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Abstract  8 
The wildlife and livestock interface is vital for wildlife conservation and habitat 9 

management. Infectious diseases maintained by domestic species may impact threatened 10 
species such as Asian bovids, as they share natural resources and habitats. To predict the 11 
population impact of infectious diseases with different traits, we used stochastic mathematical 12 
models to simulate the population dynamics 100 times over 100 years for a model gaur (Bos 13 
gaurus) population with and without disease. We simulated repeated introductions from a 14 
reservoir, such as domestic cattle. We selected six bovine infectious diseases; anthrax, bovine 15 
tuberculosis, hemorrhagic septicaemia, lumpy skin disease, foot and mouth disease and 16 
brucellosis, all of which have caused outbreaks in wildlife populations. From a starting population 17 
of 300, the disease-free population increased by an average of 228% over 100 years. Brucellosis 18 
with frequency-dependent transmission showed the highest average population declines (-97%), 19 
with population extinction occurring 16% of the time. Foot and mouth disease with frequency-20 
dependent transmission showed the lowest impact, with an average population increase of 21 
200%. Overall, acute infections with very high or low fatality had the lowest impact, whereas 22 
chronic infections produced the greatest population decline. These results may help disease 23 
management and surveillance strategies support wildlife conservation. 24 

Keywords: Bovine, disease transmission, prediction, population, wildlife conservation 25 

Introduction 26 

Livestock encroachment into wildlife habitats can drive disease transmission between 27 
wildlife and domestic livestock, which is a vital issue for both human public health and wildlife 28 
conservation. An effect of agricultural expansion and land-use change is to bring wildlife and 29 
livestock close to each other and increase the contact frequency and time between domestic and 30 
wildlife populations (1-3). This increased contact may increase the risk of disease transmission as 31 
they can share the same natural resources (e.g. grassland and water) (4). 32 

Infectious diseases can cause dramatic declines in wildlife populations, as demonstrated 33 
by chytridiomycosis, which has been implicated in the likely extinction of over 200 amphibian 34 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2024. ; https://doi.org/10.1101/2023.08.29.554960doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.29.554960
http://creativecommons.org/licenses/by/4.0/


species (5). Most infectious bovid pathogens are capable of infecting both domestic and wild 35 
species. For example, bighorn sheep populations declined from ovine respiratory disease 36 
(Mycoplasma ovipneumoniae) acquired when sharing the grazing areas with domestic sheep (6). 37 
Similarly, bovine brucellosis has been transmitted from domesticated yak to wild yak in China (7), 38 
and between bison, elk and domestic cattle in the USA (8). Brucellosis affects these bison and elk 39 
populations both indirectly and directly as the seropositive animals may be culled for 40 
management and directly as the pathogen affects animal reproductive systems (9). Critically, the 41 
impact of infectious diseases is determined by disease-specific traits, such as infection fatality 42 
rates (10). 43 

There are five wild bovids species (gaur, banteng, wild water buffalo, mainland serow 44 
and Chinese goral) that remain in Thailand. They are experiencing dramatic population declines 45 
from habitat destruction, illegal hunting (11), and resource competition with domestic livestock 46 
(12). Infectious diseases transmitted from contact with domestic cattle could cause further 47 
declines. Several diseases circulate in Thai cattle, including endemic diseases like bovine 48 
tuberculosis (bTB) from Mycobacterium bovis (13), and new infectious diseases, such as the 49 
recent lumpy skin disease (LSD) (14). 50 

Infectious disease modelling provides a tool to understand disease dynamics better and 51 
predict the potential consequences of infection in a population, helping disease prevention and 52 
control programs (15), particularly as collecting field data or conducting experiments on some 53 
pathogens and hosts is extremely challenging. Models have, for example, been used to determine 54 
the potential impact of disease on endangered species, such as canine distemper in the Amur 55 
tiger (16). Although models contain uncertainty and may not cover all factors, predictions can 56 
guide the policies and help decision-making (17). 57 

Here, we use mathematical models to explore the potential consequences of six major 58 
bovine infectious diseases on endangered Thai wild bovid populations. Our aim is to estimate the 59 
potential population changes after the disease is introduced in the population from a reservoir, 60 
such as domestic cattle. The diseases are anthrax, haemorrhagic septicaemia (HS), bTB, LSD, foot 61 
and mouth disease (FMD) and bovine brucellosis, which all infect a range of bovid species, are 62 
distributed worldwide, including Thailand, and have different characteristics. Our study 63 
predominantly focuses on the gaur (Bos gaurus) population as their populations are well 64 
described plus, of five species of Thai wild bovids, they have the greatest opportunity to interact 65 
with domestic livestock and humans since they are the most likely to share space and resources 66 
(e.g. agricultural areas, watering holes) (18, 19). We hypothesised that acute infections with very 67 
low and very high infection fatality rates would have less impact on populations than those with 68 
moderate mortality or chronic diseases, the latter high fatality case because they ‘burn out’ by 69 
removing infectious individuals rapidly (10). The study aims to help infectious disease surveillance 70 
and monitoring prioritisation strategies in wildlife and livestock for wild bovid conservation. 71 
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Material and methods 72 

