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Abstract 
Knowledge of foraging ecology is essential to understanding how species interact with the 

ecosystem they inhabit. Foraging variation due to ontogenetic and/or anthropogenic factors can 

affect individual body condition, which could have implications for reproductive fitness and 

survivorship. Despite a high stranding frequency, limited knowledge is available on the foraging 

ecology of long-finned pilot whales (LFPWs; Globicephala melas edwardii) within New Zealand 

waters. To address these knowledge gaps, multiple methods of dietary analysis (stomach content 

analysis, n = 283; stable isotope analysis, n = 125; and fatty acid analysis, n = 15) were performed on 

samples collected from carcasses of LFPWs stranded along the New Zealand coast between 2009 

and 2017. Six new taxa contributed to LFPW diet, including the first report of fish consumption for 

this population. Whilst arrow squid Nototodarus spp. was determined to be the most important prey, 

both ontogenetic and spatiotemporal variation were noted in prey consumption. Stomach content, 

stable isotope and fatty acid investigations all supported a preference for pelagic feeding. However, 

both stomach content and stable isotope investigations also documented occasional benthic/coastal 

foraging, especially for mature male LFPWs and in the year 2017. Biochemical dietary tracers 

examined in five of the top prey species to LFPW diet at Farewell Spit suggested that prey 

investigated were not chemically similar and/or at least one key prey species was missing from 

analysis. Initial insights gained from morphometric body condition measurements signalled that 

axillary girth may explain some variation in the proportion of saturated, polyunsaturated fatty acids 

and dietary fatty acid C20:1n9 in the inner layer of dorsal blubber, though sample sizes were small. 

Given the sustained reliance on arrow squid in the diet of this species, monitoring of overlap 

between regions of commercial fisheries and LFPW foraging in these waters, in part through 

continued support of long-term data sets, is recommended. Furthermore, the importance of accurate 

body condition measurements and their potential for use in welfare assessment and strandings 

situations is discussed.  Recommendations for future research, include telemetry studies, further 

investigation of fatty acid and body condition biomarkers in LFPWs and prioritisation of analysis of 

LFPW dietary samples collected during the austral winter.   
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Chapter 1 — Introduction 

 

 

 

 

 Long-finned pilot whales Globicephala melas edwardii refloated after stranding at Onetahua Farewell 

Spit, New Zealand in 2021. Photo credit: Rebecca Boys.   
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1.1. Introduction  

Dietary studies include investigations from the specifics of what an individual consumes, to the 

behaviours displayed when sourcing that nutrition. Analysis of these dietary behaviours, which 

differ between species, geographies, and even cultures of the same species, can contribute to the 

understanding of life history, spatial distribution, trophic interactions, and relationships with local 

ecological food webs (Schoener 1987; Nakano and Murakami 2001; Braga et al. 2012). Changes to an 

ecosystem can be associated with temporal or spatial changes in target prey species, which are 

particularly useful in environments that are difficult to monitor such as the ocean (Pierce and Boyle 

1991; Phillips and Gregg 2003; Chiu-Werner et al. 2019). Such changes can occur through trophic 

cascades altering species abundance, which may affect prey selection and thus impact predator 

fitness based on optimal nutrient intake (Maklakov et al. 2008; Deans et al. 2015). Hence, having 

baseline information on the prey species and a comprehensive knowledge of their diet holds 

significant conservation and management implications (Sinclair et al. 2018; Findlay and Hill 2021; 

Frank et al. 2021; Pachomski et al. 2021), particularly in areas where the prey species overlap with 

commercially targeted species.  

Attempts to explain and describe foraging behaviours can be categorised broadly within two main 

concepts: foraging for the benefit of the group (social foraging theory, e.g., Giraldeau and Caraco 

2000) or foraging for the benefit of the individual (optimal foraging theory). The most well-known 

theory is optimal foraging theory (Emlen 1966; MacArthur and Pianka 1966). According to optimal 

foraging theory, an organism will target the prey that provides the most energy for the least 

energetic expense. Several energetic expenses may be considered, including location, size, and the 

behaviour of prey species (e.g.,  Emlen 1966; MacArthur and Pianka 1966; Kramer 1988; Doniol-

Valcroze et al. 2011; Langerhans et al. 2021). However, this theory has been criticised as “optimal” 
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is difficult to test and uncommon in nature (Pyke et al. 1977; Pierce and Ollason 1987). Therefore, 

additions have been suggested in the recent literature, including the consideration of nutritional 

components of target prey (MacArthur and Pianka 1966; Hill 1988; Hughes 2009; Raubenheimer and 

Simpson 2018). 

Energetic expenses associated with marine environments differ from those in the terrestrial 

environment due to factors such as depth and pressure changes of the ocean (Doniol-Valcroze et al. 

2011; Beltran et al. 2021). For example, additional energetic considerations have been described for 

air breathing marine species such as oxygen depletion affecting search time (Tyson et al. 2016). These 

expenses have then been connected to diving behaviour (Stephens et al. 2008; Doniol-Valcroze et al. 

2011) and assessment of prey quality (Thompson and Fedak 2001; Thums et al. 2013), and therefore 

specifics of the prey species and size which is consumed in each foraging trip. Optimal foraging 

theory predicts that the optimal depth of foraging for air breathing marine predators is relative to 

body size, and therefore may not correspond with the depth of maximum target prey density (Mori 

1998). Hence, foraging ecology encompasses much more than just identification of predator and 

prey, often combining several analyses to understand what individuals are feeding on, and where. 

1.2. Methods used to study foraging ecology 

In order to study foraging ecology, several methods have been developed including traditional 

methods such as stomach content, regurgitate and scat analysis (e.g. Hyslop 1980; McIntosh et al. 

2006; Klare et al. 2011; Rodrigues et al. 2020), biochemical methods such as isotopic analysis (Hobson 

1999; Codron et al. 2018; Le-Alvarado et al. 2021; Ishikawa et al. 2022), and fatty acid analysis (e.g., 

Iverson et al. 2004; Galicia et al. 2015), GPS tracking (e.g., Allan et al. 2013), and behavioural 

observation (e.g., Quigley et al. 2022). Behavioural observation studies have gained popularity with 

emerging technologies such as unmanned aerial systems (UAS; Christie et al. 2016; Wang et al. 2019). 
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However, these technologies can be expensive, and behavioural studies require baseline information 

on movement patterns and feeding locations in order to place UAS in the correct location, making 

this an impractical option where these factors remain unknown. Utilisation of tracking technologies 

such as tracking and data relay satellite has also increased in the literature over recent years (e.g., 

Ryan et al. 2004; Kuhn et al. 2010; Dragon et al. 2012; Posen et al. 2021; Fijn et al. 2022) as tags have 

been developed to be smaller and less intrusive to individuals being studied. Moreover, success in 

locating feeding habitat and also dive depths (and therefore likely prey species) in the marine 

environment has been reported using tags (Volpov et al. 2016; Bestley et al. 2019). However, tagging 

of a live animal has important ethical and local cultural considerations so may not be possible in all 

areas.  

1.2.1. Stomach content analysis 

Stomach content analysis is the process of analysing the contents of an individual’s stomach to 

identify sources of prey, prey size, their relative importance to diet, and therefore where a species 

fits into an ecological system (Hyslop 1980; Hall et al. 1995; Amundsen and Sánchez-Hernández 

2019). Identification of prey tends to focus on diagnostic hard part remains as these are more difficult 

to digest and are therefore digested slower, so are retained in the stomach for a longer time period 

than other tissues. Identification of diagnostic hard parts is carried out through observation of 

morphometric characteristics, comparison to reference collections and measurements of specific 

features (Hyslop 1980). Molecular techniques such as DNA barcoding of the recovered prey items 

can also be used to aid with accurate taxa identification (e.g., Moran et al. 2016; Aguilar et al. 2017; 

Hacker et al. 2021; Roffler et al. 2021). 

Once prey identification has been confirmed, stomach content investigations tend to focus on 

analysing the frequency of occurrence of each prey species and proportional contribution of each 



5 

 

prey species to overall predator diet by number and/or weight (see Hyslop 1980, Pierce and Boyle 

1991; Amundsen et al 2019 for detailed overview of techniques). Often analysis techniques are 

combined for a comprehensive understanding of diet, providing information on prey contribution 

by number and/or weight of each prey group. Where regression equations exist for prey species, 

hard part remains can also be individually measured to reconstruct estimated length and mass of 

prey items at the time of ingestion (e.g., Clarke et al. 1986; Härkönen 1986). The prey counts and 

reconstructed prey size measurements can be used in combination to calculate the relative 

importance of each prey group to diet, informing both conservation and management of a species.  

Stomach content analysis has been adapted to studies of wild individuals extensively over the past 

century (Costello 1990; Amundsen et al. 1996; Amundsen and Sánchez-Hernández 2019). This 

established technique is widely used in feeding ecology research, especially when working with 

highly mobile species where direct observation of feeding can be difficult e.g., in the marine 

environment. Stomach contents are thought to reflect the diet from a period of minutes to days 

before examination (Sekiguchi and Best 1997; Young et al. 2018) depending on the species being 

investigated. Stomach contents can be obtained from live individuals through gastric lavaging, a 

process involving flushing the stomach with water (e.g., Fraser 1976, Wilson 1984). Analysis is also 

often carried out post-mortem through removal of stomach contents in-situ or excising the intact 

stomach from a carcass (e.g., Pusineri et al. 2007; Sakyi et al. 2019; Foskolos et al. 2020). Recent 

developments in molecular studies have found that faecal and gastric samples from free-swimming 

bottlenose dolphins Tursiops truncatus showed very similar dietary findings to the stomach contents 

of stranded individuals (Dunshea et al. 2013), suggesting that the analysis of stomach contents is 

likely to be representative of the diet of free-swimming cetacean populations in at least some 

cetacean species. Stomach contents can also be a useful indicator of foraging habitat or feeding depth 
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(Fitch and Brownell Jr 1968; Sparrevohn and Støttrup 2008), especially when juveniles with known 

nursery grounds (James et al. 2019) or which habituate specialised environments such as benthos 

(Weltz et al. 2018) are reported in stomachs. Indeed, it has suggested that stomach contents analysis 

from stranded individuals could even serve as a useful guide for species composition in the local 

area (Maldini et al. 2005). 

Key caveats of stomach content analyses often centre around species identification such as: 1) 

erroneous identification and 2) reporting only hard part remains. These can be due to either to 

digestive loss or erosion or difficulty in identifying soft tissue, therefore causing a bias in stomach 

content data (Stapp 2002; Dehn et al. 2007; Meckstroth et al. 2007) towards hard-part remains that 

are retained.  

1.2.2. Stable isotope analysis 

Carbon and nitrogen stable isotopes are most frequently used to infer dietary and trophic 

information about a species, as these stable isotope values have been found to be related to that of 

prey organisms (DeNiro and Epstein 1978). Stable isotope values of sulphur are also increasingly 

utilised, often alongside  carbon, to infer foraging habitat (e.g., DeNiro and Epstein 1978; Yamanaka 

et al. 2000; McCutchan Jr et al. 2003; Bearhop et al. 2004; Newsome et al. 2010; Fry and Chumchal 

2011; Szpak and Buckley 2020), whilst nitrogen stable isotope values have been used to infer trophic 

interactions of a species (e.g., DeNiro and Epstein 1981; Oelbermann and Scheu 2002; Meckstroth et 

al. 2007; Marshall et al. 2019). Furthermore, stable isotope analysis of prey can give insights into 

contribution to diet (Phillips et al. 2014), often after prey species have been identified using a 

different dietary method such as scat or stomach content analyses (e.g., Gerringer et al. 2017; Antón-

Tello et al. 2021; Takahashi et al. 2022).  
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When used in ecological studies, measuring stable isotope values assimilated from prey to predator 

provides dietary information on different timescales depending on the turnover time of the tissue 

selected for analysis. Turnover times refer to the time an isotopic value is retained post-feeding, with 

different tissues providing information for differing timescales in an individual’s diet (Vander 

Zanden et al. 2015). For example, skin can be used for dietary analysis on a scale of hours to weeks 

(e.g., Watt et al. 2019), muscle from a week to a month (e.g., McNicholl et al. 2018) and blood on a 

scale of months (e.g., Bontempo et al. 2016). For extended temporal timescales, bones are often used 

in archaeological dietary studies (e.g., Somerville et al. 2017) and teeth have been used for bulk stable 

isotope analysis (analysis using the full tissue) of diet over a full lifetime in sperm whales Physeter 

macrocephalus (Zupcic-Moore et al. 2017). Serial sampling of stable isotopes from growth layers in 

teeth can also provide time-series data, as reported in multiple species including elephants Elephas 

maximus and Stegadon orientalis fossils (Ma et al. 2019) and bottlenose dolphins Tursiops truncatus 

(Pereira et al. 2020). Although samples from most tissues are only able to be collected post-mortem, 

stable isotopes can be examined in live individuals through biopsy skin and blubber collections (e.g., 

Todd et al. 2010), sloughed skin (e.g., Steinitz et al. 2016) and scat (e.g., Montanari and Amato 2015). 

Turnover rates are further reported to differ between species, though actual data on species-specific 

tissue turnover time is scarce; often only available from studies of captive animals such as brown 

bears Ursus arctos yesoyensis (Narita et al. 2006), West-Indian manatees Trichechus manatus (Ortiz and 

Worthy 2006), bottlenose dolphins (Caut et al. 2011; Browning et al. 2014a) and killer whales Orcinus 

orca (Caut et al. 2011). 

