Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A model for Improvement of Water Heating Heat Exchanger Designs for Residential Heat Pump Water Heaters

A thesis presented in fulfillment of the requirement for the degree of Master of Engineering at Massey University Palmerston North, New Zealand

Weerawoot Arunwattana

B.Sc. in Applied Physics M.Sc. in Thermal Technology 2010

ABSTRACT

Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. Two multi-zone models of the double-wall counter-current flow heat exchanger (condenser and gas cooler models) for residential air-source heat pump water heaters were developed. These models were validated against available data in the open literature. They predicted heat exchanger size within -0.8% for a HFC-134a (with oil) condenser and within -14% for a CO₂ gas cooler. The multi-zone model was significantly more accurate than one and three zone models. The models for a R410A subcritical heat pump and a CO₂ transcritical heat pump were used to investigate the effect of key design parameters by varying water or refrigerant flow channel size for three water heating heat exchanger configurations: circular tube-in-tube, flat tube-on-tube, and twisted tube-in-tube. For the circular tube-in-tube configuration, refrigerant flow in the annulus (case B) performed better than refrigerant flow in the inner tube. The optimal flow channels for the circular tube-in-tube configuration case B with 0.1 mm thick air gap in the double wall were found to be d_i (inside diameter of the 1st tube) of 8 mm and annulus [D_i (inside diameter of the 3rd tube) $-d_2$ (outside diameter of the 2^{nd} tube)] of 1.5 mm for R410A and d_i of 7 mm and $D_i - d_2$ of 1.0 mm for R744. The optimal flow channels for the flat tube-on-tube configuration with b_{μ} (major length of the refrigerant flow channel) and b_{2i} (major length of the water flow channel) both of 9 mm were found to be a_{1i} (minor length of the refrigerant flow channel) and a_{2i} (minor length of the water flow channel) of 1.5 mm for R410A and a_{1i} of 1 mm and a_{2i} of 1.5 mm for R744. The optimal flow channels for the twisted tube-in-tube configuration were found to be d_i of 7.94 mm and d_1 (original inside diameter of twisted tube) of 12.7 mm for R410A and d_i of 6.35 mm and d_1 of 9.525 mm for R744. At the optimal flow channel size in each configuration, heat exchanger weight of the flat tube-on-tube was lower than the circular tube-in-tube by about 34.4% for R410A and by about 66.6% for R744. This was mainly due to elimination of the air gap resistance with the tube-on-tube configuration. Heat exchanger length, weight, and pumping power of the twisted tube-in-tube with 94% contact were significantly lower than the flat tube-on-tube by about 85%, 62%, and 97% respectively for R410A and by about 65%, 35.7%, and 98% respectively for R744. Overall, the flat tube-ontube and the twisted tube-in-tube configurations are most promising for the water heating heat exchanger in terms of the lowest investment and running costs respectively.

ACKNOWLEDGMENT

Thanks in particular to my Supervisor Prof. Don Cleland and Dr. Jianfeng Wang (School of Engineering and Advanced Technology (SEAT) Massey University, NZ) for guiding the project.

Thanks to Ministry of Science and Technology, Thailand for supporting a scholarship.

Thanks to Prof. Eckhard A. Groll and Prof. Somehai Wongwises for helping on experimental data.