1. Model construction 73 

1.1. Population dynamic models 74 

We selected gaur populations as a model system because they are widespread across 75 
Thailand, overlap with livestock and people, and demographic data are available (18, 20). 76 
Further, their demography is similar to other threatened wild bovids (Figure S1 in supplementary 77 
material). We used the same model structure for all species. The demographic parameters for 78 
the remaining four bovid species used in simulations are provided in Table 2 because they exhibit 79 
variations in population sizes, social behaviours, and distribution, making them interesting for 80 
further infectious disease modelling of population impact.  81 

We assumed demographic parameters were otherwise constant. If N is the total animal 82 
population, Na is the adult population, Nsa is the subadult population, Nc is the calf population 83 
and µ is the annual birth rate. Only adult females were assumed to add new calves to the 84 
population, which enter the susceptible class at a birth rate µbNa. Animals can leave their 85 
compartments at the natural death rate (µa, µsa or µc) or age from calf to subadult (δc) and from 86 
subadult to adult (δsa). The natural death rate was estimated based on the mortality rate of wild 87 
ungulates and gaur in captivity (21). The initial population was 300 animals, based on the gaur 88 
population size in the Khao Pheang Ma non-hunting area (8 km2) in Thailand (22, 23). Thus, the 89 
population dynamic model equations at time t can be as following: 90 

𝑁! 					= 			𝑁" +	𝑁#$ +	𝑁$ 91 

𝑑𝑁"
𝑑𝑡 		= 	 𝜇%𝑁$ + 𝛿"𝑁" − 𝜇"𝑁"  92 

𝑑𝑁#$
𝑑𝑡 = 	𝛿"𝑁" − 𝛿#$𝑁#$ − 𝜇#$𝑁#$ 93 

𝑑𝑁$
𝑑𝑡 		= 	 𝛿#$𝑁#$−𝜇$𝑁$ 94 

  (Equation 1)  95 
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1.2. Infectious disease models 96 

We used the same age-structured population as the baseline model (Equation 1) and 97 
incorporated compartments with different parameter values for building the disease models.  98 

We modelled the diseases based on Susceptible-Infected-Recovered (SIR) models and 99 
modified them based on the disease parameters of domestic animals (e.g. dairy cattle, 100 
domesticated buffalo) and wildlife from previous studies and background knowledge. Table 1 101 
presents the diseases and model structures we used, and a flow diagram is in the supplementary 102 
materials. For the compartments used in the models, S denotes the number of susceptible 103 
animals, E denotes the number of exposed animals, I denotes the number of infected animals, 104 
R denotes the number of recovered animals, and M denotes the number of calves with 105 
maternally derived immunity.  106 

We selected six infectious diseases which have been reported to cause outbreaks in wild 107 
ungulates and livestock populations in several places, including Thailand, which are: anthrax 108 
(Bacillus anthracis) with an SI structure, bovine tuberculosis (bTB-Mycobacterium bovis) with an 109 
SEI structure, haemorrhagic septicaemia (HS-Pasteurella multocida) with an SIRS structure, 110 
lumpy skin disease (LSD) with an SEIRS structure, and both foot and mouth disease (FMD) and 111 
brucellosis (Brucella abortus) with an SIERMS/E structure. Table 2 displays the disease 112 
parameters used in the models. These infections have a range of key parameters of interest. They 113 
include infectious diseases with very short (effectively no) incubation periods (e.g. HS) to long 114 
incubation periods (e.g. bTB), and very high mortality (e.g. anthrax) to low mortality (e.g. LSD, 115 
FMD). 116 

Table 1 Diseases, pathogens, and the structures adopted in the modelling procedures. 117 

Disease Pathogens Model structure 
Anthrax Bacillus anthracis S → I 
Bovine TB Mycobacterium tuberculosis S → E → I 
Haemorrhagic septicaemia Pasteurella multocida S → I → R → S 
Lumpy Skin Disease Capripoxvirus S → E → I → R → S 
Foot and Mouth Disease Aphthovirus S → E → I → R → M → S/E 
Bovine brucellosis Brucella abortus S → E → I → R → M → S/E 

1.3. Mode of transmission 118 

Different transmission types can provide different model results (24). Here, we 119 
considered two disease transmission modes; 1) density-dependent (DD) and 2) frequency-120 
dependent (FD). DD transmission is assumed when the contact rate is proportionate to the 121 
population density, while FD transmission is assumed when the contact rate is independent of 122 
the population density (24, 25). We assumed the transmission modes for each pathogen and 123 
then compared them by introducing both transmission modes because, for some infections, 124 
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there is no clear evidence of which type suits the pathogen’s transmissions and these represent 125 
extreme situations of population change for both transmission modes (10). 126 

Transmission is often likely a mix of both DD and FD in many cases such as FMD and bTB 127 
(26, 27). For the transmission rate (β), we used parameter values based on the reference studies 128 
with the reported FD or DD transmission (Table 2), which differs among infectious diseases. 129 
However, to test the sensitivity of the results to these assumptions, we also rescaled the β rate 130 
to all models to examine the consistency of the results between FD and DD using Equations 2: 131 