Tissue choice in studies using stable isotopes therefore relates to both turnover time and logistics of 

sample collection. Long-term dietary analyses require tissues with a longer turnover time such as 

bone (Tieszen et al. 1983; Vales et al. 2020; Teixeira et al. 2021) or teeth (Walker and Macko 1999; 
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Shipley et al. 2021), whereas short-term trophic analyses can be conducted on tissues with minimal 

turnover time such as skin (Hobson et al. 1996; Todd et al. 2010; Giménez et al. 2016). Studies of 

captive bottlenose dolphins suggested a timeframe of just 20–32 days for skin tissue turnover 

(Browning et al. 2014a). However, whilst stable isotope studies that focus on bone and/or teeth of 

marine mammals (e.g., Hirons et al. 2001; Riccialdelli et al. 2013; Becker et al. 2021) have the 

advantage of providing a lifelong isotopic signature, they require access to carcasses and analysis 

can be heavily resource intensive. The interpretation of stable isotope data has caused some 

uncertainty in marine mammal studies to date due to 1) tissue choice, 2) sample integrity and 3) 

discrimination factor, which are described in more detail below. 

Sample integrity is an important factor to consider when analysing stable isotope data (Durante et 

al. 2020). In ecological studies especially, there is often a time lag between collection and analysis of 

the sample, which creates the need for preservation. The time lag could be anywhere from days to 

many years if samples are used from tissue archives such as museum collections (Edwards et al. 

2002). Taxon-specific effects on isotope values have been reported in various tissues based on storage 

method applied. Examples include turtles (Barrow et al. 2008), reef fish (Stallings et al. 2015), 

rainbow trout Oncorhynchus mykiss, zooplankton, and shrimp Mysis diluviana (Wolf et al. 2016), 

brown bears Ursus arctos (Javornik et al. 2019), and skin of multiple cetacean species including 

beluga whales Delphinapterus leucas, harbour porpoise Phocoena phocoena, minke whales Balaenoptera 

acutorostrata, fin whales Baleanoptera physalus, and humpback whale Megaptera novaeangliae (Lesage 

et al. 2002; Lesage et al. 2010; Kiszka et al. 2014a; Newsome et al. 2018). 

Also known as fractionation factor, the discrimination factor refers to the difference in a specific 

isotope value in a prey species in comparison to its value after it has been incorporated into predator 

tissue (Caut et al. 2009). Although essential for considering trophic interactions, discrimination 
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factors are not well defined in cetaceans (Borrell et al. 2012; Teixeira et al. 2022). Species that are 

closely related are widely thought to have similar degrees of isotopic “tissue enrichment”, a term 

which refers to the quantity of isotope incorporated into predator tissue from prey. Therefore, 

historical marine mammal literature tended to use a standard 2-4% enrichment factor for nitrogen 

values between trophic levels (DeNiro and Epstein 1981). Recently, predictions of trophic 

discrimination factors estimated from phylogenetically similar species using Bayesian inference 

through the R package “SIDER” (Healy et al. 2018) are becoming more commonly used in literature 

(e.g., Lerner et al. 2018; Jones et al. 2020). The lack of certainty surrounding which trophic 

discrimination factors to utilise has led to calls for caution when interpreting differences in nitrogen 

isotope values (e.g., Bond and Jones 2009; Hussey et al. 2010). Indeed, the trophic enrichment factor 

for nitrogen was reported as 1.57% for skin in captive bottlenose dolphins Tursiops truncatus 

(Giménez et al. 2016). These lower-than-expected trophic discrimination factors may lead to errors 

when assessing of trophic level of predators (McCormack et al. 2019). 

Advances in methodology for stable isotope studies such as compound-specific isotope analysis 

(CSIA) and compound-specific analysis of amino acids have allowed more certainty in the 

interpretation of nitrogen values (e.g., Ishikawa 2018; McMahon and Newsome 2019; Troina et al. 

2021; Harada et al. 2022). For example, CSIA revealed that a temporal change in the isotopic values 

of bowhead whale Balaena mysticetus skin was also apparent at the base of the food web, suggesting 

that the trophic level of bowhead whales remained stable despite variability in ice cover and 

temperature in Western Greenland (Pomerleau et al. 2017).  

1.2.3. Fatty acid analysis 

While fatty acids are essential components of many biochemical processes, certain types of fatty 

acids tend to accumulate and persist as they move up the food chain from one trophic level to the 
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next (e.g., Alfaro et al. 2006). There is growing interest in the use of fatty acids as biochemical tracers, 

which are sometimes referred to as fatty acid trophic markers, in studies of foraging ecology 

(Dalsgaard et al. 2003). As these fatty acids are incorporated into adipose tissue, they can be 

compared to fatty acid profiles in prey to help identify and understand dietary source (e.g., Auel et 

al. 2002; Iverson et al. 2004; Happel et al. 2016b; Choy et al. 2020). When assessing diet using analysis 

of fatty acids, three key groups of fatty acids are often presented: saturated fatty acids (SFAs; those 

with no double bonds), monounsaturated fatty acids (MUFAs; those with a single double bond), 

polyunsaturated fatty acids (PUFAs, those with multiple double bonds). Predators struggle to 

biosynthesize certain fatty acids which are therefore thought to be accumulated through diet and 

classed as “dietary fatty acids” (Iverson et al. 2004).  

Qualitative comparisons of fatty acid values from individuals of a particular species can be used to 

look for dietary variation within or between populations (e.g., Stowasser et al. 2012). Further to this, 

qualitative analysis has also been applied to compare fatty acid profiles of predators with those of 

prey to distinguish likely trophic interactions (e.g., Bradshaw et al. 2003; Grahl-Nielsen et al. 2010a). 

In diet manipulation experiments of sandpipers Calidris mauri, fatty acid composition of the predator 

adipose tissue has been reported to reflect that of its prey (Egeler et al. 2003). As the roles and 

metabolisms of individual fatty acids are being investigated more fully, it appears that organisms 

feeding in terrestrial systems have a lower reported proportion of the PUFA docosahexaenoic acid 

(DHA) than those feeding in marine systems, with purely marine feeders having the highest 

DHA/linolenic acid ratio (Koussoroplis et al. 2008).  

Increasingly, quantitative methods such as the Quantitative Fatty Acid Analysis (QFASA; Iverson 

et al. 2004) model and Bayesian mixing models are being applied to ecological studies to statistically 

determine dietary composition (e.g., Galloway et al. 2015; Happel et al. 2016a; Choy et al. 2019; 
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Thiemann et al. 2022). The QFASA method uses calibration coefficients (CCs) to account for 

metabolism of each fatty acid from prey to predator, which is thought to be species-specific. As 

calculating accurate CCs can currently only be achieved through captive feeding trials, CCs have 

been estimated only for a small number of species. These CC estimates have been used to allow 

quantitative analyses in other similar species (e.g., Xie et al. 2022). However, a lack of known species-

specific CCs combined with the large amount of prey needed for both QFASA and Bayesian 

modelling has resulted in some studies still focussing on using qualitative rather than quantitative 

methods (e.g., Jackson et al. 2021; Segura-Cobeña et al. 2021; Jackson et al. 2022). 

Analyses of dietary fatty acids have been especially beneficial in marine studies, as PUFAs are more 

commonly found in phytoplankton than in terrestrial producers (Williams and Buck 2010; Colombo 

et al. 2017). Thus, much of the dietary fatty acid research to date has been focused on organisms 

within aquatic systems (e.g., Vlieg and Body 1988; Sargent et al. 1999; Alkanani et al. 2007; Stowasser 

et al. 2009; Prato and Biandolino 2012; Murillo et al. 2014; Susanto et al. 2016; Bromaghin et al. 2017; 

Parzanini et al. 2020; McMullin et al. 2021) such as several marine mammal species including 

pinnipeds (Iverson et al. 1997; Grahl-Nielsen O et al. 2005; Tucker et al. 2008; Meynier et al. 2010; 

Lambert et al. 2013; Knox et al. 2019), mysticetes (Grahl-Nielsen et al. 2011; Waugh et al. 2014; Meier 

et al. 2016) and odontocetes (Williams et al. 1977; Guitart et al. 1999; Samuel and Worthy 2004; 

Herman et al. 2005; Smith and Worthy 2006; Loseto et al. 2009; Grahl-Nielsen et al. 2010a; Choy et 

al. 2020). 

Although many tissues contain fatty acids, samples of blubber are used most often to study fatty 

acid profiles in marine mammals (e.g., Meynier et al. 2008a; Skoglund et al. 2010; Guerrero and 

Rogers 2017; Guerrero et al. 2020). Whilst studying fatty acids in only one tissue may not be fully 

representative of the full fatty acids content of an individual, fatty acids from prey which are 
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incorporated into blubber tissue (Borobia et al. 1995) can provides dietary data on a timescale of 

weeks to months (e.g., Beck et al. 2007; Tucker et al. 2008; Loseto et al. 2009; Knox et al. 2019). 

Interestingly, tissues sampled from different sites on the body of bottlenose dolphins (Samuel and 

Worthy 2004) and sea lions Phocarctos hookeri (Lambert et al. 2013) did not differ significantly by fatty 

acid composition. However, there has been some evidence of stratification within the vertical 

blubber layers of marine mammals (Krahn et al. 2004; Smith and Worthy 2006; Strandberg et al. 2008; 

Lambert et al. 2013; Jackson et al. 2022), with the proportion of dietary fatty acids increasing towards 

the deepest blubber layer for species such as common dolphins Delphinus spp. and bottlenose 

dolphins. The high variability of fatty acid composition in this inner blubber layer has been linked 

to dietary and metabolic differences (Strandberg et al. 2008). Interestingly, no vertical stratification 

of fatty acids was observed in the blubber layers of stranded long-finned pilot whales (Walters 2005). 

Nevertheless, it is recommended that fatty acid analysis in marine mammals is performed on the 

deepest blubber layer (closest to the muscle) to obtain the most accurate readings for dietary studies 

(Smith and Worthy 2006; Guerrero et al. 2016).  

1.2.4. Use of multiple methodologies 

Using multiple methodologies concurrently is thought to detect foraging complexities that 

individual methodologies alone would not decipher (Young et al. 2018; Hoenig et al. 2021). For 

example, values of δ15N often overlap in prey species, so the use of isotope analysis alone would not 

be able to identify prey consumed without utilising a secondary method such as stomach content 

analysis. Stomach contents analysis and stable isotope analysis have been combined to research diet 

of a diverse range of species. For example, combining stomach content and stable isotope analyses 

in snow crabs Chionoecetes opilio (Divine et al. 2017) allowed importance of both size and sex-specific 

dietary differences noted by only one of the methodologies to be contextualised. Similarly, stable 
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isotope analyses of feral cats Felis silvestris revealed the contribution of items such as human refuse 

to diet that was not noted in stomach contents (Meckstroth et al. 2007). Additionally, the use of a 

further biochemical method such as fatty acid analysis provides a more thorough understanding of 

diet (Herman et al. 2005; Allan et al. 2010; O’Donovan et al. 2018). Indeed, stomach content, stable 

isotope and fatty acid analyses were all considered individually imperfect methods to study 

foraging of double-crested cormorants Phalacrocorax auratus, but authors were able to elucidate diet 

when these methods were combined (King et al. 2017).  

Studies encompassing combinations of approaches to research foraging are increasingly common in 

the marine environment where organisms are difficult to access. The combination of stable isotope 

and fatty acid analyses was able to confirm feeding strategies of intertidal barnacles (Puccinelli et al. 

2016) and elasmobranchs (Every et al. 2019). In addition, fatty acid analysis revealed a differentiation 

of producer contribution to diet in sargassum associated fishes, even when isotope values of their 

prey overlapped (Rooker et al. 2006). Such multi-method approaches have also been recommended 

for future dietary studies of marine mammals (e.g., Bowen and Iverson 2013). 

1.2.5. Dietary studies of cetacea 

Combining multiple methodological approaches is increasingly used to discern dietary variation in 

cetacean research (e.g., Gibbs et al. 2011; Madgett et al. 2019; McCluskey et al. 2021). For example, 

stomach content together with stable isotope analyses revealed the first report of cephalopods as the 

primary food source of dwarf minke whales, Balaenoptera acutorostrata (Milmann et al. 2019). The 

joint use of stomach content, stable isotope and fatty acid analyses also confirmed a high prevalence 

of squid in Canadian bottlenose whale Hyperoodon ampullatus diet (Hooker et al. 2001). Similarly, 

cephalopods have been reported as the most important prey group to the diet of sperm whales 

Physeter macrocephalus (Evans and Hindell 2004; Chua et al. 2019), Pacific white-sided dolphins 
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Lagenorhynchus obliquidens (Lee et al. 2019) and Risso’s dolphins Grampus griseus (Öztürk et al. 2007), 

though these studies only used single methodologies.   

Conversely, stomach contents analysis has shown that some species, such as Guiana dolphins Sotalia 

guianensis, consumed high numbers of fish prey (Rodrigues et al. 2020). However, diet composition 

may change along with local prey abundance (Evans 1994; Young and Cockcroft 1994; Santos et al. 

2013), as is predicted by optimal foraging theory. For example, fish were the most important prey in 

the diet of striped dolphins Stenella coeruleoalba in the Eastern Mediterranean Sea (Dede et al. 2016) 

while fish and cephalopods were equally important to the diet of striped dolphins in the Ligurian 

Sea (Würtz and Marrale 1993).  

Dietary differences between spatially segregated feeding populations of the same species have also 

been demonstrated in bottlenose dolphins Tursiops truncatus (Barros et al. 2010) and killer whales 

(Foote et al. 2012). Feeding differences have not only been documented at the population level —

variability in stable isotopes (carbon, nitrogen, and sulphur) within the same population of southern 

right whales Eubalaena australis were attributed to differences in prey consumption (Valenzuela et 

al. 2018). Likewise, opportunistic feeding in south Australian sperm whales (Evans and Hindell 

2004) is also reported to cause individual dietary variation.  

Ontogenetic variability in cetacean diet has also been reported. For example, lactating females  feed 

differently in spotted dolphins Stenella attenuata (Bernard and Hohn 1989) and S. frontalis 

(Malinowski and Herzing 2015), whilst older individuals were found to feed at higher trophic levels 

in both right whales Eubalaena australis (Valenzuela et al. 2018) and beluga whales Delphinapterus 

leucas (Marcoux et al. 2012).   In contrast, ontogenetic variation was not observed in captured fin 

whales, with all individuals over four years of age showing similar isotopic values (Borrell et al. 