CONTENTS

ABS	TRA	CT	i
ACK	NOW	/LEDGMENT	ii
CON	ITEN	ΓS	iii
LIST	OF F	IGURES	vi
LIST	OF	ΓABLES	Х
1	INTI	RODUCTION	1
2	LITU	JRATURE REVIEW	3
	2.1	Hot Water Heating	3
		2.1.1 Requirements for hot water	3
		2.1.2 Energy consumption	4
		2.1.3 Hot water supply systems	7
	2.2	The Type of Domestic Hot Water Heaters	8
		2.2.1 Conventional storage hot water heaters	8
		2.2.2 Alternative hot water heaters	10
	2.3	Heat Pump System	11
		2.3.1 Air-source heat pump systems	12
		2.3.2 Ground-source heat pump systems	12
		2.3.3 Water-source heat pump systems	14
		2.3.4 Heat pump efficiency	15
	2.4	The Types of Air-Source Heat Pump Water Heaters	16
		2.4.1 Integral unit	16
		2.4.2 Standalone unit	16
	2.5	Vapour Compression Cycles	18
		2.5.1 Subcritical cycles	18
		2.5.2 Transcritical vapour compression cycles	20
	2.6	Other Heat Pump Cycles	23
	2.7	Standards	25
		2.7.1 Standard for the air-source heat pump water heaters	25
	•	2.7.2 Standard for the heat exchangers	26
	2.8	Refrigerants	26
	2.9	Heat Exchangers for Domestic Hot Water Heating	29
	2.10	Flow Passage	32
	2.11	Heat Exchanger Optimization	32
	2.12	Prediction of Heat Transfer Coefficients and Pressure Drops	34 24
		2.12.1 Subcritical cooling processes	34 24
		2.12.1.1 Single-phase flow regions	34 24
		2.12.1.1.1 Conventional channels with/without fin	34
		2.12.1.1.2 Micro channels	36
		2.12.1.1.3 Curved tubes	3/
		2.12.1.2 Condensation (Two phase) flow regions	42
		2.12.1.2.1 FIOW Maps	42
		2.12.1.2.2 Heat transfer and pressure drop	11
		CORTENATIONS WITHOUT OIL	44 15
		2.12.1.2.2.1 Conventional channels	43 14
		2.12.1.2.2.2 ivincro-iiii channels	40

		2.12.1.2.2.3 Micro channels	48
		2.12.1.2.3 Effect of lubricating oil	49
		2.12.2 Transcritical cooling processes	57
		2.12.2.1 CO_2 cooling processes without oil	57
		2.12.2.2 Effect of lubricating oil	58
	2.13	Conclusions	62
3	OBJ	ECTIVES	65
4	MO	DELING	66
	4.1	Multi-Zone Model of Water Heating Heat Exchangers	66
		4.1.1 General zone model	66
		4.1.2 Boundary zones	70
		4.1.3 Prediction of heat transfer coefficients and pressure drops	
		of fluid flow without oil in or on smooth tubes	70
		4.1.3.1 Refrigerant side	70
		4.1.3.1.1 Subcritical process	70
		4.1.3.1.1.1 De-superheating region	70
		4.1.3.1.1.2 Transition between	
		de-superheating and condensing	72
		4.1.3.1.1.3 Condensing region	73
		4.1.3.1.1.4 Transition between	
		condensing and sub-cooling	76
		4.1.3.1.1.5 Sub-cooling region	76
		4.1.3.1.2 Supercritical cooling process	76
		4.1.3.2 Water side	78
		4.1.4 Prediction of heat transfer coefficients and pressure drops	
		of fluid flow without oil in or on enhanced tubes	80
		4.1.5 Effect of oil	81
		4.1.6 Configurations of double wall heat exchanger	81
		4.1.6.1 Configuration <i>I</i> : Smooth circular tube-in-tube	
		with small air gap	81
		4.1.6.2 Configuration <i>II</i> : Flat tube-on-tube	82
		4.1.6.3 Configuration <i>III</i> : Twisted tube-in-tube	
		with small air gap	83
	4.2	Vapour Compression Heat Pump Cycle Model	88
		4.2.1 Compressor model	88
		4.2.2 Discharge line model	89
		4.2.3 Expansion model	90
		4.2.4 Evaporator model	90
		4.2.5 Suction line mode	91
		4.2.6 Coefficient of performance and pumping power	92
		4.2.7 Water pump effect	92
	4.3	Calculation Procedure	93
	4.4	Three-Zone Model of Condenser	95
	4.5	One-Zone model of Gas Cooler	98
	4.6	Number of Zones and Accuracy	100