𝛽&& =	
𝛽'&
𝑁  132 

𝛽'& =	𝛽&&	𝑥	𝑁 (Equation 2) 133 

1.4. Infection reintroduction 134 

To model the repeated introduction of an infection from a reservoir such as domestic 135 
cattle (e.g. for FMD) or the environment (e.g. anthrax), we repeatedly reintroduced infection 136 
into our population at rate ϵ independently of any infection in the population. This 137 
reintroduction means the impact of infections are not simply estimated by the basic 138 
reproductive number (R0), the average number of secondary cases caused by a primary case in 139 
a completely susceptible population. 140 

Anthrax (Bacillus anthracis) 141 

To model anthrax, we initially assumed the transmission is FD. We used an SI model (28, 142 
29) with the transmission rate for FD at 0.01, then rescaled to FD using Equation 2. We assumed 143 
that S animals are exposed to infected animals and then become infectious (I) at rate β. All 144 
infected animals (I) die (100% mortality) (30) at disease-induced death rate (ρ) and the infectious 145 
rate (γ), γρI. 146 

Bovine tuberculosis (bTB - Mycobacterium tuberculosis) 147 

Bovine TB is a chronic and zoonotic infection in livestock and wildlife worldwide (31). 148 
We first assumed DD transmission and used an SEI structure for modelling. The flow of the model 149 
starts from S, which are exposed to I animals and become exposed (E) at transmission rate (β); 150 
then E animals enter the I compartment at the incubation rate (σ). As we assume lifelong 151 
infection without recovery (31); I animals either die with an age-specific disease-induced fatality 152 
rate (ρ) or natural death rate (µ). S and E adults give birth with the normal birth rate µb(Sa + Ea) 153 
but I adults are assumed to have a lower fecundity rate (reduced by 27%, (32) at µbIIa. Bovine TB 154 
has a long incubation period from several months up to 7 years (33), so here we used 5 months 155 
based on the mean incubation period in the African buffalo (31). We also assumed there’s no 156 
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vertical or pseudo-vertical (e.g. in utero or calf rearing) transmission as it is uncommon for bTb 157 
(34, 35). 158 

Haemorrhagic septicaemia (HS - Pasteurella multocida) 159 

HS is a fatal septicaemic disease in cattle and buffalo. We assume DD transmission based 160 
on a previous HS modelling study (36). We used an SIRS model and excluded an E class as the 161 
disease can show acute clinical signs with a short incubation period of ∼ 18-20 hours (37) 162 
animals become I at the transmission rate (β). I animals may die from HS at the disease-induced 163 
fatality rate (ρ) or survive and become recovered (R) at infectious rate (1/γ). We calculated the 164 
fatality rate in the cattle population to range from 0.53% to 5.84%. This was determined by 165 
dividing the number of deaths from HS (0.21%, assumed from the percentage of deaths from 166 
bovine respiratory disease, (38) by the minimum (3.59%) and maximum (40%) prevalence of 167 
seropositive animals from P. multocida infected herds (39, 40). Therefore, we used two infection 168 
fatality rates (0.53 and 5.83%), since case fatality is underestimated, as a large proportion of 169 
animals are infected but do not develop clinical signs of diseases. R animals reenter S when they 170 
lose immunity at the immunity loss rate (ω). We used the proportion of susceptible animals (0.6) 171 
to calculate R0 and therefore the β rate using the equation: R0 = (1/ (1− I )) = 1/S. 172 

Lumpy skin disease (LSD - Lumpy skin disease virus, Capripoxvirus) 173 

We used an SEIRS structure for LSD. We inserted E and R compartments as the disease 174 
has an incubation period of between 7 and 14 days and a recovery period of around 4 - 6 months. 175 
We initially assumed the transmission is DD as the cattle density could be one of the risk factors 176 
to increase the transmission rate within-herd. However, we used both FD and DD β values 177 
because the published work has reported differences in incidence rates associated with different 178 
transmission modes (41). We assumed different birth rates for I females (µbI) from the natural 179 
birth rate, because LSD can reduce the fertility rate by 10% (42). Also, we applied the highest 180 
fatality rate in calves (5%) and lower mortality rates to subadults (3%) and adults (1%) (43). 181 

Foot and mouth disease (FMD - Foot-and-mouth disease virus, Aphthovirus) & Bovine 182 
Brucellosis (Brucella abortus) 183 

We initially assumed the transmission was FD for both FMD and brucellosis. An 184 
SEIRMS/E model was applied for FMD and brucellosis. We considered the SEIR model 185 
appropriate for both diseases. Recovered FMD and brucellosis cows can pass immunity to their 186 
offspring. Therefore, we added a maternally-derived immunity (M) compartment, which refers 187 
to the calves born with maternally-derived immunity from recovered mothers (Ra). We assumed 188 
that if recovered adults (Ra) calve at the birth rate (µb), a calf will receive maternal immunity and 189 
stay in M compartment for an average of 6 months (44) before immunity wanes and they become 190 
susceptible again (Sm) at a loss of immunity rate (ωm). Sm calves can either become an exposed 191 
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calf (Ec) if there is contact with I or enter a susceptible subadult (Ssa) compartment at a loss of 192 
immunity rate plus calf ageing rate: 1/δc = 1/(δm + ωm) or 1/δm = 1/(δc - ωm) if they have no contact 193 
with I to ensure that animals spend the same average time in the calf age class (c). 194 