2012).  
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Studies focussing on large scale temporal differences can present logistical difficulty, but long-term 

temporal studies are useful in identifying changes in the marine environment, which are not as 

easily observed as in the terrestrial environment. For example, comparisons of carbon and nitrogen 

isotope values between temporally distinct samples have been able to show trophic changes to food 

webs that have been associated with fishing activity (Wiley et al. 2013) and climate change (Bond 

and Lavers 2014). Temporally decreasing isotopic values in beluga whales in the Cook Inlet, USA 

(Nelson et al. 2018) and Cumberland Sound, Canada (Marcoux et al. 2012) have also indicated 

dietary shifts in these regions.  

Dietary shift can also be noted seasonally, alongside changing prey resources. Seasonal differences 

in beluga whale distribution at the Cook Inlet, USA are suspected to be caused by dietary change, 

corresponding with local prey abundance (Castellote et al. 2020). Similarly, prey abundance appears 

to influence resident killer whale movements, where seasonal presence of the whales in the 

Johnstone Strait, Canada was revealed to be positively associated with occurrence of local salmon 

species (Nichol and Shackleton 1996).  

1.3. Diet and body condition  

Diet not only affects predator movements but is also linked to fat stores of an individual. For 

example, seasonal dietary differences were found to correlate with variation in both axillary girth 

and blubber thickness measurements in sei Balaenoptera borealis and fin whales (Lockyer et al. 1985). 

Blubber thickness has also been reported to vary with diet in several cetacean species such as the 

harbour porpoise (Kastelein et al. 2019), North Atlantic fin whale (Lockyer 1986; Williams et al. 2013) 

and North Atlantic right whale (Miller et al. 2011b). Furthermore, blubber thickness can also affect 

fatty acid profiles in harbour porpoises (Learmonth 2006).  
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Attempts have been made to classify the energetic reserves of an animal to provide information on 

health. Often, these have concentrated around fat reserves of an individual, such as blubber, and 

have been referred to as “body condition measurements”. However, there is uncertainty over the 

suitability of blubber measurements alone as indicators of energy reserves in cetaceans (e.g., Joblon 

et al. 2014; Castrillon and Bengtson Nash 2020; Derous et al. 2020). For example, the lipid content of 

blubber provided no indication of physical conditions such as cause of death or morphometric body 

condition in stranded ziphiid and balaenopterid species (Kershaw et al. 2019). Yet in a delphinid 

species, the striped dolphin, the lipid content of blubber was found to be the most accurate indicator 

of nutritional health; while neither blubber thickness nor girth could explain nutritional condition 

(Gómez-Campos et al. 2011).   

As previously described, the links between blubber, energy storage and prey consumption are 

complex. Complicating matters, blubber also has multiple functions in the marine mammalian body, 

including thermodynamics and buoyancy (Lockyer 1993). Changes in blubber composition and 

condition may be reflective of other processes, such as metabolism or ontogeny (Grahl-Nielsen et al. 

2011). Therefore, investigation into cetacean body condition is advised to incorporate multiple 

morphometric and blubber measures for validation (Castrillon and Bengtson Nash 2020).   

1.4. Focal species – the long-finned pilot whale, Globicephala melas   

Long-finned pilot whales Globicephala melas (herein LFPWs) are one of two species of pilot whale, 

the other being the short-finned pilot whale G. macrorhynchus. Whilst G. macrorhynchus are observed 

more commonly in warmer waters (e.g., Van Waerebeek et al. 2009; Buden and Bourgoin 2018; Costa 

et al. 2020a; Plön et al. 2020; Ramírez-León et al. 2020; Coché et al. 2021;; Sankalpa et al. 2021 Bouslah 

et al. 2022), G. melas are predominantly found in the cooler temperate waters, including the 

Mediterranean Sea and even around the sub-Antarctic and Arctic regions (e.g., Notarbartolo di 
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Sciara 2002; Olson 2009; Di Tullio et al. 2016; Buscaglia et al. 2020; Correia 2020; de Lima et al. 2021; 

Félix et al. 2021; Skern-Mauritzen et al. 2022).  

Two geographically separated sub-species of LFPW are described; G. melas melas is found in 

Northern Hemisphere waters around Europe and North America, whereas G. melas edwardii (Davies 

1960) occurs in waters off southern Chile, South Africa, southeast Australia and around New 

Zealand (Table 1.1, Table 1.2). Fewer studies have been conducted on the southern ranging sub-

species G. m. edwardii despite extensive distribution across the Southern Hemisphere (Kraft et al. 

2020). Considered as internationally “least concern” (IUCN Red List, updated 2018) and nationally 

in New Zealand as “not threatened” with a qualification of “data poor” (Baker et al. 2019), Southern 

Hemisphere LFPWs are minimally represented in the scientific literature. 

Pods of LFPWs are typically formed of matrilineal societies (Augusto et al. 2017; Boran and Heimlich 

2019), with social linkages even suggested during diving behaviour. The deepest LFPW dives are 

proposed to occur over 1000 m, yet despite this extensive diving capability, LFPWs have been more 

frequently recorded in relatively shallower waters (up to 650 m, Table 1.2) during telemetry studies. 

Tagging studies in the Norwegian and Ligurian Seas have recorded a wide range of possible LFPW 

foraging dive depths, from 24 – 648 m (Baird et al. 2002; Isojunno et al. 2017), often diving to benthic 

regions and with 10 m of the sea floor (Isojunno et al. 2017). These diving behaviours along with 

wider movement and dispersal observed in LFPWs are considered highly related to prey 

distribution (Olson 2009). Knowledge of key LFPW prey species and their distribution is therefore 

vital to understanding drivers of LFPW movement patterns, depth ranges and suitable habitat. Thus, 

understanding of local LFPW foraging ecology and target prey is critical data for ecosystem-based 

conservation and management efforts.  
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The diet of both LFPW sub-species appear to comprise predominantly of cephalopods (see Table 

1.1) of varying species. In the Northeast Atlantic, G. m. melas stomach contents have been reported 

to contain mostly oceanic and pelagic cephalopods (Gannon et al. 1997a; Spitz et al. 2011; Santos et 

al. 2014). However, in Northwest Iberia, inshore and benthic cephalopods were more important to 

diet (Santos et al. 2014). Secondary in importance to cephalopods, a variety of fish species have been 

recovered from the stomachs of G. m. melas including pelagic (Overholtz and Waring 1991; Abend 

and Smith 1997; De Pierrepont et al. 2005), and benthopelagic (Spitz et al. 2011; Ijsseldijk et al. 2015; 

Santos et al. 2014) species. However, reports of fish in the diet of G. m. edwardii populations are not 

as common (Gales et al. 1992; Chalcobsky et al. 2021). To date, there are no published reports of fish 

remains from stomach contents of LFPWs in New Zealand waters (Beatson et al. 2007a; Beatson et 

al. 2007b; Beatson and O’Shea 2009). Diet in this sub-species therefore appears to be dominated by 

cephalopods (Table 1.1).  

Dietary stable isotope comparisons of G. m. melas and other cetaceans in the Alboran Sea suggested 

that LFPWs may have a smaller isotopic dietary niche than other pelagic feeders habituating a 

similar area, such as Risso’s and bottlenose dolphins (Giménez et al. 2018). Interestingly, muscle 

tissue of G. m. melas in the North Atlantic revealed a higher contribution of fish within the diet 

compared with skin tissue (Abend and Smith 1997), indicating possible dietary changes over a small 

temporal scale in the sub-species. This stable isotope data from G. m. melas supports the presence of 

seasonal feeding differences suggested by stomach contents analysis (Overholtz and Waring 1991). 

However, a lack of isotopic differentiation within the population of G. m. edwardii in Kerguelen 

waters of the southern Indian Ocean was taken to indicate no significant short-term dietary changes 

in the southern sub-species (Table 1.1; Fontaine et al. 2015). Moreover, no isotopic differentiation 

was reported by age, sex, or lactation status from stranded G. m. edwardii in Southeast Australia 
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(Jackson 2017). Similarly, fatty acid profile analysis of LFPWs stranded in a similar area observed 

little ontogenetic variation in fatty acid profiles (Walters 2005). 

Few studies have examined temporal and spatial variation in LFPW diet (Table 1.1). Longitudinal 

isotopic studies in the Strait of Gibraltar reported seasonal variation in nitrogen but not carbon stable 

isotopes from skin of G. m. melas (de Stephanis et al. 2008). However, stomach contents analysis 

showed seasonal differences in the diet of LFPWs from the Faroe Islands (Desportes and Mouritsen 

1993) and annual differences in diets of LFPWs in the North Atlantic (Gannon et al. 1997b). Analysis 

of populations from differing geographic locations suggest that the eastern and western North 

Atlantic populations may not be feeding at the same trophic level, with isotopic differences in teeth 

suggesting differing movement patterns (Abend and Smith 1995).  Indeed, global literature suggests 

that LFPW distribution could be characteristic of prey location (Cañadas et al. 2002; Table 1.2). For 

example, high LFPW occurrence around Iceland tends to follow seasonal squid distribution 

(Selbmann et al. 2022). Distribution of the northern sub-species G. m. melas in Iberian waters appears 

to coincide with shallower more coastal prey that this population is feeding on (Table 1, 2). However, 

LFPWs are recorded mainly offshore in the Alboran Sea, Northwest and Northeast Atlantic, 

Norwegian Sea, and Southern Ocean (Table 1.2). Spatial distribution studies of the southern sub-

species are scarce, and it is recognised that further research is required to understand distribution 

of G. m edwardii in the Southern Hemisphere (Kraft et al. 2020). 

Investigation into dietary fatty acid profiles is especially limited for LFPWs (Walters 2005; Monteiro 

et al. 2015b). Similarly, multi-method approaches to dietary studies are not common in the LFPW 

literature (Table 1.1), studies linking diet and body condition are rare. A single stranded male LFPW 

in Denmark had a blubber thickness of 51-103 mm across different body sections, which was 

considered a sign of moderate-good condition (Alstrup et al. 2022), whilst a single stranded animal 
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in Iceland had a blubber thickness of 31.3 mm and was considered to be in poor nutritional state 

(Davison et al. 2015). The mean blubber thickness of LFPWs mass-stranded on the Scottish coast was 

reported at 36.7 mm (Brownlow et al. 2015) and ranged between 30.7 and 74 mm in LFPWs stranded 

in Australia (Walters 2005). No link to body condition or nutritional state was suggested in these 

studies. In fact, the lack of relationship between blubber thickness and the total lipid content of 

blubber in Australian LFPWs (n = 63) suggested that blubber thickness may not be a good indicator 

of energy reserves (i.e., body condition) in this species (Walters 2005). Indeed, body condition was 

judged by “total length at age” rather than blubber measurements in studies of the costs of raising 

males to Faroese LFPW mothers (Nichols et al. 2014).  

1.4.1 LFPWs in New Zealand 

In New Zealand waters, the distribution of pilot whales (including both LFPWs and short-finned 

pilot whales) has been modelled from sightings data and categorised as offshore (>25km from the 

coastline) with a preference for deep waters (Stephenson et al. 2020), though pods clearly also move 

through coastal waters resulting in their high propensity to strand in New Zealand.  

Mass-standings of LFPWs are relatively frequent on the New Zealand coast and occur mainly during 

the austral summer (Ogle 2017; Betty et al. 2020). Studies of LFPWs in New Zealand waters have so 

far concentrated on life history, genetics, social structure, persistent contaminants, and welfare 

(Brabyn 1990; Oremus et al. 2009; Betty 2019; Betty et al. 2019; Betty et al. 2020; Meyer 2020; Lischka 

et al. 2021; Betty et al. 2022; Boys et al. 2022). Additionally, stomach contents have been explored in 

a total of 37 animals stranded in three stranding events in New Zealand (Beatson et al. 2007a; Beatson 

et al. 2007b; Beatson and O’Shea 2009). The small sample sizes of these previous studies also did not 

permit either ontogenetic or spatiotemporal analysis of LFPW dietary variation.  
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Known prey recovered from stomach contents of LFPWs stranded on the New Zealand coast include 

arrow squid, of which two species (Nototodarus sloanii and N. gouldii) are reported in local waters 

(Uozumi and Forch 1995). Additionally, the common New Zealand octopus Pinnoctopus cordiformis 

has been described as of secondary dietary importance to LFPWs in this region (Beatson and O’Shea 

2009). Whilst other pelagic squid have been noted in low numbers (Beatson et al. 2007b), fish have 

not been recorded in the diet of LFPWs in New Zealand waters. Additionally, no examination of 

stable isotopes, fatty acids or body condition has been published for LFPWs in this region. The high 

frequency of LFPW mass strandings on the New Zealand coast therefore presents an opportunity to 

assess the little-known feeding ecology of the southern sub-species, G. m. edwardii.  
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Table 1.1 Dietary and trophic data for long-finned pilot whales (Globicephala melas). SCA = stomach content analysis, SIA = stable isotope analysis, FA = fatty acid 

analysis, TBL = total body length. Cephalopod, Fish and Other columns refer to number of unique species. Only stable isotope values for LFPW skin are included in 

this table.  