5	MODEL VALIDATION				
	5.1	Introduction	102		
	5.2	Condensation Flow in Horizontal Smooth Tube of Pure			
		Alternative Refrigerants	107		
		5.2.1 Heat transfer correlation validation	107		
		5.2.2 Pressure drop correlation validation	109		
	5.3	Supercritical Flow in Horizontal Smooth Tube for CO ₂	109		
		5.3.1 Heat transfer correlation validation	110		
		5.3.2 Pressure drop correlation validation	111		
	5.4	Validation of Water Heating Heat Exchanger Models	112		
		5.4.1 Available data	112		
		5.4.2 Condenser model validation	114		
		5.4.3 Gas cooler model validation	115		
6	HEAT EXCHANGER DESIGN USING THE MODEL				
	6.1	Design Conditions	117		
	6.2	Criteria for Comparison of Heat Exchanger Design	117		
	6.3	Configuration I Design	118		
		6.3.1 Effects of flow channel dimensions	118		
		6.3.1.1 Configuration <i>I</i> design for case <i>A</i>	118		
		6.3.1.1.1 Water flow channel dimensions	118		
		6.3.1.1.2 Refrigerant flow channel dimensions	120		
		6.3.1.2 Configuration <i>I</i> design for case <i>B</i>	125		
		6.3.1.2.1 Water flow channel dimensions	125		
		6.3.1.2.2 Refrigerant flow channel dimensions	127		
	6.4	Configuration II Design	132		
		6.4.1 Effects of flow channel dimensions	132		
		6.4.1.1 Water flow channel dimensions	132		
		6.4.1.2 Refrigerant flow channel dimensions	134		
	6.5	Configuration III Design	138		
		6.5.1 R-410A design	138		
		6.5.2 R-744 design	142		
	6.6	Summary	145		
7	CON	ICLUSION AND RECOMMENDATION	146		
REF	ERE	NCES	148		
NON	MENC	CLATURE	158		
APP	END	IX	162		
1	A1	Software Program for Condenser Design in EES	162		
	A2	Software Program for Gas cooler Design in <i>EES</i>	173		

LIST OF FIGURES

Figure 2.1: N	Iap of hot water consumption by household by country	3
Figure 2.2: G	Hobal primary energy consumption	4
Figure 2.3: N	Iap of global primary energy supply	4
Figure 2.4: T	The map of the annual CO_2 emissions in 2006	5
Figure 2.5:C	O_2 emissions by sector	5
Figure 2.6: T	he electricity energy use in New Zealand in 2006	6
Figure 2.7:E	nergy use in New Zealand households	6
Figure 2.8: D	Diagram of hot water supply systems	7
Figure 2.9: S	Sankey diagram for energy loss in hot water supply system	8
Figure 2.10:	An electrical storage hot water heater	9
Figure 2.11:	A gas storage hot water heater	9
Figure 2.12:	The principle of the heat pump system	12
Figure 2.13:	A classical air-source vapor compression heat pump system	13
Figure 2.14:	A ground-source vapor compression heat pump system	14
Figure 2.15:	A classical water-source vapor compression heat pump system	15
Figure 2.16:	Schematic diagram of multi-pass heat pump water heating system	17
Figure 2.17:	Schematic diagram of one-pass heat pump water heating system	17
Figure 2.18:	Subcritical vapour compression cycle on mollier diagram	18
Figure 2.19:	Temperature difference profile in a condenser of a subcritical cycle	19
Figure 2.20:	Trnascritical cycle on moliar diagram	21
Figure 2.21:	Temperature difference profile of gascooler	21
Figure 2.22:	An absorption system	23
Figure 2.23:	Simplified layout of the Brayton heat pump system	24
Figure 2.24:	Ozone depletion potential (ODP) contrasted to global warming	
8	potential (GWP) for key single-compound refrigerants	28
Figure 2.25:	A tube-in-tube double wall heat exchanger	$\frac{1}{30}$
Figure 2.26:	A tube-on-tube double wall heat exchanger	30
Figure 2.27:	Temperature difference between the refrigerant and the water	20
800	in the condenser for countercurrent and concurrent configurations	31
Figure 2.28:	Temperature difference between the refrigerant and the water	01
1 19010 21201	in the gascooler for countercurrent and concurrent configurations	31
Figure 2.29:	Methodology for heat exchanger optimization	33
Figure 2.30:	Flow regimes typically encountered in condensation processes	43
Figure 2.30.	The flow regime map of Mandhane et al. (1974)	43
Figure 2.32:	Flow regime map of Taitel-Dukler (1976) for horizontal flow	15
1 iguit 2.52.	with both phases flowing turbulently	$\Delta \Delta$
Figure 4.1	A general zone in the multi-zone model of a double wall	••
1 iguie 4.1.	heat exchanger	66
Figure 4.2.	Circular tube-in-tube with small air gap	81
Figure 4.3:	Elat oval tube-on-tube	82
Figure 4.4.	Twisted tube-in-tube with small air gap	83
Figure 4.5:	Possible twisted tube if small difference in size between	05
1 iguit 4.5.	the 1^{st} and 2^{nd} tubes	81
Figure 4.6.	Possible twisted tube if hig difference in size between	04
i iguit 4.0.	the 1^{st} and 2^{nd} tubes	85
Figure 17.	Dimension of twisted tube $(d - d)$	85
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Dimension of twisted tube $(a = a_1)$	05
Figure 4.8:	Dimension of twisted tube with 100% contact	86