Vertical transmission from mothers to calves can be a consequence of infection among 195 
infected mothers with different probabilities for FMD (∼ 0.5) and brucellosis (∼ 0.9). Infectious 196 
adults are assumed to produce an infectious calf (Ic) entering I at the birth rate µbI. The 197 
proportion of infected females producing infected calf denotes α. So, an infected female can 198 
produce an infected calf at a rate αµbIIa and produce a susceptible calf at a rate (1−α)µbIIa. 199 

The mathematical ordinary differential equations for the calf population (Xc) are:  200 

 201 
 (Equation 3) 202 

The system of ordinary differential equations and all other disease model equations and 203 
diagrams can be found in the supplementary materials. Note that all equations are subsets or 204 
variants of Equation 3. 205 

2. Model simulations 206 

Due to the small population size of gaur and other endangered bovids, we were 207 
interested in how infections might lead to their decline. Additionally, as we aimed to allow 208 
infections to go extinct in populations if they could not be sustained. Therefore, we chose 209 
stochastic models for this study because they effectively capture the stochastic nature of wildlife 210 
populations using random values. This randomness introduces variation in population sizes, 211 
which significantly affects small population sizes and long-term simulations (45). First, we built 212 
the population dynamics model without infectious disease classes and parameters as a baseline 213 
model (10). Then, we introduced an infectious adult (Ia = 1) to the susceptible (S) population. We 214 
assumed that I would infect S at a transmission rate, β, and enter the next compartment based 215 
on the model structure. Demography (birth rate, natural death rate and ageing rate), the external 216 
force of infection (ϵ), and disease-induced fatality (ρ) were included in all disease models. The 217 
stochastic simulation was performed using the Poisson distribution to calculate the probability 218 
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of events by multiplying the rate parameters i with a time step through Gillespie’s τ-leap 219 
algorithm (τ = 1) (Equation 4). 220 

 Probi = Poisson(τ ∗ ratei ∗ X)    (Equation 4) 221 

Where X is a state (e.g. S, I, R). All models were simulated for 100 years, and the 222 
stochastic models were simulated 100 times to generate the mean and to understand the 223 
uncertainty. We modelled the population change for 100 years, as long-term simulations of at 224 
least 10 years or three generations of species is recommended to explore population trends, and 225 
short-term time series may lead to misleading conclusions (46). 226 

The parameter values used for modelling were collected from the literature review and 227 
observational data (Table 2). 228 

3. Measuring impact 229 

We compared the difference in total population (N) between no infection and disease 230 
models by calculating the average percentage of the population change using the total 231 
population at the start (Nt=0) minus the total population at the end, (Nt=100) of the simulation 232 
time, divided by Nt=0 and converted this to a percentage, then divided by 100 times of simulations, 233 
using the following equation: 234 

  (Equation 5) 235 

We used a principal component analysis (PCA) to find which diseases showed similar 236 
traits group by four disease parameters (transmission rate, incubation rate, infectious rate and 237 
fatality rate) which were included in all models and then coloured the values based on the 238 
percentage of the total population change. We performed PCA in R software using the PCATools 239 
package (47). The highest percentage of the first two axes contributed most to the population 240 
percentage changes. 241 

4. Code availability 242 

We used R Core Team (48) to simulate all the models and for further analysis. The R 243 
code for reproducing the analyses is available at a GitHub repository 244 
https://github.com/Wantidah/InfectiousModel.  245 

Results 246 

1. Disease free model 247 
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We developed stochastic models for a gaur population, including a baseline model 248 
without infection and six infectious disease models. The baseline model of the gaur population 249 
demonstrated significant population growth, increasing from 300 to an average of 685 (range 250 
113 - 1469) additional animals, which is approximately a 228% (38 - 489%) increase over the 100 251 
years simulated. The average adult and subadult populations consistently increased, while the 252 
calf population slightly decreased from 95 to 82 animals (19 - 279) on average (Figure 1: A&I). 253 
This gave us a disease-free population to model the impact of disease introduction into. 254 

The population dynamics of the four other wild bovid species in Thailand show similar 255 
trends to the gaur population (Figure S1, Figure 1), so we assumed there will be similar trends 256 
for the other two large bovids (banteng, wild water buffalo) that have similar herd sizes, 257 
population demography (e.g. age-structured, birth rate, death rate) and social behaviours to gaur 258 
(49). 259 

However, the population dynamics may differ from the medium-sized bovids (Chinese 260 
goral and mainland serow) that live in smaller groups or even pairs and can be isolated from each 261 
other (50). 262 

2. Disease impacts 263 

Brucellosis had the greatest impact on population decline, while FMD had the lowest 264 
impact. Our PCA quantitatively shows that pathogens with longer incubation periods, chronic 265 
infection and medium to low fatality lead to greater population decline in smaller populations of 266 
endangered bovids than a high fatality or high transmission rate alone. Most diseases were 267 
grouped by similar traits which can see in the PCA biplot for brucellosis, bTB and LSD, while a few 268 
variations were seen for HS, and the FMD FD model was something of an outlier, (rescaling DD) 269 
at β = 6552 (Figure S17 and Figure S18). The greatest contribution to the percentage population 270 
change in the first axis was the infectious rate (55%) and fatality rate (42%). For the second axis, 271 
is the incubation period (74%). The first axis, PC1, has 43.25% and second axis PC2 has 31.61% of 272 
the variance explained. 273 