Species Location n Methods Cephalopod Fish Other Dominant 

prey  

Dietary variation  δ13C (؉) δ 15N (؉) Source 

G.  m. melas 

(Northern) 

Scotland 1 SCA 2 2 0 Cephalopod N/A N/A N/A  Ritchie 1924 

Newfoundland 29 SCA 1 1 0 Fish N/A N/A N/A  Sergeant 1962 

Western mid-Atlantic 4 SCA 1 2 0 N/A N/A N/A N/A Overholtz and Waring 1991 

Faroe Islands 720 SCA 9 14 >1 Cephalopod TBL, season N/A N/A Desportes and Mouritsen 

1993 

Western North Atlantic 30 SCA 6 7 0 Cephalopod N/A N/A N/A Gannon et al. 1997a 

Western North Atlantic 8 SCA 6 6 0 Cephalopod N/A N/A N/A Gannon et al. 1997b 

Northeast Atlantic 11 SCA 12 8 1 Cephalopod N/A N/A N/A  Spitz et al. 2011 

Northeast Atlantic 48 SCA 18 4 >1 Cephalopod Spatial, temporal, 

ontogenetic 

N/A N/A Santos et al. 2014 

Southern North Sea 2 SCA 2 5 2 N/A N/A  N/A N/A   Ijsseldijk et al. 2015 

Cape Cod 3 SIA  N/A N/A N/A N/A Spatial N/A 13.8 ± 0.36 Abend and Smith 1995 

Mid-Atlantic Bight 3 SIA N/A N/A N/A N/A Spatial N/A 13.9 ± 0.36 Abend and Smith 1995 

Faroe Islands 3 SIA N/A N/A N/A N/A Spatial N/A 11.7 ± 0.45 Abend and Smith 1995 
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Table 1.1 continued  

Species Location n Methods Cephalopod Fish Other Dominant 

prey  

Dietary variation  δ13C (؉) δ 15N (؉) Source 

 

Western North Atlantic 6 SIA >1 >1 0 N/A By tissue -18.75 ± 0.143 13.88 ± 0.130 Abend and Smith 1997 

Strait of Gibraltar 5 SIA N/A N/A N/A N/A None found  -16.20 ± 0.22 12.70 ± 0.32 de Stephanis et al. 2008 

Strait of Gibraltar 51 SIA N/A N/A N/A N/A None found  -16.37 ± 0.40 11.29 ± 0.38 de Stephanis et al. 2008 

Northern Ireland 22 SIA N/A N/A N/A Cephalopod Spatial -17.7 ± 0.7 12 ± 0.7 Monteiro et al. 2015a 

Scotland 46 SIA N/A N/A N/A Cephalopod Spatial -18.7 ± 0.7 11.3 ± 0.6 Monteiro et al. 2015a 

 North Atlantic 114 SIA N/A N/A N/A Cephalopod TBL, Spatial -18.3 ± 0.8 12.0 ± 1.0 Monteiro et al. 2015b 

 Mediterranean Sea 15 SIA N/A N/A N/A N/A N/A -17.8 ± 0.3 10.5 ± 0.7  Pinzone et al. 2015 

 Mediterranean Sea 21 SIA N/A N/A N/A N/A N/A -17.7 ± 0.6 10.5 ± 0.5  Pinzone et al. 2019 

 North Atlantic 56 FA N/A N/A N/A N/A Spatial N/ N/A  Monteiro et al. 2015b 

G. m. 

edwardii 

(Southern) 

Tasmania 2 SCA  14 >1 0 Cephalopod N/A N/A N/A  Gales et al. 1992 

South Africa 5 SCA 23 >1 0 Cephalopod Cephalopod N/A N/A Sekiguchi et al. 1992 

Northeast New Zealand 16 SCA 5 0 0 Cephalopod N/A N/A N/A  Beatson et al. 2007b 

Farewell Spit, New 

Zealand  

21 SCA 2 0 0 Cephalopod N/A N/A N/A  Beatson and O’Shea 2009 
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Table 1.1 continued  

Species Location n Methods Cephalopod Fish Other Dominant 

prey  

Dietary variation  δ13C (؉) δ 15N (؉) Source 

 Southern Chile 7 SCA 3 0 0 Cephalopod N/A N/A N/A Mansilla et al. 2012 

Tasmania 114 SCA 26 >2 0 Cephalopod Spatial, TBL N/A N/A Beasley et al. 2019 

Chile 28 SCA 7 5 5 Cephalopod N/A N/A N/A Chalcobsky et al. 2021 

Tasmania 94 SIA  N/A N/A N/A N/A N/A -19.6 ± 0.4 10.7 ± 0.9  Davenport and Bax 2002 

Kerguelen waters 65 SIA 65 0 0 N/A N/A -18.4 ± 0.5 12.2 ± 0.3 Fontaine et al. 2015 

Southeast Australia 147 SIA N/A N/A N/A Cephalopod N/A -17.6 ± 0.4 12.2 ± 0.6 Jackson 2017 

 Western South Atlantic 1 SIA N/A N/A N/A N/A N/A -16.3 13 Troina et al. 2020 

 Chile 54 SIA N/A N/A N/A Cephalopod N/A -14.5 ± 0.8 13.6 ± 1.3 Becker et al. 2021 

 Australia 63 FA N/A N/A N/A Cephalopod/ 

Fish 

None N./A N/A Walters 2005  
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Table 1.2. Distribution and depth data for long-finned pilot whales (Globicephala melas) globally, and their known prey in New Zealand. * indicates mean water depth 

at time of sighting 

Species  Location n Distribution Depth (m) Method Paper 

Global studies  North Atlantic  N/A  Variable  N/A  Review   Buckland et al. 1993 

G.m.melas Northeast Atlantic N/A Offshore, shelf break N/A Review  Abend and Smith 1999 

 Alboran Sea N/A Mostly deepwater 848 ± 281.2* Survey/Video Canadas and Sagarminaga 2000 

 Ligurian Sea 171 Offshore, deep diving 300 – 800 Survey Cañadas et al 2002 

 Ligurian Sea 5 Offshore 72 – 648 Tagging  Baird et al. 2002 

 Mediterranean Sea N/A Deep water N/A Survey  Mangion and Gannier 2002 

 Faroe Islands 3 Variable < 500 Tagging  Bloch et al. 2003 

 Northeast Atlantic 2 N/A < 510 Tagging Nawojchik and Aubin 2003 

 Mediterranean Sea N/A Mostly deepwater 2,056 ± 403* Survey  Gannier 2005 

 Northwest Atlantic 1 Offshore, deep diving > 1,500 Tagging Mate et al. 2005 

 Scotland 54 Deepwater < 1,951 Survey MacLeod et al. 2007 

 Ligurian Sea N/A Pelagic > 1,000* Survey Azzellino et al. 2008 

 North Norwegian Sea 7 N/A > 600 Tagging Sivle et al. 2012 

 North Norwegian Sea 2 N/A 13 – 513 Tagging Aoki et al. 2013 
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Table 1.2. continued  

Species  Location n Distribution Depth (m) Method Paper 

 North Norwegian Sea 11 Deep diving 4 – 617 Tagging Visser et al. 2014 

 Southwestern Atlantic  10 Outer continental slope/shelf 500 – 1,000 Survey  Di Tullio et al. 2016 

 North Norwegian Sea 19 N/A 24.7 – 617.4 Tagging Isojunno et al. 2017 

 Alboran Sea 50 Offshore, deep diving 500 – 2,500 Modelling Giménez et al. 2018 

 North Atlantic N/A Mostly offshore  Review Pike et al. 2019 

 Iceland N/A Offshore, continental edge  Observation Selbman et al. 2022 

G. m. edwardii South Africa N/A Offshore, continental slope N/A Observation Sekiguchi et al. 1992 

 South Africa/Namibia N/A Offshore, continental shelf N/A Observation Findlay et al. 1992 

 Australia 5 Variable < 60 Tagging  Gales et al. 2012 

 Southern Ocean 3 Offshore, continental slope NA Acoustic detection  Barlow et al. 2021 

New Zealand 

studies 

            

G.  m. edwardii  New Zealand N/A Offshore, deep diving N/A Spatial distribution models Stephenson et al. 2020 

Nototodarus spp. Southeast New Zealand N/A N/A < 600 Fisheries observations Uozumi and Forch 1995 

 New Zealand N/A N/A 17 – 1,146 Fisheries observations Anderson et al. 1998 
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Table 1.2. continued  

Species  Location n Distribution Depth (m) Method Paper 

 Southeast New Zealand N/A N/A Highest density at  

< 300 

Fisheries observations  Jackson et al. 2000 

Pinnoctopus spp. New Zealand N/A Coastal < 300  Carrasco et al. 2014 
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1.5. Study rationale  

Despite such a high stranding frequency, there is currently limited knowledge of the foraging 

ecology and potential fisheries overlap of LFPWs within New Zealand waters. Currently, 

knowledge of diet and foraging of LFPWs in this region is based on the stomach contents of a limited 

number of individuals (n = 37) from three stranding events (Beatson et al. 2007a; Beatson et al. 2007b; 

Beatson and O’Shea 2009). Prior to this PhD study, no analysis had been conducted to corroborate 

insights from these stomach contents studies, or to explore isotopic niche or longer-term diet. 

Moreover, no research has previously been conducted to understand dietary variability within this 

species within New Zealand waters. Whilst overseas populations of LFPWs have displayed dietary 

variation spatially, both temporal and ontogenetic differences have also been noted (Table 1.1). 

Within the LFPW population in New Zealand waters, it is unclear if any ontogenetic, spatial, or 

temporal foraging differences occur. Furthermore, there has been little exploration into the 

relationship between diet, fatty acid profiles, blubber thickness, and blubber lipid content within 

LFPWs. Therefore, it is unknown whether changes in target prey species influence individual body 

condition, which could have implications for reproductive fitness and survivorship.  

1.5.1. Thesis aims, objectives and structure 

This thesis addresses critical gaps in our knowledge of the foraging ecology of LFPWs within New 

Zealand waters, using samples collected from carcasses involved in mass-strandings along the New 

Zealand coast between 2009 and 2017 (see Appendix 1.1 for further details). As the first investigation 

of intraspecific dietary variation of LFPWs from New Zealand waters, this study aims to provide 

insights into LFPW diet composition, variation, and potential links between diet and individual 

body condition. 

To achieve this aim, there are four research objectives: 
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Objective 1: Investigate intraspecific variation in the prey composition of LFPWs stranded on the 

New Zealand coast. 

Objective 2: Assess ontogenetic, spatial, and temporal isotopic niche dynamics within the LFPW 

population.   

Objective 3: Evaluate the use of biochemical tracers in key prey species to quantify LFPW dietary 

variation. 

Objective 4: Explore possible linkages between chemical dietary tracers and individual LFPW body 

condition. 

Studies of foraging ecology in marine mammals integrating methodology can help to understand 1) 

the dietary composition of a species in a particular location and 2) observations of possible 

ontogenetic, spatial, or temporal, changes in diet. Dietary estimates from a single methodology can 

be difficult to validate (Tucker et al. 2008). This study will therefore apply an integrated approach 

combining stomach content, stable isotope, and fatty acid analyses to gain a better understanding of 

the diet and foraging interactions of LFPWs in New Zealand waters. Moreover, this research seeks 

to explore relationships between foraging and body condition of LFPWs through comparison of 

dietary data to common body condition measurements: girth, TBL:girth ratio, blubber lipid content 

and blubber thickness. Specifically, this study will comprise six chapters (Table 1.3), an introductory 

chapter (this chapter), four data chapters with associated literature reviews (Chapters 2-5) and an 

overarching discussion and synthesis of the combined thesis findings (Chapter 6; Table 1.3).  
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Table 1.3. Overview of thesis by chapter, questions, and analyses. LFPW = long-finned pilot whale (Globicephala melas edwardii), SCA = stomach contents analysis, CA 

= correspondence analysis, GAMs = generalised additive models, SIA = stable isotope analysis, FA = fatty acid analysis, n-MDS = non-parametric multidimensional 

scaling, PERMANOVA = permutational multivariate analysis of variance, SIMPER = similarity percentages, GLMs = generalised linear models   

Chapter 

 

Topic Questions Methods 

1 Introduction and literature review 1.1 What does the published and grey literature tell us about the diet and foraging 

ecology of cetaceans and specifically LFPWs? 

Literature review 

2 Intraspecific dietary variation of long-

finned pilot whales LFPWs stranded on 

the Aotearoa New Zealand coast. 

 

2.1. What is the prey composition of LFPW stomach contents? 

2.2. Are there ontogenetic, differences in LFPW diet, as revealed by stomach contents? 

2.3. Are there spatial or temporal differences in LFPW diet, as revealed by stomach 

contents? 

 

SCA 

Index of relative 

importance 

Bray-Curtis  

CA 

GAMs 

3 Isotopic niche analysis of LFPWs in 

Aotearoa New Zealand waters 

 

3.1. What are the δ13C, δ15N and δ34S values of LFPW skin? 

 

3.2. Are there ontogenetic, spatial, or temporal differences in LFPW trophic dynamics, 

as revealed by stable isotopes? 

SIA 

GAMs 

NicheRover 
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Table 1.3. continued 

 Chapter 

 

Topic Questions Methods 

4 Comparative analysis of LFPWs and 

their primary prey: insights from stable 

isotope and fatty acid analyses 

 

4.1. Can LFPW prey species be distinguished via SI (δ13C, δ15N, δ34S) analysis? 

4.2 What are the dietary fatty acid profiles of potential LFPW prey from the Golden 

Bay/Tasman Bay region? 

 

4.3. What do biochemical profiles of LFPW prey species tell us about their relative 

importance to LFPW diet? 

FA 

SIA 

n-MDS 

PERMANOVA 

SIMPER 

Prey polygons 

5 Body condition measurements and 

fatty acid profiles from LFPWs 

stranded on the Aotearoa New Zealand 

coast 

 

5.1 What is the total lipid content of LFPW blubber? 

 

5.2. Are there ontogenetic variations in body condition measurements of LFPWs? 

5.3. Is there variation in the fatty acid profile of LFPW blubber in relation to body 

condition measurements? 

Body condition 

indices  

FA 

PERMANOVA 

GLMs 

 

6 Discussion and conclusions  6.1. What insights has this thesis provided towards likely diet and foraging ecology 

of LFPWs in New Zealand waters?  

 Literature review 

Self-critique 
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Chapter 2 — Intraspecific dietary variation of long-finned pilot 

whales (Globicephala melas edwardii) stranded on the Aotearoa New 

Zealand coast. 

 

 

A squid beak from the stomach of a long-finned pilot whale Globicephala melas edwardii stranded on 

the Aotearoa New Zealand coast. Photo credit: Bethany Hinton.  
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In this chapter, an investigation of the stomach contents recovered from 283 long-finned pilot whales 

(Globicephala melas edwardii) stranded on the New Zealand coast (2009 – 2017) is presented to address 

the first research objective:  

 

Objective 1: Investigate intraspecific variation in the prey composition of LFPWs stranded on the 

New Zealand coast. 