Figure 4.9:	Relationship between inside radius of twisted tube and % contact	87
Figure 4.10:	Dimension of twisted tube for outside wall	87
Figure 4.11:	Vapor compression heat pump cycle model	88
Figure 4.12:	Three zone model of condenser	95
Figure 4.13:	One zone model of gas cooler	98
Figure 4.14:	The systematic accuracy of calculation	100
Figure 4.15:	Accuracy and calculation time for the subcritical cooling	
U	model as a function of number of zones	100
Figure 4.16:	Accuracy and calculation time for the super-critical cooling	
8	model as a function of number of zones	101
Figure 5.1:	Predicted heat transfer coefficients against with	
8	the experimental data at $G = 200 \text{ kg/m}^2\text{s}$	108
Figure 5.2:	Predicted heat transfer coefficients against with	100
1 15ui 0 5.2.	the experimental data at $G = 400 \text{ kg/m}^2\text{s}$	108
Figure 5 3.	Predicted heat transfer coefficients against with	100
1 iguie 5.5.	the experimental data at $G = 750 \text{ kg/m}^2 \text{s}$	108
Figure 5 1.	Predicted pressure gradient by Zhang and Webb's correlation	100
1 iguie 5.4.	against with the experimental data	109
Figure 5 5.	Predicted heat transfer coefficient against with	107
Figure 5.5.	the experimental data at $C = 200 \text{ kg/m}^2 \text{ s}$ $P = 8 \text{ MPa}$ $d_1 = 6 \text{ mm}$	110
Figura 5 6.	Dradioted heat transfer coefficient against with	110
Figure 5.0.	the experimental data at $C = 400 \text{ kg/m}^2$ or $R = 8 \text{ MDa}$ $d = 6 \text{ mm}$	110
Eigura 5 7.	The experimental data at $G = 400 \text{ kg/m}^2$ s, $F = 6 \text{ MF}a$, $u_i = 0 \text{ mm}^2$	110
Figure 5.7:	The experimental data at $C = 800 \ln (m^2 \circ D = 8 \text{ MD})$	111
Eigung 5 9.	The experimental data at $G = 800$ kg/m s, $F = 8$ WFa, $u_i = 4$ mm	111
Figure 5.8:	Predicted near transfer coefficient against with the experimental data at $C = 200 \text{ kg/m}^2$ a $D = 10 \text{ MBa}$ d start	111
Eigung 5 0.	Uata at $G = 800$ kg/III s, $P = 10$ MPa, $a_i = 4$ IIIII Dradicted pressure drop against with the experimental data at	111
Figure 5.9:	Predicted pressure drop against with the experimental data at $C = 800 \text{ kg/m}^2 \text{ s}$ $D = 8 \text{ MBs} - L = 2 \text{ mm}$	110
E	$G = 800 \text{ kg/m}$ s, $P = 8 \text{ MPa}$, $a_i = 2 \text{ mm}$	112
Figure 5.10: F_{1}	I emperature profiles along the condenser	114
Figure 5.11: $\overline{5}$	Schematic of the test apparatus	115
Figure 5.12: Γ	Temperature profiles along the gascooler	116
Figure 6.1:	Water flow channel effect of configuration I on pressure drop	110
E' ()	and heat transfer coefficient for case A	119
Figure 6.2:	Water flow channel effect of configuration I on length and	110
D ' ()	heat transfer surface of heat exchanger for case A	119
Figure 6.3:	Water flow channel effect of configuration I on weight of	
	heat exchanger for case A	120
Figure 6.4:	Water flow channel effect of configuration <i>I</i> on pumping power	
	and <i>COP</i> of the system for case <i>A</i>	120
Figure 6.5:	Refrigerant flow channel effect of configuration <i>I</i> on refrigerant	
	pressure drop and heat transfer coefficient for R410A case A	121
Figure 6.6:	Refrigerant flow channel effect of configuration <i>I</i> on refrigerant	
	pressure drop and heat transfer coefficient for R744 case A	122
Figure 6.7:	Refrigerant flow channel effect of configuration I on LMTD	
	for R410A case A	122
Figure 6.8:	Refrigerant flow channel effect of configuration I on LMTD	
	for R744 case A	122
Figure 6.9:	Refrigerant flow channel effect of configuration <i>I</i> on length and	
	heat transfer surface of heat exchanger for R410A case A	123