Using different parameter values, fatality rates and modes of transmission yielded 274 
different effects on the modelled populations for HS, FMD, LSD and brucellosis. FD brucellosis 275 
had the largest population impact, yet DD brucellosis suppressed population growth but led to a 276 
stable population. In contrast, FD transmission of HS, LSD and FMD showed a continued 277 
population increase. Anthrax and bTB showed only a slight difference in the average population 278 
change between the two transmission modes (Figure 3; (A)). Simply rescaling the β with 279 
modelling FD or DD transmission had limited changes, which demonstrated consistency in the 280 
population change within the same infectious disease. Rescaling the β also reduced the 281 
probability of local extinction in the gaur population (N = 0) for FD brucellosis. Figure 2 and Figure 282 
3 present the results of rescaling.  283 
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For LSD, FMD and brucellosis highlighting differences in population trends between FD 284 
and DD transmissions. We selected some important model results in Figure 1, and all modelling 285 
results and diagrams for infectious diseases and population changes can be found in the 286 
supplementary material, Figure S2 – Figure S16. 287 

Anthrax 288 

There is no substantial impact on the population after introducing anthrax into the 289 
population, with a similar population change observed between FD and DD models. Both 290 
transmission rates showed an increase in population, with a 57% increase for FD and 51% for 291 
rescaled DD model. No massive die offs were predicted, with only 1-3 infectious animals 292 
predicted for each outbreak for both transmission modes, consistent with the low transmission 293 
rate (β = 0.01) applied and a rare case of animal-to-animal transmission. 294 

Bovine tuberculosis 295 

There was uncertainty regarding the mode of transmission in bTB models, however, (31) 296 
showed limited qualitative differences in model outcomes when they used FD or DD 297 
transmission. Here, we saw similar results in that overall the populations tended to decline 298 
gradually through the simulation period with a 88 - 89% decline from the initial population. 299 
Rescaling the β transmission parameter also led to limited qualitative differences in population 300 
trends, but we did see differences in predicted classes; for example, this increased or decreased 301 
the number of infected individuals over time (i.e., higher or lower prevalence) (see 302 
supplementary materials, Figure S5 – S6). 303 

Haemorrhagic septicaemia 304 

For HS, we found that the impact of infection was less dependent on the mode of 305 
transmission than case fatality. A ten-fold increase in fatality rate led to a decline in the total 306 
population change (Figure S8 – S9). 307 

Lumpy skin disease 308 

For LSD, we found that the two published transmission parameter values (0.008 and 309 
0.032) led to differing outcomes that also depended on the mode of transmission (41). Whilst 310 
rescaling the parameters did not lead to qualitative differences, the use of the parameter values 311 
estimated from direct density-dependent transmission within herds from 312 
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Table 2 Parameters and variables. 313 
  Species    
Symbol Description Gaur Banteng Buffalo Serow Goral  Units References 
N Starting total population 300 470 69 120 (assume) 292 (assume)  animal  
µb Birth rate 0.34 0.35 0.40 0.70 0.50  year-1 (22, 51, 52) 

µc Calf death rate 0.27 0.26 0.27 0.50 0.45  year-1 (21, 53, 54) 

µsa Subadult death rate 0.15 0.26 0.15 0.15 0.28  year-1 (21, 55-57) 

µa Adult death rate 0.17 0.15 0.20 0.28 0.18  year-1 (21, 55-57) 

δc Calf ageing 0.0027 0.0027 0.0027 0.0027 0.0027  day−1 (58) 

δsa Subadult ageing 0.0009 0.0009 0.0009 0.0009 0.0009  day−1 (58) 

  Disease   

  Antrax bTB HS LSD FMD Brucellosis   

β Disease transmission rate 0.01- 3x10−5 1.4x10−3 0.330 0.008-0.032 0.15-0.026 5.5x10−3 - 5.5x10−6 day−1 (29, 31, 36, 41, 59-61)  

𝜎 1/Incubation period 0.14 6.7x10−3 - 0.14 0.13 0.07 day−1 (31, 41, 62-65) 

𝛾 1/Infectious period 1 - 0.33 0.03 0.20 0.0014 day−1 (66-69) 

ρc Disease-induced fatality in calf 1 0 0.53 - 5.84 0.05 0.10 0.10 day−1 (30, 32, 38, 43, 70, 71) 

ρsa 
Disease-induced fatality in 
subadult 1 0 0.53 - 5.84 0.03 0.05 0.05 day−1 (30, 32, 38, 43, 70, 71) 

ρa 
Disease-induced fatality in 
adult 1 0.11 0.53 - 5.84 0.01 0.03 0.03 day−1 (30, 32, 38, 43, 70, 71) 

α 
Infected female will produce 
infected calf 0 - - - 0.50 0.9 day−1 (61) 

µbI 
Birth rate for infectious 
individuals - 6.8x10-4 - 8x10-4 8x10-4 5x10-4 day−1 (32, 42, 61) 

