gas exchange (see Sections 1.3 and 1.4). We modi�ed

the pleural pressure (driving force) to portray better the neural signal (see Section

2.1). We then reduced the 5D model to 3 D and 2D models, which we presented

in this thesis for the �rst time (see Section 2.3). The simplest 2 D model consists

of two piecewise linear differential equations. We showed that this simple model

is a good approximation of the more complex 5 D model of gas exchange and gas

transport (see Section 2.3).

The use of higher dimension models required the formulation of a new opti-

mization problem as minimizing a given objective function subject to several

constraints, such as satisfying the differential equations and maintaining one of
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the variables at a given average value. The last constraint stems from the physio-

logical observation that the average arterial partial pressure of CO2 is maintained

at a constant value. We solved the optimization problem in two cases: (1) when

the shape of the pleural pressure was given (see Chapter 3) and (2) when the shape

of the pleural pressure was unknown (see Chapters 4 and 5).

For the given pleural pressure, we tested three different cost functions: ( i ) the

work rate during inhalation; ( i i ) the total work done during a whole breath and

(i i i ) the weighted sum of volumetric acceleration and work rate during inhalation.

All three cost functions were studied on healthy and diseased affected lungs using

the 6D model with two different prede�ned pleural pressures: sinusoidal and

exponential (see Chapter 3). In both cases the optimal frequency obtained for

the work rate and weighted cost functions was within the physiological range for

healthy humans (12–18 breaths per minute); it was slightly higher for the total work.

For diseased lungs, the optimal frequencies for the work rate and the weighted

cost functions were signi�cantly lower than those under normal conditions for

both sinusoidal and exponential pleural pressures (see Figs. 3.5, 3.8, 3.11 and

3.13), which shows a movement of the optimal breathing frequency in the wrong

direction. However, the optimal frequency was almost the same for healthy and

diseased lungs when the cost function was taken as the total work over one breath

and the pleural pressure was sinusoidal (see Fig. 3.6), and slightly lower when the

pleural pressure was exponential (see Fig. 3.12).

The optimization problem for the 2 D linear model was solved analytically with

sinusoidal and linear prede�ned driving forces (see Chapter 3). The calculation

was done when the cost function was taken as the total work during a whole breath.

We found that the relationship between the tidal volume and the breathing period

is linear. The same result was obtained for the sinusoidal and the linear breathing

patterns (see Eq. (3.27) and (3.36)). By considering a generalized breathing pattern

described by a Fourier series, we showed that in the 2 D linear model, the average

levels of CO2 in the lungs are only affected by the tidal volume and the period of

breathing and are not affected by the shape of the driving force (see Section 3.4).

The solution of the optimization problem when the driving force was not given

required the development of a new methodology. We developed the necessary
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conditions for the solution of the optimal control problem when the constraints

consisted of a piecewise system of differential equations. Other constraints in-

cluded unknown durations of phases with an interior point constraint (see Section

4.1). We solved the optimal problem analytically for the 2 D linear model when the

total work was minimized (see Section 4.2). The optimal forcing function, F(t ) was

found to be piecewise linear and discontinuous with optimal durations of time

that are the same as for the sinusoidal case (see Fig. 4.3). We also developed a

numerical algorithm and veri�ed it by comparing the numerical calculation with

the analytical solution (see Section 4.3). The numerical algorithm we developed

was then used to solve the more complex models (the nonlinear 2 D model and the

3D and 5D models). We still found that the optimal forcing function, PL(t ) was

discontinuous and that the optimal duration of inhalation was half of the duration

of a whole breath.

Our new methodology allowed us to solve the optimization problem for different

cost functions that have previously been suggested in the literature. When taking

the volumetric acceleration as a cost function, the optimal pattern was very close to

being sinusoidal, although the air�ow had a lower peak compared to the sinusoidal

breathing pattern (see Fig. 5.1). For work rate, the optimal alveolar volume was

triangular, the same as for total work (see Section 5.3) and there was no optimal so-

lution that minimized the average force developed by the respiratory muscles (see

Section 5.4). We also considered a weighted cost function of average volumetric

acceleration, work rate and square force, and found an optimal breathing pattern

in which the driving force ( PL) was continuous. However, the optimal duration

of inhalation and exhalation was the same (see Section 5.5). In the physiological

context, the time duration of the �rst phase is expected to be shorter than that of

the second phase.

Our study does not support the hypothesis that an observed combination of breath-

ing frequency and amplitude is optimal with respect to some objective function.

In all the cases we checked, when the pleural pressure was a given function the

optimal frequency of the diseased lungs moved in the wrong direction. When the

optimal shape of the pleural pressure was calculated, inspiration time was found

to be equal to expiration time, which is different from physiological observations
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under normal conditions. However, this outcome might change by altering the

model as we discuss below.

6.1 Limitation of the Study and Future Directions

As is the case for most studies, our study also has some limitations. In all the

models we used in this study, the relationship between the respiratory pressure

and the volume was considered as a linear differential equation due to the as-

sumption that the resistance to air�ow was static (constant). However, adding

nonlinear resistance to the model could potentially change the model outcome.

For example, three types of resistances were discussed in [ 63]: linear (resistance

due to laminar air�ow), quadratic (resistance due to turbulence) and dynamic

(where the resistance to air�ow varied with a change in lung volume). The study

tested two objective functions: work rate and average force using a 1 D model.

When work rate was taken as a cost function, the optimal air�ow was found to be

constant for a linear and quadratic resistances, however, it was no longer constant

for a dynamic resistance. When taking the average force as a cost function, there

were no optimal solutions for linear and dynamic resistances, however, an optimal

solution existed for a quadratic resistance. It was shown in [ 38] that imposing

different resistances to air�ow during inhalation and exhalation could affect the

optimal ratio between the durations of both phases, making them unequal (see

Eq. 1.28). An unequal optimal inhalation-to-exhalation ratio could also result from

adding resistance due to turbulence (see Eq. 1.28). We note however, that Otis.

et al. [53] did include resistance due to turbulence, but the optimal frequency

they obtained when minimizing the work rate during inhalation with a sinusoidal

breathing pattern was similar to our results.

Future directions following this thesis could include adding a dynamic resistance

to the different models, and computing the effect of it on the optimal solution when

the weighted cost function is minimized. The heart function and the interaction

between the heart and the lungs could also be taken into account.
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