Figure 6	5.10:	Refrigerant flow channel effect of configuration <i>I</i> on weight of heat exchanger for R410A case <i>A</i>	123
Figure 6	5.11:	Refrigerant flow channel effect of configuration I on length and heat transfer surface of heat exchanger for $P744$ case A	123
Figure 6	5.12:	Refrigerant flow channel effect of configuration <i>I</i> on weight of heat exchanger for P744 case <i>A</i>	123
Figure 6	5.13:	Refrigerant flow channel effect of configuration <i>I</i> on pumping power and <i>COP</i> for $P410A$ case <i>A</i>	124
Figure 6	5.14:	Refrigerant flow channel effect of configuration <i>I</i> on pumping power and <i>COP</i> for $R744$ case <i>A</i>	124
Figure 6	5.15:	Water flow channel effect of configuration I on pressure drop and heat transfer coefficient for case B	125
Figure 6	5.16:	Water flow channel effect of configuration I on length and beat transfer surface of heat exchanger case B	120
Figure 6	5.17:	Water flow channel effect of configuration I on weight of heat	120
Figure 6	5.18:	Water flow channel effect of configuration I on pumping power and <i>COP</i> for ange <i>P</i>	120
Figure 6	5.19:	Refrigerant flow channel effect of configuration <i>I</i> on refrigerant	127
Figure 6	5.20:	Refrigerant flow channel effect of configuration <i>I</i> on refrigerant	127
Figure 6	5.21:	Refrigerant flow channel effect of configuration <i>I</i> on <i>LMTD</i> for	128
Figure 6	5.22:	R410A case <i>B</i> Refrigerant flow channel effect of configuration <i>I</i> on <i>LMTD</i> for	128
Figure 6	5.23:	R744 case <i>B</i> Refrigerant flow channel effect of configuration <i>I</i> on length	128
Figure 6	5.24:	and heat transfer surface of heat exchanger for R410A case <i>B</i> Refrigerant flow channel effect of configuration <i>I</i> on length and	129
Figure 6	5.25:	heat transfer surface of heat exchanger for R744 case <i>B</i> Refrigerant flow channel effect of configuration <i>I</i> on weight of	129
Figure 6	5.26:	heat exchanger for R410A case <i>B</i> Refrigerant flow channel effect of configuration <i>I</i> on weight of	130
Figure 6	5.27:	heat exchanger for R744 case <i>B</i> Refrigerant flow channel effect of configuration <i>I</i> on pumping	130
Figure 6	5 28·	power and <i>COP</i> for R410A case <i>B</i> Refrigerant flow channel effect of configuration <i>I</i> on pumping	130
Figure 6	5.20.	power and <i>COP</i> for R744 case <i>B</i> Water flow channel effect of configuration <i>U</i> on pressure drop	131
Figure 6	5.29.	and average <i>HTC</i> for R-410A Water flow channel effect of configuration <i>U</i> on length and	132
Figure 6	5.20.	mean <i>HTA</i> for R410A Water flow channel effect of configuration <i>U</i> on weight of heat	133
Figure (exchanger for R410A	133
Figure 6	5.52: c. 22	and <i>COP</i> of the system	133
Figure 6	5.53:	drop and average <i>HTC</i> for R-410A	134
Figure 6	5.34:	Retrigerant flow channel effect of configuration <i>II</i> on pressure drop and average <i>HTC</i> for R-744	134