ωc Losing of immunity for calf - - 5.6x10−3 5.6x10−3 8.3x10-3 5.6x10−3 day−1 (66, 72-74) 

ωsa Losing of immunity for subadult - - 5.6x10−3 5.6x10−3 8.3x10-3 5.6x10−3 day−1 (66, 72-74)  

ωa Losing of immunity for adult - - 5.6x10−3 5.6x10−3 1.8x10-3 5.6x10−3 day−1 (66, 72-74) 

ωm Waning of maternal immunity - - - - 6.9x10-3 5.6x10−3 day−1 (66, 73) 

ϵ External force of infection rate 2x10−5 2x10−5 2x10−5 2x10−5 2x10−5 2x10−5 day−1 (10) 

[To interpret the parameters, any rate r can be converted to probability 𝑃(𝑡) using 1 − 𝑒𝑥𝑝!", where t is the time period, e.g. for 𝜖, 𝑃(𝑡) = 	1 −314 
𝑒𝑥𝑝#" = 1 −	𝑒𝑥𝑝$%&'!"∗)*+	 = 0.007, or if the total S in the population is 300, ≈ 2 events per year. The dashed line (-) means no parameters were 315 
used in the models.] 316 
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(41) led to a population decline. However, the estimate from the indirect transmission 317 
(presumably via mechanical transmission from flies) did not and the modelled population still 318 
grew by 155% with FD LSD (Figure S11). 319 

Foot and mouth disease 320 

The least impact on the modelled population was seen in the FMD model with FD 321 
transmission, which predicted the total population growing by 200%, around 28% less than the 322 
disease-free population. Frequency-dependent FMD transmission with a β transmission rate of 323 
0.115 and the rescaled DD parameter 3e-4 similarly had limited impact on the population growth 324 
with an increasing population over time (Figure 2). Increasing β in the DD model, however, 325 
decreased the total population by - 80% at β = 21, which had a greater impact on the population 326 
change from 130% at β = 3e-4. FMD also showed a periodic pattern with outbreaks around every 327 
3 - 5 years (Figure 1). Increasing the β rate from 0.11 to 21 in FD FMD models led to similar 328 
dynamics close to DD transmission (Figure S13 – Figure S14). 329 

Brucellosis 330 

Brucellosis with FD transmission led to a 97% decrease in the average population change 331 
(Figure 2 (H)) and was most likely to drive the population to local extinction with 16% of the total 332 
simulations leading to extinction, mostly occurring from year 80-100 (Figure 1 (H, P), and Figure 333 
S15). 334 
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 335 

Figure 1 Modelled gaur population dynamics with and without disease: A-H are single example 336 
stochastic simulations for 100 years; I-P are 100 stochastic simulations for 100 years. Mean 337 
values are in solid lines. A and I are no infection models and the others are the infectious disease 338 
models where bTB is bovine tuberculosis; HS haemorrhagic septicaemia; LSD lumpy skin disease; 339 
and FMD foot and mouth disease. The entire model results, including all disease parameters used 340 
in the simulations, can be found in the supplementary materials. 341 
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Figure 2 Population dynamics for LSD, FMD and brucellosis with different transmission modes 342 
and rescaled β transmission coefficient values to isolate the effect of the mode of transmission. 343 
A, D, G (left) are DD models; B, E, H (centre) are FD models, and C, F, I (right) are DD models with 344 
rescaled β transmission of FD parameters. Rescaling LSD (A-B) and FMD (D-E) parameters have 345 
limited impact over the period modelled, but rescaling the brucellosis β shows a reduction in FD 346 
transmission. 347 
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 348 

Figure 3 Overall modelled gaur population changes for each infection. Shown are the 100 results 349 
after 100 years of 100 stochastic simulations. The x-axis is the type of disease transmission and y 350 
axis is the population change in percentage. A) (top) compares no infection, FD and DD for 351 
anthrax, HS and bTB; B) (bottom) compares FD and DD transmission and DD* that uses the 352 
rescaled β transmission from the FD model with DD transmission for LSD, FMD, and brucellosis. 353 

Discussion 354 

Interactions between wildlife and livestock can facilitate the transmission of emerging 355 
infectious diseases (75), making this interface an essential area of concern to public health, 356 
animal production and wildlife conservation. We identified the potential consequences and 357 
severity of six bovine infectious diseases present in Thailand (anthrax, HS, bTB, LSD, FMD and 358 
brucellosis) in a model wild bovid population, using different infectious disease model 359 
compartments based on the current literature (Table 2). Brucellosis had the greatest population 360 
impacts and FMD the lowest, despite the same model structures being used for these two 361 
pathogens. Overall, our base model predicted population growth with varying impacts of 362 
diseases, and our analyses matched our expectation that those acute infections with very high 363 
fatality rates (anthrax and HS) have less impact than chronic infections with lower infectious rates 364 
(bTB, brucellosis), as infected individuals are rapidly removed from populations (10). Therefore, 365 
our analyses suggest that pathogens with longer incubation periods, chronic infection and low 366 
to medium fatality rates have a greater negative impact on population growth in small 367 
populations of endangered bovids (Figure 1 – Figure 3, Figure S5 – S6 and S15). This is most likely 368 
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because these traits allow infections to persist, allowing long-term infection effects on 369 
demographic structures (e.g. reduced birth rate, increased death rate). 370 