 

This chapter is a re-formatted version of the manuscript:  

Hinton et al. (in prep). Intraspecific dietary variation of long-finned pilot whales (Globicephala melas 

edwardii) stranded on the Aotearoa New Zealand coast. 
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2.1. Abstract 

Dietary studies can give important information on species interaction within their environment. 

Long-finned pilot whales (LFPWs; Globicephala melas edwardii) strand frequently on the Aotearoa 

New Zealand coast, yet little is known of their diet. Stomach contents were examined from 283 

LFPW carcasses stranded across eight locations in New Zealand between 2009 and 2017. Of the 

stomachs examined, 74% (n = 210) contained remains of cephalopods, 18% (n = 52) contained fish 

remains, and 16% (n = 44) of stomachs were empty. Percentage index of relative importance (%IRI) 

was calculated for remains of each identifiable prey group, revealing that G. m. edwardii in New 

Zealand waters rely heavily on arrow squid (Nototodarus spp.), at least in the immediate days prior 

to stranding. Generalised additive models (GAMs) indicated that total body length, sex and location 

were important predictors of variation in the percentage number (%N) of arrow squid consumed. 

Bray-Curtis dissimilarity matrices and correspondence analysis were further used to investigate 

ontogenetic (sex, maturity status, reproductive group) and spatiotemporal (year, location, stranding 

event) factors affecting variation in prey consumed. Whilst immature and mature individuals 

showed similarity in prey composition, fish remains were more frequently found in mature male 

stomachs than in those of mature females. Spatiotemporal variation in prey composition and 

diversity was noted by year, location, and stranding event. The findings of this study confirm that 

LFPWs are a predominantly teuthophagus predator, supplementing their cephalopod-dominated 

diet with fish. Whilst the diet of other LFPW populations appears to vary by total body length and 

location, dietary variation by sex is less commonly reported elsewhere, suggesting that this 

population may be demonstrating a different approach to feeding than overseas.  
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2.2. Introduction 

Dietary studies are fundamental to understanding species function and their ecological interactions 

(Bowen 1997; Jory et al. 2021), offering insights into both predator behaviour and distribution 

(Trainor et al. 2014; Abrams 2019). Studies of dietary plasticity have garnered widespread interest 

in particular (Spitz et al. 2006; Santos et al. 2015; Costa and Angelini 2020). Factors affecting diet are 

not mutually exclusive and include social status (Metcalfe et al. 1992; Chen et al. 2010), 

morphological variation (Rincón et al. 2007) and local ecological conditions (Tollit et al. 1998; Palm 

et al. 2013; Marklund et al. 2018) and individual specialisation (Estes et al. 2003; Araújo et al. 2011). 

Optimal foraging theory (OFT) suggests that any of these differences in phenotype or prey 

availability may cause an individual to target a different prey species (e.g., Werner and Hall 1974; 

Pyke et al. 1977).  

While dietary variation has been described both within (intra-) and between (inter-) populations, 

factors influencing this variation can be complex to determine. For example, ecological factors could 

influence foraging of a population over various temporal scales (Bassoi and Secchi 2000). These can 

include prey availability (Choy et al. 2020), climate/temperature (Rupil et al. 2018; Esteban et al. 

2020) and habitat differences (Pusineri et al. 2007), which may cause dietary changes at the wider 

population level. From a functional perspective, dietary variation may be expected to vary during 

life stages (ontogeny) with increased nutritional demands, at times such as pregnancy and lactation 

(Bernard and Hohn 1989; Rechsteiner et al. 2013). Further to this, learned behaviours and foraging 

techniques may change or improve over time, resulting in dietary changes with increasing age 

(Kidawa and Kowalczyk 2011; Patterson et al. 2015) and/or body size (Lucifora et al. 2009). Such 

individual dietary variation, although often overlooked (Vander Zanden et al. 2010), has been noted 

in multiple marine species (Koen Alonso et al. 2002; Ward et al. 2006; Marcus et al. 2016; Kim et al. 
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2020), recognising that organisms may be responding simultaneously to a multitude of 

environmental stressors (Griffen et al. 2016; Gunderson et al. 2016; Hewitt et al. 2016; Chapman 

2017). 

Intraspecific dietary variation has been described for several marine species (Vogt and Guzman 

1988; Schafer et al. 2002; Mills et al. 2021), including marine mammals (Clarke and Pascoe 1985; 

Pierce and Boyle 1991; Pauly et al. 1998; Santos et al. 1999; Lowry et al. 2004; Sheffield and Grebmeier 

2009; Pomerleau et al. 2011), using stomach content analysis; the most enduring form of dietary 

study in marine mammal research (Hyslop 1980; Pierce and Boyle 1991; Bowen and Iverson 2013). 

Prey tissue is thought to digest within hours to days in delphinid stomachs (Sekiguchi and Best 

1997). Conversely, fish otoliths remain in marine mammal stomachs for approximately 7-24 hours 

(McMahon and Tash 1979; Jobling and Breiby 1986; Sekiguchi and Best 1997), whereas cephalopod 

beaks are more resistant to digestion so are retained for longer (Bigg 1985; Harvey 1989; Santos et al. 

2001). 

Stomach content research can identify spatially diverse diet from the same species feeding at 

regionally distinct sites (Gannon and Waples 2004; Miller et al. 2013; Viola et al. 2017), as well as 

temporal changes that may result from natural or anthropogenic fluctuations in prey availability 

(Rupil et al. 2018; Ning et al. 2020). Analysis of stomach contents has been useful in gaining insight 

into dietary variation in the Northern Hemisphere long-finned pilot whale (Globicephala melas melas) 

in the Bay of Biscay, English Channel, Faroe Islands, and Atlantic (Overholtz and Waring 1991; 

Clarke 1994; González et al. 1994; Gannon et al. 1997b; Aguiar dos Santos and Haimovici 2001; 

Aguiar dos Santos and Haimovici 2002; De Pierrepont et al. 2005; Santos et al. 2014), and the 

Southern Hemisphere sub-species G. m. edwardii in Chile (Mansilla et al. 2012; Chalcobsky et al. 2021) 

and Tasmania (Gales et al. 1992; Beasley et al. 2019). Globally, the diet of the long-finned pilot whale 
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(herein: LFPW) predominantly comprises cephalopods (González et al. 1994; Beatson and O’Shea 

2009; Spitz et al. 2011; Santos et al. 2014; Beasley et al. 2019). Global literature suggests that LFPW 

distribution could be characteristic of high productivity and prey density (Cañadas et al. 2002; 

Hamilton et al. 2019) as expected in optimal foraging theory.  In the North Atlantic, temporal dietary 

fluctuations were reported for the Northern Hemisphere subspecies of LFPWs (G. m. melas) at both 

annual and seasonal timescales (Gannon et al. 1997b; Santos et al. 2014). In addition, ontogenetic 

dietary variation was observed for G. m. melas captured in drive fisheries off the Faroe Islands, with 

larger individuals found to be eating larger squid (Desportes and Mouritsen 1988). In contrast, a 

recent examination of the diet of the Southern Hemisphere sub-species (G. m. edwardii) stranded on 

the coast of Tasmania, Australia revealed smaller animals were consuming larger squid (Beasley et 

al. 2019).  

In New Zealand, provisional stomach content analysis of 37 LFPWs (G. m. edwardii) sampled from 

three mass stranding events (MSEs; Beatson et al. 2007a; Beatson et al. 2007b; Beatson and O’Shea 

2009) suggested a cephalopod-dominated diet. Here, the diet of G. m. edwardii is explored further by 

examining intraspecific variation in stomach contents recovered from individuals stranded on the 

New Zealand coast. Specifically, this chapter aims to (1) describe overall prey composition, and 

relative importance of each prey group to diet, (2) assess ontogenetic variation in prey consumption 

and (3) assess spatiotemporal variation in prey consumption.  

2.3. Materials and methods 

2.3.1. Sample collection 

Morphometric data and stomach contents were opportunistically sampled from 283 LFPWs (G. m. 

edwardii) across 14 stranding events (10 MSEs and four singletons) on the New Zealand coast 

between 2009 and 2017 (Table 2.1, Figure 2.1). Samples were taken from strandings in the North 

Island (Raglan, Wairoa, Waimārama), South Island (Farewell Spit, Spencer Park Beach, Port Levy, 
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Te Oka) and Stewart Island (West Ruggedy, Mason Bay; Table 2.1, Figure 2.1). As many individuals 

as logistically possible were sampled from each stranding event, with no intentional size or sex bias. 

The only exception was the 2017 MSE at Farewell Spit, where stomachs were sampled from only 

freshly dead individuals (n = 3). Total body length (TBL, n = 278) and anatomical sex assessment (n 

= 282) were recorded on gross examination (Geraci and Lounsbury 2005). The abdominal cavity was 

subsequently opened to access the gastrointestinal tract, where the forestomach, main stomach and 

pyloric stomach were independently sampled in-situ to extract contents, following standard 

sampling protocols (Geraci and Lounsbury 2005). Stomach contents were carefully removed from 

each stomach chamber and placed into separate labelled bags. All stomach contents were stored 

frozen at -20 ℃ until subsequent analysis.  
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Figure 2.1. Locations of long-finned pilot whale (Globicephala melas edwardii) strandings on the New Zealand 

coast from which stomach contents were collected for this study, 2009–2017. From North to South in the north 

island: Raglan, Wairoa, Waimārama. From North to South in the South Island: Farewell Spit, Spencer Park 

Beach, Port Levy, Te Oka. From North to South in Stewart Island: West Ruggedy, Mason Bay. Bathymetry is 

depicted with darker shades of blue representing deeper waters (reprinted from National Institute of Water 

and Atmospheric research (NIWA) under a creative commons by license (CANZ 2008), with permission from 

NIWA original copyright. 

 

N 
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2.3.2. Age, sexual maturity, and reproductive group 

Teeth were collected to assess age via dentinal growth layer groups (GLGs) as detailed in Betty et 

al. (2022). In summary, the least worn teeth were extracted from carcasses and a 3–5 mm section 

from the middle of the tooth was attained through grinding both sides, using a 600-grit wheel on a 

faceting machine. Mid-sections were then decalcified using hydrochloric acid (RDO, Apex 

Engineering Products Corporation, Aurora, Illinois), and 25 µm sections were taken on carbon a 

dioxide freezing stage of a sledge microtome. Each mid-section was stained using Ehrlich’s 

haematoxylin and weak ammonia solution (Betty et al. 2022). All age estimations were made by at 

least two experienced readers and were performed in the absence of any further biological 

information, so as not to bias age estimates. Age estimates were available for 95% (n = 269) of 

individuals included in this study.  

Reproductive status was assessed from histological examination of testes and gross examination of 

ovaries (see Betty 2019) and was available for 70% (n = 199) of individuals in the current study. Males 

were categorised into three reproductive groups: (1) immature, (2) maturing, (3) mature; defined by 

the relative proportion of mature seminiferous tubules in testes (Betty et al. 2019). Females were 

categorised into four reproductive groups, where possible: (1) immature, (2) pregnant, (3) lactating, 

(4) resting (Betty 2019). Immature females were defined by a lack of ovarian corpora scars, pregnant 

females by the visible presence of a foetus (but absence of milk in the mammary glands), lactating 

by the presence of milk in the mammary glands, and resting by the presence of at least one corpus 

luteum or corpus albicans scar indicating previous ovulation, but with no indication of pregnancy or 

lactation. Mature females that were not able to be confidently classified into a reproductive group 

due to state of decomposition (n = 11) were classified as “indeterminate mature”. Both indeterminate 

females and males classified as “maturing” (n = 3) were excluded from reproductive group analyses.  
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Maturity status was classified by pooling reproductive groups as follows: “mature” status included 

all mature males as well as indeterminate, pregnant, lactating, and resting females; “immature” 

status included immature males and females. Where reproductive status was not available, body 

length was used as a predictor of sexual maturity using estimations presented by Betty (2019) and 

Betty et al. (2019) for the same population.  

2.3.3. Stomach content analysis  

Stomach contents were analysed following standard methods (Geraci and Lounsbury 2005). First, 

prey remains were thawed, rinsed through a 1 mm sieve, sorted into prey groups based on visual 

similarity (e.g., cephalopod eye lenses, squid beaks, fish bones, freshly ingested prey) and 

photographed. Hard-part remains were stored dry (fish bones and otoliths) or in 70% ethanol 

(cephalopod beaks), while fresh prey items were stored frozen at -20 ֯C.  

Intact prey species were photographed and identified to the lowest taxonomic level possible using 

identification guides (e.g., Roberts et al. 2015; McMillan et al. 2019; Appendix 2.1). Hard part remains 

were counted, and diagnostic components used for identification. For cephalopods, diagnostic 

remains included lower cephalopod beaks, which were identified to the lowest possible taxonomic 

level using published guides (Clarke et al. 1986; Xavier and Cherel 2009) and reference collections 

of cephalopod beaks commonly found in New Zealand waters (curated by Massey University and 

National Institute of Water and Atmospheric Science, Taihoro Nukarangi; NIWA, respectively). Sub-

samples of cephalopod beaks were further verified by an independent squid beak expert (Dr. Yves 

Cherel, National Centre for Scientific Research, Paris) during a squid identification workshop held 

at NIWA, Wellington (September 2019). Lower beaks that could not be identified due to degradation 

or breakage or were too small for identification were classified as “lower cephalopod beaks”.  
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Fish otoliths and jaw bones containing teeth were used to identify fish prey species with reference 

to published literature and guides (Smale et al. 1995; Leach 1997; Furlani et al. 2007). Counts of fish 

represented by the hard part remains were determined by sagittal otolith counts divided by two, 

and jaw bone counts divided by four, respectively. Where there were co-occurring remains e.g., three 

jaw bones and two otoliths, this was counted as one fish, whereas five jaw bones and one otolith was 

counted as two fish. All fish otolith identifications were verified using national fish reference 

collections (Massey University and NIWA). If fish eye lenses were present without any further 

identifiable remains, the count of fish eye lenses was divided by two to determine fish count and 

categorised as “unidentifiable fish”.
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Table 2.1. Number and percentage of long-finned pilot whales (Globicephala melas edwardii) sampled for stomach content, TBL (total body length), age, sex, maturity 

status, and reproductive group following stranding events on the New Zealand coast, 2009–2017. Data as presented by stranding event. “Stranded (n)” = total number 

of individuals that stranded in that particular event, “Deceased (n)” = number of individuals that during the stranding event, “Stomach (n)” = number of individuals 

examined for stomach contents, IM = sexually immature, MM = mature male, P = pregnant female, L = lactating female, R = resting female, IN = indeterminate mature 

female, U – denotes reproductive group was not able to be assessed. “SC (n)” = number of pilot whales with prey remains recovered from stomachs.  