Figure	6.35:	Refrigerant flow channel effect of configuration <i>II</i> on <i>LMTD</i> for R410A	135
Figure	6.36:	Refrigerant flow channel effect of configuration <i>II</i> on <i>LMTD</i> for R744	135
Figure	6.37:	Refrigerant flow channel effect of configuration <i>II</i> on length and mean <i>HTA</i> for R410A	136
Figure	6.38:	Refrigerant flow channel effect of configuration <i>II</i> on length and mean <i>HTA</i> for 744	136
Figure	6.39:	Refrigerant flow channel effect of configuration <i>II</i> on weight of heat exchanger for R410A	136
Figure	6.40:	Refrigerant flow channel effect of configuration <i>II</i> on weight of heat exchanger for R744	137
Figure	6.41:	Refrigerant flow channel effect of configuration <i>II</i> on pumping power and <i>COP</i> for R410A system	137
Figure	6.42:	Refrigerant flow channel effect of configuration <i>II</i> on pumping power and <i>COP</i> for R744 system	137
Figure	6.43:	Relationship between % contact and inside diameter of twisted tube having $d_1 = 12.7$ mm for R410A	139
Figure	6.44:	Relationship between % contact and inside diameter of twisted tube having $d_1 = 15.875$ mm for R410A	139
Figure	6.45:	% contact effect on heat exchanger length and mean heat transfer surface area for R410A	140
Figure Figure	6.46: 6.47:	% contact effect on heat exchanger weight area for R410A % contact effect on refrigerant heat transfer coefficient	140
8		for R410A	140
Figure	6.48:	% contact effect on average <i>LMTD</i> for R410A	141
Figure Figure	6.49: 6.50:	% contact effect on pumping power (<i>EP</i>) and <i>COP</i> for R410A Relationship between % contact and inside diameter of twisted	141
Figure	6.51:	tube having $d_1 = 9.525$ mm for R744 Relationship between % contact and inside diameter of twisted	142
U		tube having $d_1 = 12.7$ mm for R744	142
Figure	6.52:	% contact effect on heat exchanger length and mean heat transfer surface area for R744	143
Figure	6.53:	% contact effect on heat exchanger weight area for R744	143
Figure	6.54:	% contact effect on refrigerant heat transfer coefficient for R744	143
Figure	6.55:	% contact effect on average LMTD for R744	144
Figure	6.56:	% contact effect on pumping power (EP) and COP for R744	144

LIST OF TABLES

Table 2.1: The comparison of some characteristics between instantaneous	
and storage systems	7
Table 2.2: The comparison of some characteristics between the electrical	
and gas heaters	9
Table 2.3: Comparison of life-cycle costs for different hot water systems	11
Table 2.4: The thermodynamic properties of none-ozone depleting potential	
refrigerants	22
Table 2.5: Comparison of some characteristics among CFCs, HFCs,	
and natural Refrigerants	28
Table 2.6: Single phase heat transfer correlations without oil	39
Table 2.7: Single phase pressure drop correlations without oil	41
Table 2.8: Two phase heat transfer correlations without oil	51
Table 2.9: Two phase pressure drop correlations without oil	55
Table 2.10: Transcritical heat transfer correlations without oil	60
Table 2.11: Transcritical pressure drop correlations without oil	61
Table 5.1: Specification of test tubes for condensation heat transfer	
in/on smooth tube	103
Table 5.2: Specification of test tubes for condensation pressure drop in/on	
smooth tube	105
Table 5.3: Specification of test tubes for cooling heat transfer and pressure	
drop of supercritical carbon dioxide	106
Table 5.4: Accuracy for sensors and parameters (Cavallini et al., 2001)	107
Table 5.5: Accuracy for sensors and parameters (Dang and Hihara, 2004)	109
Table 5.6: Available configuration of water heating heat exchanger in	
the open literature	112
Table 5.7: Comparison of experimented and the predicted lengths of	
condenser (% difference from experiment in bracket)	114
Table 5.8: Comparison of experimented and the predicted lengths of	
gascooler (% difference from experiment in bracket)	115
Table 6.1: Copper tube standard for TATMB 280 Copper Tube-ACR	118
Table 6.2: Average thermal resistance in optimal configuration I case B	131
Table 6.3 Average thermal resistance in optimal configuration II	138
Table 6.4 Average thermal resistance in optimal configuration III	144
Table 6.5: Summary of characteristics for three best water heating heat	
exchanger configurations	145