We used 100% fatality rates in all infected animals as the worst-case scenario for the 371 
anthrax model, which led to limited impact over the 100 years, likely because of this rapid 372 
removal of infected individuals (I), despite repeated reintroduction of infection (10). We first 373 
considered anthrax transmission between infected and susceptible animals as FD transmission, 374 
assuming contact rate is more influential than host density (29). However, the transmission mode 375 
could also be DD, based on the density of spores in the contaminated environment (e.g. infected 376 
carcass, soil) (28) and the cattle density that could contribute to between-species (76). Thus, we 377 
modelled repeated introductions through ϵ to cover the external force of infections, including 378 
the risk of disease transmission from cattle, other than within-herd transmission. 379 

Bovine tuberculosis causes chronic, fatal infection and reduces pregnancy rates and, 380 
therefore, the population growth of wild bovids (32, 77). There is no current evidence of bTB 381 
infection driven population declines in Asian wild bovids, however our study found that, 382 
regardless of both transmission modes, the long-term effect of bTB would be to reduce the 383 
expected total population by around 88-89%. This is similar to findings by Jolles et al. (2005) (32), 384 
who showed that bTB persisted in African buffalo populations and reduced adult buffalo 385 
numbers primarily through mortality of animals more than 4.5 years old. The transmission 386 
coefficient (β) was noted as one of the most important parameters for bTB in African buffalo (31). 387 
In our work, we found consistent population dynamics between FD and DD transmission, defined 388 
by similar trends and percentages of population change, when converting β between the original 389 
value (from several studies) and the rescaled values (Figure 2 – Figure 3). This is likely due to the 390 
duration of the infection, which might increase the probability of contact with infectious animals 391 
in the population and the number of transmissions. 392 

For HS, many animals are infected but do not develop clinical signs, making it difficult to 393 
detect an infected animals. Further, variable clinical signs make positive cases difficult to detect, 394 
therefore the case fatality rate is normally substantially higher than the actual infection fatality 395 
rate. In our study, we calculated the fatality rate using the prevalence of seropositive animals 396 
(max = 40%) from reported studies of cattle populations, and this substantially decreased the 397 
case fatality from 90% to around 6% of animals (40, 78). Our model shows that changing the 398 
mortality from 0.53% to 5.8% affects the total population numbers more than changing the 399 
transmission modes, by more strongly reducing the population sizes (Figure S8 – Figure S9). HS 400 
antibodies were found in free-ranging buffalo in Asia so this population might be a reservoir, but 401 
this needs further investigation (37). HS is endemic among cattle in Thailand (78), and mortality 402 
in wild ungulates has been reported historically (79), so the mortality and infection status of HS 403 
should be considered in the mitigation plans for endangered species (e.g. wild water buffalo and 404 
banteng).  405 
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Both FMD and LSD with FD transmission had the least impact on populations, with acute, 406 
short infections with lower overall mortality (74, 80). FMDV in particular, is highly contagious 407 
among cattle with a very high β coefficient compared to the other diseases (27). Yet, although 408 
Beck-Johnson, Gorsich (27) found little effect of FMD with either transmission modes within-409 
herds, our results showed that DD transmission led to greater population declines, as did 410 
rescaling the parameter used for FD models. The reason for the latter observation is not clear 411 
but might be because the dynamics with reintroduction allow more infection to persist and so 412 
suppress the population (Figure 2). Note that with reported wild bovid herd sizes, acute 413 
transmission is unlikely to allow FMDV to persist, but reintroductions from cattle reservoirs 414 
(modelled through ϵ) are likely (73). Our result for FMD DD transmission also showed cyclic 415 
patterns in outbreaks consistent with seasonal patterns of outbreaks observed in Thailand (81). 416 

We found that brucellosis with FD transmission and its reported β rate might cause 417 
extinction 16% of the time, whereas DD transmission (β  = 5e-6) may suppress population growth, 418 
but not enough to cause population declines and even with the published FD rate rescaled (β  = 419 
1e-5) and used in a DD model, this caused declines but not extinctions (Figure 3; (B)). Brucellosis 420 
has caused population declines among African buffalo, especially when there is co-infection with 421 
tuberculosis (82). However, brucellosis only caused limited population growth impacts in 422 
American bison, even though the disease persisted in the population over time (61, 83). In 423 
Dobson and Meagher’s study (61), their FD brucellosis models showed bison populations would 424 
increase in numbers, whereas our models predicted a decrease, perhaps because our model 425 
species’ population size and structure differed from their study. Notably, Brucella can infect 426 
multiple species, and the transmission source may not be obvious when multiple species interact. 427 
For example, brucellosis outbreaks in Yellowstone National Park, USA, were not from wild bison 428 
as first thought, with elk the likely primary host (84). Understanding the potential transmission 429 
among and from other wild Asian ungulates may be necessary to fully understand potential 430 
brucellosis impacts. 431 

