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ABSTRACT 
 

 
Heat pump water heaters are a promising technology to reduce energy use and 
greenhouse gas emissions. A key component is the water heating heat exchanger. Two 
multi-zone models of the double-wall counter-current flow heat exchanger (condenser 
and gas cooler models) for residential air-source heat pump water heaters were 
developed. These models were validated against available data in the open literature. 
They predicted heat exchanger size within -0.8% for a HFC-134a (with oil) condenser 
and within -14% for a CO2 gas cooler. The multi-zone model was significantly more 
accurate than one and three zone models. The models for a R410A subcritical heat 
pump and a CO2 transcritical heat pump were used to investigate the effect of key 
design parameters by varying water or refrigerant flow channel size for three water 
heating heat exchanger configurations: circular tube-in-tube, flat tube-on-tube, and 
twisted tube-in-tube. For the circular tube-in-tube configuration, refrigerant flow in 
the annulus (case B) performed better than refrigerant flow in the inner tube. The 
optimal flow channels for the circular tube-in-tube configuration case B with 0.1 mm 
thick air gap in the double wall were found to be id (inside diameter of the 1st tube) of 
8 mm and annulus [ iD (inside diameter of the 3rd tube) 2d− (outside diameter of the 
2nd tube)] of 1.5 mm for R410A and id  of 7 mm and 2dDi −  of 1.0 mm for R744.  The 
optimal flow channels for the flat tube-on-tube configuration with ib1 (major length of 
the refrigerant flow channel) and ib2 (major length of the water flow channel) both of 

9 mm were found to be ia1 (minor length of the refrigerant flow channel) and 

ia2 (minor length of the water flow channel) of 1.5 mm for R410A and ia1  of 1 mm 

and ia2  of 1.5 mm for R744. The optimal flow channels for the twisted tube-in-tube 
configuration were found to be id  of 7.94 mm and 1d (original inside diameter of 
twisted tube) of 12.7 mm for R410A and id  of 6.35 mm and 1d  of 9.525 mm for 
R744. At the optimal flow channel size in each configuration, heat exchanger weight 
of the flat tube-on-tube was lower than the circular tube-in-tube by about 34.4%  for 
R410A and by about 66.6% for R744. This was mainly due to elimination of the air 
gap resistance with the tube-on-tube configuration. Heat exchanger length, weight, 
and pumping power of the twisted tube-in-tube with 94% contact were significantly 
lower than the flat tube-on-tube by about 85%, 62%, and 97% respectively for R410A 
and by about 65%, 35.7%, and 98% respectively for R744. Overall, the flat tube-on-
tube and the twisted tube-in-tube configurations are most promising for the water 
heating heat exchanger in terms of the lowest investment and running costs 
respectively.  
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