          Reproductive Group   

Stranding Stranded 

(n) 

Deceased 

(n) 

Stomach 

(n) 
TBL  

(n) 

Age 

(n) 

Male 

 (n) 

Female 

(n) 

Immature 

(n) 

Mature 

(n) 

IM 

(n) 

MM 

(n) 

P 

(n) 

L 

(n) 

R 

(n) 

IN 

(n) 

U  

(n) 

SC 

(n) 

Christchurch 2009 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 

Farewell Spit 2009 105 105 49 49 49 21 28 18 31 0 0 2 0 0 0 47 42 

Port Levy 2010 50+ 17 16 16 16 5 11 12 4 10 0 0 0 0 2 4 10 

Stewart Island 2010 28 28 16 16 16 9 7 9 7 9 2 2 0 0 3 0 14 

Te Oka 2010 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 

Raglan 2010 20 20 20 20 20 8 12 7 13 5 0 0 0 0 4 11 6 

Wairoa 2011 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 

Farewell Spit 2011a 84 17 7 7 7 5 2 3 3 3 1 0 1 1 0 1 7 

Stewart Island 2011 107 107 77 74 69 25 52 23 54 22 8 8 4 25 1 9 66 

Farewell Spit 2011b 65 56 49 49 48 22 27 15 33 12 2 1 11 11 0 11 49 

Wairamārama 2013 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 

Farewell Spit 2014a 39 39 36 35 36 15 21 15 20 15 3 4 10 3 0 1 35 

Farewell Spit 2014b 99 50 6 6 3 3 3 1 5 1 2 1 2 0 0 0 6 

Farewell Spit 2017 400+ 252 3 3 3 0 3 1 2 1 0 1 0 1 0 0 2 

Total 1,001+ 694 283 278 269 115 168 105 174 79 18 19 28 41 10 87 239 
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2.3.4. DNA barcoding  

Visual identification was inconclusive for some prey. Thus, a 5 mm3 subsample of muscle tissue 

from the anguilliformes (n = 11) and elasmobranchs (n = 4) that had soft tissue present was sent for 

DNA barcoding to discern species. Additionally, subsamples of 10 arrow squid from LFPWs 

involved in this study had also previously been barcoded using the same methodology (Lischka et 

al. 2021). All muscle tissue had DNA extracted using QIAGEN reagents (QIAGEN) and EconoSpin 

columns (Epoch Life Science) using protocols for the animal tissues in the Dneasy Blood and Tissue 

Handbook (QIAGEN® 2006). The 648–bp barcode region cytochrome c oxidase, subunit I (COI) gene 

(Hebert et al. 2003; Hebert et al. 2004). Was amplified using C_FishF1t1/C_FishR1t1 (Ivanova et al. 

2007) as described in Braid et al. (2014). If  a single clean band appeared on PCR products, these were 

sequenced at Macrogen (Korea) using M13 primers, which were edited using CodonCode Aligner 

(ConCode Corep., USA). The identification engine Barcode of Life Data System (BOLD; 

Ratnasingham and Hebert 2007; August 2022) was used to compare sequences to relevant reference 

barcodes. 

2.3.5. Prey length and mass reconstruction  

To estimate the length and mass of prey at the time of ingestion, measurements of lower rostral 

length (LRL) of squid beaks, lower hood length (LHL) of octopus beaks (Clarke et al. 1986) and 

otolith length (Furlani et al. 2007) were recorded. All measurements were taken to the nearest 0.1 

mm using digital callipers. Prey mass and length reconstruction estimation equations were applied 

from Clarke (1986), Lu and Ickeringill (2002), Furlani (2007), Horstkotte (2008), Bolstad (2008), Miller 

et al (2013), Horn (2016), Northern (2017) and Blasina et al. (2018). Where intact cranial remains and 

vertebral columns were recovered, these were not included in length or mass reconstruction due to 

damage.  
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2.4. Statistical analysis 

2.4.1. Overall prey composition, and relative importance to diet  

To investigate appropriate sample sizes for detection of prey groups, a cumulative prey curve was 

created in R package “vegan” (Oksanen et al. 2013). Raw counts of each identifiable prey group were 

used in curve construction. Sample order of individuals was randomised across 10,000 iterations to 

avoid sampling bias (e.g., Miller et al. 2013). 

To assess prey contribution to diet, percentage index of relative importance (%IRI) was calculated 

using:  

%IRI𝑖  = FOi(%NI  +  %M𝑖) 

where prey group = 𝑖, the frequency of occurrence = FO, percentage number = %N and the percentage 

mass = %M (Cortés 1997).The FO was calculated as the number of LFPWs each prey species was 

recorded in, divided by the total number of stomachs containing identifiable prey; %N as the total 

number of each prey species, divided by the total number of all prey species found, expressed as a 

percentage; and the %M as the total reconstructed mass of each prey species, divided by the total 

estimated mass of all prey species found, expressed as a percentage. The %IRI aids comparison of 

prey contribution across multiple studies (Cortés 1997) and is used increasingly in stomach content 

studies (e.g., Medina et al. 2015; Rodrigues et al. 2020; Gonzalez-Pestana et al. 2021; Lin et al. 2021). 

Only identifiable hard part remains that were 1) able to be accurately measured and 2) had species 

regression equations available were included in %N, %M and %IRI calculations.   

2.4.2. Ontogenetic and spatiotemporal variation in prey consumption 

The total counts of prey items recovered for each identifiable prey species consumed were used to 

calculate approximate prey diversity using the Shannon diversity index (e.g., Dolar et al. 2003) with 

equation: 
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𝐻′ =  −∑[(
𝑛𝑖

𝑁
)𝑙𝑛(

𝑛𝑖

𝑁
)] 

where ni = count of prey species and N = total count of all prey species combined. Prey diversity was 

calculated by the following groups: sex, maturity status, reproductive group, stranding year, 

stranding location, and stranding event to allow comparison of prey diversity among groups.    

Differences in LFPW diet composition were assessed between sex, maturity status, reproductive 

group, stranding year, stranding location, and stranding event using the Bray-Curtis similarity index  

on percentage FO data (%FO; e.g., Rodrigues et al. 2020; Lin et al. 2021). The % FO was calculated 

as: 

𝑃𝑊𝑃

𝑃𝑊𝑆
∗ 100 

where PWP = number of individual LFPWs the prey group was recorded in, and PWS = the number 

of stomachs containing identifiable prey. The %FO is considered less ambiguous than other 

measures (e.g., %M) when using large sample sets; it does not rely as heavily on how digested prey 

is, hence is more reliable, though less informative, when attempting to quantify diet across 

timeframes and studies (Buckland et al. 2017; Amundsen and Sánchez-Hernández 2019). As only 

data over 10% FO can be used in Bray-Curtis calculations (e.g., Rodrigues et al. 2020; Lin et al. 2021), 

all squid species other than arrow squid were combined into the group “other squid” and all fish 

species combined to form the group “fish”. This resulted in four taxonomic groups for analysis: 

arrow squid, octopus, other squid, and fish. Whilst using broad taxonomic groups of “fish” and 

“other squid” does not allow the comparative resolution that identifying specific prey species does, 

these groups were used in order not to lose information from unidentifiable remains. The Bray-

Curtis index was presented as a similarity (rather than dissimilarity) percentage by using the 

following equation: 
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(1 − 𝑏𝑟𝑎𝑦 𝑐𝑢𝑟𝑡𝑖𝑠 𝑖𝑛𝑑𝑒𝑥) ∗ 100 

The Bray-Curtis matrices and cluster heatmaps were produced using the “vegdist” and “heatmap” 

functions in R package “vegan” and are available in Appendices 2.2 and 2.3. Correspondence 

analysis was used to visualise dietary variation (e.g., García-Berthou 2001; Gebert and Verheyden‐

Tixier 2001; Gobel et al. 2019), using %FO data (e.g., Lagos and Bárcena 2018). Chi-squared tests 

resulting from correspondence analysis were used to assess variation in prey composition by 

reproductive group, stranding year, location, and event. The R packages FactormineR and 

FactoShiny (Lê et al. 2008; Husson et al. 2016) were used together to run correspondence analysis on 

data and generate graphs.  

All further analyses were performed on the two main prey species, as chosen by high %IRI values 

(Table 2.2), of arrow squid and octopus. Non-parametric Kruskal-Wallis tests were applied to assess 

the number of main prey items consumed as these do not assume a normal data distribution. It is 

important to note that this comparison of hard parts requires remains to be sufficiently undigested 

for identification (Buckland et al. 2017). The relationship between beak size (LRL for arrow squid 

and LHL for octopus) and LFPW age and body length, respectively was assessed using Spearman 

rank sum tests (e.g., Santos et al. 2007; Beasley et al. 2019). Correlations were presented by sex and 

maturity status using the R package “ggplot2” (Wickham 2011). Beak size was used rather than 

reconstructed length to avoid reliance on accuracy of the regression equations used, which would 

add a further layer of uncertainty to data.  

Finally, the variation in the number of prey consumed per individual was assessed through 

generalised additive models (GAMs), fitted for the main prey species only (e.g., Santos et al. 2013). 

The relationship between prey number (%N) against a range of variables: body length, sex, maturity 

status, location, year, and stranding event using GAMs (e.g., Santos et al. 2013; Marçalo et al. 2018). 
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Age was not included as a factor due to significant correlation between age and body length 

(Pearson, t = 10.51, correlation = 0.60, p = < 0.001) and reproductive group was also excluded as it 

was only available for 70% of data. Models were built with binomial distribution with data weighted 

equal to the number of prey items in each stomach. Gamma set to 1.4 to prevent overfitting (Wood 

2017) with all possible combinations of variables. Akaike’s information criterion adjusted for small 

sample size (AICc; Burnham et al. 2011) was used to select the best fitting model. Models within 

three AICc units of the optimum model were deemed equally likely, and the top three were reported. 

Models were tested for interactions for the three top-ranked models. Final models were checked for 

normality and obvious patterns in the residuals. As data was not normally distributed and contained 

high numbers of zeros, non-parametric Kruskal-Wallis tests were used (e.g., Santos et al. 2007) to 

measure the mean number of prey species ingested between ontogenetic (sex, maturity status, 

reproductive group) and spatiotemporal (stranding year, location, event) variables of significance 

retained in the top three GAM models.  

2.5. Results 

Stomachs contents collected historically through the long-finned pilot whale project across New 

Zealand over an eight-year period (2009–2017, Table 2.1) and stored at Massey University were 

investigated from a total of 10 mass and four single strandings. ). Across all stranding events, 283 

LFPW carcasses were investigated for stomach contents (Table 2.1). Of those, stomach contents were 

successfully collected from 239 (84%, Table 2.1) individuals, while 44 stomachs were empty (16%; 

see Appendix 2.4 for further breakdown of empty stomachs). Of the 239 LFPWs with stomach 

contents, 90% (n = 214) contained identifiable prey remains including cephalopod beaks and 

identifiable fish otolith and bones. A further 10% (n = 25) individuals contained only unidentifiable 
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remains (e.g., eye lenses, unidentifiable fish bones, eroded or broken cephalopod beaks; Appendix 

2.5).  

2.5.1. Overall prey composition, and relative importance to diet  

A total of 24,369 prey items was recovered from 239 individuals for identification. Across all 

stranding events and years, 13 taxa were identified from stomach contents, including eight squid, 

four fish and a single octopus taxon (Table 2.2). Of these, six taxa were newly recorded to the diet of 

LFPWs in New Zealand waters. Identifiable prey items included intact cephalopods, fish bones, fish 

otoliths, fish egg cases, and lower cephalopod beaks. Unidentifiable prey remains included upper 

or broken cephalopod beaks, both cephalopod and fish eye lenses, unidentifiable fish bones, and 

miscellaneous tissue (Appendix 2.5). A single fish otolith could not be identified due to lack of 

corresponding otoliths within reference collections. Similarly, tooth plates were noted in on stomach 

that were believed to belong to the New Zealand eagle ray (Myliobatis tenuicaudatus; Leach 1997), 

but without further remains this could not be confirmed. However, identification of conger eel 

(Congridae sp.) and carpet shark (Cephoscyllium sp.; see Appendix 2.6) was confirmed through DNA 

analysis. Finally, Nototodarus spp. (herein referred to as arrow squid) were likely Nototodarus sloanii 

based on DNA barcoding completed on a subset of fresh squid recovered from the same stomachs 

(Lischka et al. 2021). 

The cumulative prey curve did not reach a plateau, indicating that it is unlikely that the full prey 

diversity was sampled. Still, the curve showed that that approximately 20 animals were needed to 

sample 50% of the prey diversity, 60 animals needed to be sampled in order to record about 70% of 

prey diversity and 250 animals were needed to record 90% of the prey diversity (Figure 2.2). 