We assumed a single, closed (no migration) population with constant natural birth and 432 
death rates. Therefore, our models explore the intrinsic population dynamics without 433 
considering the influence of other positive (e.g. conservation) or negative factors (e.g. habitat 434 
destruction, competition). Furthermore, it is unclear what population changes occur during 435 
migration (85), so a closed population model can only simulate within-herd dynamics and reflect 436 
the population impacts in a small population, such as in small protected areas (20, 22). 437 

Selecting the appropriate transmission mode for modelling is challenging (86). The 438 
infectious disease parameter values themselves are mostly estimated from livestock outbreak 439 
data, which can vary among the regions. Rarely is infection ‘natural’ without intervention 440 
through disease control (27). Although the transmission type for some pathogens have been 441 
recorded as FD or DD in previous studies, these were mainly conducted under farm husbandry 442 
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or experimental conditions in captive or closed systems. These conditions significantly allow 443 
animal density to affect contact rates. However, our study focused on wildlife populations that 444 
are distributed in areas in which the frequency of contact could have more influence. Moreover, 445 
some infectious diseases can display aspects of FD and DD depending on the conditions, such as 446 
within- or between herd transmission, herd size, density, contact with other reservoirs and 447 
contact mode (indirect, direct). For example, the bTB transmission rate can be increased 448 
correlated to herd size if the area is stable because the density of animals is increased (87). Also, 449 
the transmission mode for anthrax spores from animal to animal is FD, but from the environment 450 
to an animal is based on the density of the spores in the areas. We, therefore, took the strategy 451 
of assuming the most extreme scenarios, fully FD and DD, and used both for modelling. 452 

Our models also added the external force of infection (ϵ), which represents the re-453 
introduction of pathogens. ϵ is assumed to include transmission from other sources of infection 454 
other than just infectious animals, such as transmission due to environmental factors (e.g. soil, 455 
carcasses) or vectors (e.g. blood-sucking fly) to susceptible animals (10). This transmission can 456 
theoretically cause population extinctions if agents have high case fatality rates. Here, we chose 457 
a relatively high reintroduction rate (∼ 2 per year into the initial population), which likely 458 
represents a worst-case scenario. However, to improve this study, we encourage adding the 459 
specific environmental factors for each disease and incorporating spatial analyses (88, 89). 460 

Further studies might also consider adding the potential reservoir hosts and their 461 
dynamics into the models by building two or more host models to examine the transmission 462 
route among the potential hosts (90-94). Modelling coinfection is another important point as 463 
there are interactions between infections such as FMDV and HS, which seen as a secondary 464 
infection in FMD outbreaks (95), or between brucellosis and bTB (82). However, our analyses 465 
provide an approach to understanding the relative likely impact of common endemic and 466 
emerging diseases with different traits and is a tool for understanding gaps in disease surveillance 467 
and control systems by using the prediction modelling before implementing actions. Future 468 
analyses could also determine the impact of using an Erlang-distributed waiting time, rather than 469 
an exponential distribution, on those parameters with large amounts of variation, particularly 470 
the incubation period (96). Another further analysis is a sensitivity analysis that can be applied 471 
to identify the degree of influence of the disease parameters on the model output, in this case, 472 
population change. It also suggests which state of disease transmission should prompt action and 473 
aids in selecting optimal control measures (97).  474 

Strengthening disease surveillance and mitigation programs may be further achieved by 475 
targeting virulent diseases through passive and active surveillance data, such as collecting the 476 
frequency of infections, number and species of wild ungulates, behaviour and time spent 477 
together between wild and domestic livestock (particularly in the high-risk areas) (98, 99). It may 478 
be useful for disease mitigation to largely focus on domestic animal disease control and 479 
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preventing transmission to wildlife as an amenable approach (98). Moreover, conserving wildlife 480 
habitat can reduce the probability of contact and the risk of disease transmission between 481 
wildlife and domestic livestock (3, 100). Limiting the contact between wildlife and livestock could 482 
reduce species extinction (101). 483 

With applications in wildlife conservation, a reproducible modelling framework is 484 
advantageous for targeting pathogens that threaten other wildlife populations with similar 485 
assumptions. Although our infectious disease modelling focused on the traits of pathogens in 486 
one species population, our method and framework may be applicable to other wildlife 487 
populations by incorporating their population demographics and disease parameters. This 488 
framework is also beneficial for endangered species, enabling the simulation of various scenarios 489 
and the identification of potential disease threats, along with estimating the recovery period 490 
after introducing the infection.  491 

Conclusion 492 

Our study has provided a prediction of the potential consequence of disease in wild 493 
bovid populations considering six important bovine infectious diseases; anthrax, HS, bTB, LSD, 494 
FMD and brucellosis. The baseline population model shows a natural population growth of ∼ 495 
228%, suggesting maintaining healthy vulnerable populations could allow them to reestablish 496 
and overcome current levels of extinction threats while diseases and other factors may regulate 497 
population growth. The inclusion of different disease traits has consequences on the population 498 
numbers depending on the transmission, incubation, fatality and infectious rates. Brucellosis and 499 
bTB models show the greatest, long-term impact among all the models, whereas FMD and LSD 500 
showed the least impact, suggesting common but more chronic or ’slow’ infections with 501 
relatively high mortality may pose the greatest threat to smaller, threatened bovid populations. 502 
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