When stomach content data were pooled for all LFPWs examined, cephalopods were the most 

common prey by both number (98.67%) and reconstructed mass (91.98%). The top five prey taxa to 
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contribute to LFPW diet were arrow squid (92.81%N, 87.36%M 98.77%IRI), Pinnoctopus cordiformis 

(herein referred to as octopus; 4.32%N, 6.69%M, 1.01%IRI), conger eel (0.36%N, 2.94%M, 0.12%IRI), 

carpet shark (0.28%N, 1.72%M, 0.02%IRI) and Lycoteuthis lorigera (0.73%N, 0.37%M, 0.03%IRI, Table 

2.2). The youngest individual with prey remains observed in the stomach (minimum of 16 arrow 

squid) was an immature female (217 cm TBL, <1 year old) stranded at Rakiura (Stewart Island). 

Table 2.2. Frequency of occurrence (FO), total number, total mass, % number, % mass, index of relative 

importance (IRI) and % index of relative importance (%IRI) of prey species recovered from stomach contents 

of long-finned pilot whales (Globicephala melas edwardii) stranded on the New Zealand coast, 2009–2017 (n = 

239).  

Species  FO  Total number Total mass (g) % Number % Mass IRI % IRI 

Cephalopods         

Chiroteuthis veranyi 0.05  21 1,065 0.33 0.06 0.02 0.01 

Histioteuthis atlantica 0.06  28 3,173 0.45 0.17 0.04 0.02 

Lycoteuthis lorigera 0.05  46 6,931 0.73 0.37 0.06 0.03 

Moroteuthopsis ingens 0.05  24 1,391 0.43 0.11 0.03 0.02 

Nototodarus spp. 0.96  5,404 1,601,839 92.81 87.36 172.87 98.77 

Octopoteuthis spp. <0.01  1 543 0.02 0.03 <0.01 <0.01 

Pholidoteuthis massayae 0.01  2 951 0.03 0.05 <0.01 <0.01 

Pinnoctopus cordiformis  0.16  274 119,774 4.32 6.69 1.79 1.01 

Teuthowenia pellucida 0.01  3 35 0.05 0.00 <0.01 <0.01 

Fish          

Arripis trutta <0.01  1 1,419 0.02 0.08 <0.01 <0.01 

Congridae. sp 0.06  38 53,974 0.36 2.94 0.21 0.12 

Cephoscyllium sp 0.02  17 31,502 0.28 1.72 0.04 0.02 

Macruronus novaezelandiae 0.02  22 7,456 0.19 0.41 0.01 0.01 
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Figure 2.2. Cumulative curve of prey species recovered from the stomach contents of long-finned pilot 

whales (Globicephala melas edwardii) stranded on the New Zealand coast, 2009–2017 (n = 239). The order of 

individuals sampled was randomised across 10,000 iterations.   
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This was the only individual yearling with prey remains detected, though prey remains were 

recovered from 69% of the stomachs of immature individuals aged 1 year or older (n = 72). The 

average LRL for arrow squid beaks recovered from LFPW stomach contents was 4.52 mm, equating 

to a median reconstructed length of approximately 173 mm and mass of 211 g. The length of arrow 

squid beaks ingested increased significantly with both increasing LFPW age and body length, but 

both showed only a weak positive correlation (age: rho = 0.18, p = <0.001; body length: rho = 0.25, p 

= <0.001; Figure 2.3). The median LHL of octopus beaks averaged 4.13 mm, equating to a 

reconstructed length of approximately 767 mm and mass of 296g. The LHL decreased significantly 

with increasing LFPW body length and age, respectively (Age: rho = -0.28, p = <0.001; body length: 

rho = -0.18, p = 0.002; Figure 2.3). However, when assessing females alone, a positive correlation 

between octopus LHL and LFPW age was shown (Figure 2.3D).  

2.5.2. Ontogenetic and sex variation in prey consumption  

The %FO of prey groups consumed was similar between immature (n = 76) and mature (n = 159) 

individuals (96.3%), showing dietary homogeneity between LFPWs of differing maturity status. A 

lower level of similarity was recorded between males (n = 99) and females (n = 140; 70.2%), showing 

a degree of heterogeneity between male and female diet.   

The %FO of prey groups consumed differed significantly by reproductive group (x2 = 158.7, p = 

<0.001), with the first and second dimensions of correspondence analysis explaining 96.21% and 

2.97% of the variance, respectively (Figure 2.4A). Fish contributed highly to variance, being found 

more frequently in stomachs of mature males than in those of other reproductive groups. Arrow 

squid also contributed highly to variance and were observed more commonly in mature females 

(pregnant, lactating and resting). Furthermore, both resting females and mature males more 

frequently consumed “other squid” (Figure 2.4A). Bray-Curtis indices indicated similarity in %FO 



53 

 

of prey groups consumed between mature females of differing reproductive status, i.e., lactating 

females (n = 28) vs. resting females (n = 39) = 91.6%, pregnant females (n = 18) vs. lactating females = 

89.6%, and pregnant vs. resting females = 89.1%. The least dietary similarity was recorded between 

lactating females and mature males (n = 18; 54.87%).  Immature individuals (n = 57) were most similar 

to pregnant females (89.5%).  Consistently, the diversity index showed mature males had the largest 

prey diversity (𝐻′ = 1.01) followed by resting females (𝐻′ = 0.18), pregnant females (𝐻′ = 0.05) and 

lactating females (𝐻′ = 0.04).   

2.5.3. Spatiotemporal variation in prey consumption   

The %FO of prey groups also differed significantly by year stranded (x2 = 161.5, p = <0.001) with the 

first and second dimensions of correspondence analysis explaining 59.02% and 38.97% of variance, 

respectively (Figure 2.4B). The “other squid” category contributed most to data variation, where 

LFPWs more frequently consumed “other squid” in 2010 (n = 30) than any other year. All LFPWs 

showed a high level of similarity in %FO of prey groups consumed between years, as evidenced by 

Bray-Curtis indices above 70%. However, LFPWs stranded in 2017 (n = 3) were the most unique 

compared to 2009 (n = 42; 69.8%), 2010 (69.2%), 2011 (n = 123; 69.2%) or 2014 (n = 41; 78.7%). Indeed, 

arrow squid were found exclusively within all examined stomachs from 2017 (n = 3). 

Correspondingly, 2017 was the year with the least diversity of species consumed (𝐻′ = 0) followed 

by 2014 (𝐻′ = 0.19), 2010 (𝐻′ = 0.36), 2009 (𝐻′ = 0.39) and 2011 (𝐻′ = 0.55).  

The %FO of prey groups differed significantly by location stranded (x2 = 491.1, p = <0.001), with the 

first and second dimensions of correspondence analysis explaining 81.06% and 17.72% of variance, 

respectively (Figure 2.4C). Arrow squid consumption contributed highly to variance, which was 

grouped mostly with individuals stranded at Raglan, Stewart Island and Port Levy. Furthermore,  
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octopus was more frequently detected in stomachs of stranded individuals at Farewell Spit (Figure 

2.4C), whilst the %FO of other squid was associated with Stewart Island and Te Oka, and fish with 

Wairoa. Pairwise similarity in prey groups consumed by LFPWs was high between Stewart Island 

(n = 79) and Port Levy (n = 10; 83.7%), and between Stewart Island and Farewell Spit (n = 141; 75.8%). 

Conversely, %FO of prey groups consumed was most unique at Wairoa (n = 1), which shared dietary 

similarity to Te Oka (80.0%), but not Farewell Spit (21.3%), Stewart Island (29.1%) or Port Levy 

(25.8%). Correspondingly, LFPWs stranded at Stewart Island (𝐻′ = 0.24) consumed the most diverse 

set of prey groups.  

Finally, differences in %FO of prey groups consumed between stranding events were deemed 

significant (x2 = 908.8, p = <0.001), with the first dimension of correspondence analysis explaining 

65.81% of variance and the second dimension explaining 29.64%. The “other squid” prey group 

contributed highly to variance, which was associated with the Stewart Island 2010 and Te Oka 2010 

stranding events (Figure 2.4D). In general, more individuals involved in the Farewell Spit stranding 

events (other than Farewell Spit 2014a or Farewell Spit 2017) demonstrated octopus consumption 

than other events (Figure 2.4D), whereas Farewell Spit 2014a, Farewell Spit 2017 (n = 3), Stewart 

Island 2010 and Raglan (n = 7) stranding events were more associated with arrow squid 

consumption. Finally, the Wairoa 2011 (n = 1) stranding had the largest %FO of fish consumption, 

due to only one animal involved in that event. Similarity in %FO of prey groups consumed varied 

highly between stranding events (Figure 2.4D). For example, LFPWs stranded at Farewell Spit 2014a 

(n = 35), and Wairoa 2011 showed little similarity through Bray-Curtis indices. Still, stranding events 

at Farewell Spit generally showed high homogeneity in prey groups consumed. For example, 

stranding events at Farewell Spit 2009 (n = 42) and Farewell Spit 2011b (n = 49) recorded Bray-Curtis  
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Figure 2.4. Correspondence analysis of variation in prey consumption of long-finned pilot whales (Globicephala 

melas edwardii) stranded on the New Zealand coast, 2009–2017. Percent frequency of occurrence of stomachs 

containing arrow squid (Nototodarus spp.), octopus (Pinnoctopus cordiformis), fish or “other squid” are used for 

data construction. Graphs explore variation by (A) reproductive group (n = 160), (B) stranding year (n = 239), 

(C) location stranded (n = 239), and (D) stranding event (n = 239). FWS = Farewell Spit, SI= Stewart Island. All 

graphs are coloured according to Cos2 (cosign2) where red is high, and blue is low. A: LF = lactating female, PF 

= pregnant female, R = resting female, 4 = immature and 5 = mature male. 
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similarity of 92.3%. Interestingly, strandings at Stewart Island 2010 (n = 13) and Port Levy 2010 (n = 

7), which occurred only three weeks apart, also showed high dietary homogeneity in %FO of prey 

groups consumed (88%).   

2.5.4. GAM analysis  

For arrow squid, the model that best fit variation in %N consumed retained TBL, sex, maturity 

status, year and location as significant covariates and explained 60.4% of the deviance (Table 2.3, 

Figure 2.5). No difference in the number of arrow squid consumed between immature (mean = 29) 

and mature (mean = 28) LFPWs was detected. However, females (mean = 30) ate significantly more 

arrow squid then males (mean = 26; H = 5.28, p = 0.02), the mean number of arrow squid consumed 

also varied by location (H = 11.8, p = 0.035), and was significantly lower in 2011 than 2009 (H = 

2852, p = <0.001). Although age had no clear relationship with number of arrow squid consumed, 

LFPW TBL was significantly correlated with the total number of arrow squid ingested per 

individual (rho = -0.14, p = 0.04). 

For octopus, the model that best fit variation in the %N consumed retained sex as the only 

covariate and explained 14.9% of the deviance. Males consumed significantly more octopus (mean 

= 9; H = 5.15, p = 0.02) than females (mean = 2). Neither LFPW age nor TBL showed a significant 

relationship with number of octopus consumed (p > 0.05).  
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Response 

variable  

Model; gamma = 1.4 AICc % DE LL wAICc δ AIC 

%N 

Arrow 

squid  

~ s(TBL, by Sex) + sex + 

maturity*year + location  

957.17 60.4 1.00 0.70 - 

~ s(TBL, by Sex) + sex +  year + 

location 

958.88 59.6 0.43 0.30 1.72 

~ s(TBL, by = Sex) + sex + year* 

location 

974.30 59.6 0.19 <0.01 17.12 

       

%N 

Octopus 

~ sex 45.15 14.9 1.00 0.19 - 

~ location 45.77 11.4 0.73 0.14 0.62 

~ sex + location 46.85 21.0 0.43 0.08 1.70 

Table 2.3. Summary statistics of the top three generalised additive models selected based on Akaike 

Information Criterion corrected for small samples sizes (AICc) of the two most important prey (by % 

number) to diet of long-finned pilot whales (LFPWs; Globicephala melas edwardii) stranded on the New 

Zealand coast, 2009 – 2017. % DE: % deviance explained; LL: log-likelihood; wAICc = aAICc weight; 

δAIC: difference in Akaike’s Information Criterion (AICc) of the current and top-ranked model; TBL: 

total body length of LFPWs. Significant variables are given in bold; arrow squid: Nototodarus spp.; 

octopus: Pinnoctopus cordiformis. %N = percentage number 
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Figure 2.5. General additive models of the relationship between % number of arrow squid (Nototodarus spp.) in the diet of long-finned pilot whales 

(Globicephala melas edwardii) stranded on the New Zealand coast (2009–2017) and their total body length (TBL), displayed by sex (A) and location (B).  

 



60 

 

2.6. Discussion  

The research from this chapter confirms that LFPWs are a teuthophagus species, targeting arrow 

squid (Nototodarus spp.) and common octopus (Pinnoctopus cordiformis) in New Zealand waters, and 

additionally supplementing diet with fish and other pelagic squid. Though the majority of prey 

remains recorded belonged to pelagic species, prey remains found from carcasses at Farewell Spit 

suggest that male LFPWs may spend at least some of their time feeding demersally, which could 

have implications for strandings. Variation in the size of both arrow squid and octopus consumed 

was positively correlated with increased LFPW body length, but not necessarily age, suggesting the 

targeting of prey with higher energy values from larger rather than older individuals. Furthermore, 

variation in prey diversity and composition was evident by both ontogenetic and spatiotemporal 

factors, whereby the larger and/or mature males ate a more diverse diet including more commonly 

consuming fish species compared to females. Additionally, the %FO of each prey group consumed 

differed by location stranded and stranding event, indicating a level of spatial plasticity in foraging.  

Identification of target prey species may help to inform where LFPWs are foraging prior to 

stranding. Thus, the presence of both fish remains and prey tissue found in stomachs from multiple 

stranding events in this study suggests that at least some LFPWs may be feeding within the day 

prior to stranding and are therefore likely feeding within New Zealand waters. Though it is not 

currently clear where LFPWs forage within New Zealand, the distribution of Globicephala spp. 

(including both LFPWs and short-finned pilot whales G. macrorhynchus) in this area has been 

categorised as offshore (>25km from the coastline) with a preference for deep waters (Stephenson et 

al. 2020). As the overall percentage of individuals found with empty stomachs in this study was 

small (16%), and there was a high contribution of pelagic species to diet, it is suggested LFPW 

foraging mainly occurs in pelagic waters around New Zealand. However, the presence of demersal 



61 

 

species such as kahawai and carpet shark in both the forestomach and main stomach of male LFPWs 

suggests at least some time feeding demersally prior to stranding. 

2.6.2. Overall prey composition and relative importance to diet 

This study revealed 13 prey taxa, six of which were previously unknown to the diet of LFPWs in 

New Zealand waters. Cephalopods, more specifically squid (n = 8 species), dominated diet by both 

FO and %N, though this is a small proportion of the >86 squid species currently identified in New 

Zealand waters (Bolstad 2007). The findings in this study agree with previous international studies 

that concluded LFPWs rely mainly on a diet of cephalopods and can supplement this with fish 

(Overholtz and Waring 1991; Gannon et al. 1997b; Giménez et al. 2018; Becker et al. 2021; Chalcobsky 

et al. 2021). Furthermore, this study agrees with previous stomach content analysis of LFPWs in New 

Zealand waters, revealing arrow squid (Nototodarus spp.) and octopus (Pinnoctopus cordiformis) as 

the main target prey species (Beatson et al. 2007a; Beatson et al. 2007b; Beatson and O’Shea 2009). 

Secondary in importance to cephalopods, remains of fish from the Merluccidae (hoki; Macruronus 

novaezelandiae), Arripidae (kahawai; Arripis trutta), Cephoscyllium (carpet shark) and Congridae 

(conger eel) families were recorded in LFPW stomachs for the first time in New Zealand waters. 

Hoki are a benthopelagic species that are caught commercially in mid-water and bottom trawls at 

around 300–750 m (McClatchie et al. 2005; Bowden et al. 2021) whilst conger eels are reported 

bycatch in deepwater trawls (Finucci et al. 2019) indicating that LFPWs that strand on the New 

Zealand coast forage in waters of this depth. However, whilst kahawai are also a pelagic species, 

they tend to be more common in shallower coastal areas, with commercial catch around 100 – 200 m 

(Bradford 1999; Armiger et al. 2019). Carpet sharks are also more common in inshore waters, but are 

a demersal species found around New Zealand up to 500 m depth (Horn 2016), suggesting at least 

some degree of plasticity in foraging habitat for the New Zealand LFPW population. Similarly, both 
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benthopelagic, demersal fish and pelagic fish species have been recovered from LFPWs from the 

North Sea and Northeast Atlantic (Overholtz and Waring 1991; Spitz et al. 2011; Ijsseldijk et al. 2015). 

The international differences in number of fish remains reported could be due to local differences in 

prey availability. Alternatively, this could also signify a larger reliance on cephalopods for LFPWs 

G. m. edwardii than northern sub-species G. m. melas, or potential changes in diet over time. Still, it 

was noted that fish are likely underrepresented in this study due to lack of intact fish prey remains 

in comparison to cephalopods. Accordingly, strandings with a high %FO of empty stomachs 

appeared to consistently co-occur with low %FO of fish (Appendix 2.4). Caution is advised when 

assessing contribution to diet of hard part remains in stomach contents as this method can 

overestimate cephalopod contribution to diet (Gannon et al. 1997a). Unlike fish otoliths, cephalopod 

beaks cannot be fully digested (Jackson et al. 1987) and are therefore retained in stomachs for longer 

timescales. As such, fish are likely to be underestimated in estimations such as %IRI and %M when 

using only “identifiable prey remains” (Santos et al. 2014).  It is therefore possible that fish could 

contribute more to diet than suggested in this analysis. Overall, fish accounted for 1.3 %N and 0.97 

%IRI of the identifiable prey species in this study, though the %FO of fish did also vary on both 

ontogenetic and spatial scales (Figure 4.4). 

2.6.3. Ontogenetic and sex variation in prey consumption  

Sex was included as a covariable in four out of six of the top GAM models, suggesting sex contributes 

highly to variation in %N of arrow squid and octopus consumed by LFPWs in New Zealand waters. 

When examining %FO of prey remains in males and females, nearly half of the males (n = 50) 

recorded fish remains of some description, but only three females. Octopus was also reported more 

frequently in male stomachs. Both P. cordiformis and many of fish species consumed (e.g., conger 

eels and carpet sharks) were benthic inhabitants. Combined, this could suggest a possible difference 
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in feeding habitat between sexes, with males more often foraging in benthic environments, which 

could have implications for strandings. A difference in foraging habitat between males and females 

has been recorded in other odontocetes including Franciscana dolphins (Pontoporia blainvillei; Bassoi 

et al. 2021) and bottlenose dolphins (T. truncatus; Hernandez-Milian et al. 2015) and could help in 

reducing intraspecific competition for food.  

Whilst variation in prey diversity between sexes was noted, the contribution to diet of each 

individual species other than arrow squid was low (≤ 1 %IRI, Table 2.2). However, %IRI does not 

account for calorific content or nutritional composition of prey. As male LFPWs grow to a larger 

maximum size than females (Betty et al. 2022), males of increased body size may be targeting more 

diverse, higher calorie prey to sustain their larger energetic needs. Indeed, mature males recorded a 

higher prey diversity index and were also more associated with lower arrow squid and higher fish 

consumption than mature females (Figures 2.4 and 2.5). Studies on comparative energetics suggest 

that fish of the Congridae family have an increased calorific and energetic value compared to squid 

(Lockyer 2007; Santos et al. 2014; Malinowski and Herzing 2015; Spitz et al. 2018). Of the prey species 

recorded in this study, eel remains belonged to the high calorie Congridae family and were found 

more frequently in stomachs of males (Figure 2.4), supporting the idea that males may supplement 

their diet with higher energy prey.  

Mature females in all reproductive groups displayed a lower prey diversity than mature males. 

Lactating females recorded the lowest prey diversity, possibly due to avoidance of risky feeding 

(Srinivasan et al. 2017). However, lactating females may simply be targetting prey that were easiest 

to catch, therefore expending less energy feeding, as all individuals as expected to  by OFT. 

Furthermore, lactating females were also highly associated with arrow squid, but none were 

discovered with empty stomachs (Appendix 2.4). Given that lactation necessitates a 32–63% increase 
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in food consumption (Lockyer 1993), lactating females may be feeding more regularly to sustain the 

increased energy demands of lactation (Rechsteiner et al. 2013; Hin et al. 2019). Indeed, tagging 

studies of LFPWs (G. m. melas) in Norwegian waters found that lactating females spent more time 

foraging than other mature individuals (Isojunno et al. 2017). Conversely, resting females displayed 

an increased prey diversity in comparison to lactating and pregnant females, driven by more 

frequent consumption of “other squid”, such as C. veranyi, L. loirgera, and Moroteuthopsis ingens 

(warty squid). It is possible that these oceanic cephalopods (Clarke 1966; Jackson et al. 2000; Hoving 

et al. 2007) are more energetically costly to feed upon, and so are not favoured during 

pregnancy/lactation. It would be beneficial to employ further techniques, including nutritional 

analysis, to establish a better understanding of drivers behind dietary variation in LFPWs of 

different reproductive groups within New Zealand waters. 

Overall, no difference was found in the number of arrow squid consumed between immature and 

mature individuals, possibly due to mature individuals consuming a larger number of prey items 

overall than immature LFPWs. Furthermore, the Bray-Curtis Index showed that dietary similarity 

was high between the two maturity states, but that immature individuals were more highly 

associated with empty stomachs. This could have been due to age of the immature individuals, 

which may still have been weaning (Gannon et al. 1997b; Betty 2019), and therefore had fewer hard 

part remains in stomachs.  

Furthermore, LFPWs with a larger body length (and therefore mature individuals) consumed fewer 

arrow squid (Figure 2.5) but with a larger LRLs (Figure 2.3A). In accordance with OFT, the energetic 

gain of arrow squid consumption may only outweigh the energetic cost of foraging for larger LFPWs 

if larger arrow squid are consumed, due to the greater energetic needs for LFPWs with greater body 

length. In general, larger individuals may be expected to consume larger prey as this is generally 
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common in the marine environment (Weise et al. 2010; Juanes 2016), including in LFPWs in the 

Northeast Atlantic (Desportes and Mouritsen 1993; Santos et al. 2014). Age, however, displayed a 

stronger correlation with the size of arrow squid LRLs recovered from males than females (Figure 

2.3B). This suggests that dietary variation between larger and smaller females is likely a function of 

body size rather than other ontogenetic changes or experience, though these may not always be 

mutually exclusive for males. Dietary variation may therefore be a function of both the energetic 

needs and the greater foraging capabilities e.g., utilising deeper dives (Kooyman 1988), that come 

with larger body size (Benoit-Bird 2004; Allen et al. 2022).  

2.6.4. Spatiotemporal variation in prey consumption 

Dietary variation was also recorded across different spatiotemporal scales. Only two of the four 

single stranded LFPWs had remains in their stomachs, which had a similar diet composition. 

However, remains in the stomachs from these two single stranded individuals but had a different 

composition to all other strandings (Figure 2.4D). Both occurred off the east coast of New Zealand 

(Te Oka and Wairoa; Figure 2.1), which could suggest a level of geographic heterogeneity in diet. 

However, if this were the case, it would also be expected that the individual from Te Oka would still 

show some similarity in diet to nearby Port Levy (Figure 2.4D), which was not the case. 

Alternatively, as are LFPWs are expected to show long-term social stability (Amos et al. 1993; de 

Stephanis et al. 2008; Augusto et al. 2017), individuals that stranded alone may have separated from 

their social groups due to being sick or injured (Dailey and Walker 1978; Cordes 1982). It is possible 

that the single stranded individuals may not have been feeding typically prior to stranding, therefore 

demonstrating a difference in prey composition in comparison to mass stranded LFPWs. The 

addition of post-mortem analysis to conclude cause of death may help to understand this further in 

the future.  
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Dietary composition was relatively similar between the mass stranded LFPWs stranded across other 

locations, especially between Stewart Island and Port Levy as well as Farewell Spit, respectively. 

However, LFPWs stranded at Farewell Spit did consume significantly more octopus but were less 

associated with oceanic “other squid” than those stranded at Stewart Island. This could perhaps 

indicate a difference in foraging area prior to stranding between these two locations. Similar spatial 

changes in diet have been recorded in other LFPW populations from the North Atlantic (Santos et 

al. 2014) and Tasmania (Beasley et al. 2019) and could indicate a level of dietary plasticity when 

travelling through different ocean habitats (Becker et al. 2021). Indeed, prey diversity varied 

considerably across stranding locations in this study and was higher in the colder regions of Stewart 

Island than in the warmer waters of Farewell Spit (Chiswell 1994), possibly due to increasing coastal 

productivity in areas around Stewart Island (Pinkerton et al. 2019).  Mapping of prey distribution 

against LFPW distribution and stranding events could help with understanding what, if any, role 

prey has within LFPW stranding events. Both Port Levy and Raglan presented a larger proportion 

of LFPWs with empty stomachs compared to the other locations, both strandings also occurred in 

the year 2010. The dietary composition of LFPWs stranded in 2010 was the most unique in 

comparison to other years. As the stranding events occurring in 2010 involved fewer than the 30 

animals needed to obtain half the species diversity according to the cumulative prey curve (Table 

2.1, Figure 2.2), this may have confounded the data. Still, using correspondence analysis, the year 

2010 was grouped more closely with “other squid” than the rest of the strandings tested, which 

could be due to 2010 including the only stranding in this study from the austral winter season which 

occurred in  Raglan in the year 2010. It has been previously suggested that LFPWs in New Zealand 

waters may vary their foraging areas dependant on seasonal productivity (Hamilton et al. 2019). 

Similarly, LFPW populations in the Northern Hemisphere have also shown evidence of seasonal 
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dietary change (Abend and Smith 1997; de Stephanis et al. 2008; Santos et al. 2014). Furthermore, 

consumption of high numbers of arrow squid in summer and more fish in winter has also been noted 

in pinnipeds in New Zealand waters (Fea et al. 1999; Harcourt et al. 2002). Therefore, LFPWs in New 

Zealand waters may also target abundant arrow squid in the warmer months, and switch to a 

different dietary composition over the winter. Analysis of further stomach content samples collected 

from the austral winter season are recommended to help elucidate possible seasonal dietary change 

in LFPWs from New Zealand waters.  

Whilst seasonal comparisons were not possible in this study, temporal comparisons showed that 

numbers of arrow squid differed significantly by year. The lowest numbers of arrow squid were 

recorded in 2011, when the greatest prey diversity was recorded. As 2011 was also the year that the 

most LFPWs were sampled (n = 116), temporal differences in diet diversity may reflect sampling 

bias. Temporal comparisons were also possible at stranding hotspot Farewell Spit (Betty et al. 2020), 

revealing that the earlier stranding events in 2009 and 2011 were associated with a higher %FO of 

octopus, than in later years (Figure 2.4). Correspondingly, strandings at Farewell Spit in 2014 and 

2017 showed high similarity in %FO of prey groups consumed (Bray-Curtis = 80%) and recorded the 

least dietary diversity compared to earlier years. This could indicate a change in target prey species 

over time. Indeed, hoki, conger eels, kahawai, carpet sharks and L. lorigera were all absent from the 

stomachs of LFPW stomachs at Farewell Spit after 2011. However, unidentifiable fish and 

cephalopod remains were recorded in 2014, which could have belonged to any of the 

aforementioned species. Furthermore, stomach contents of LFPWs stranded at Farewell Spit in 2005 

and 2008 also recorded low prey diversity, including no remains of fish (Beatson et al. 2007b; Beatson 

and O’Shea 2009).  
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Alterations to target prey species could be indicative of local changes in prey abundance (Lin et al. 

2021). Regular consumption of different target prey species is typically associated with a generalist 

foraging style (Cloyed et al. 2021). Indeed, populations of LFPWs have been described in the 

literature as both opportunistic/generalist feeders (Nøttestad et al. 2015; Pinzone et al. 2019) in the 

Norwegian Sea and Mediterranean Sea, and, in contrast, have been described as having a restricted 

prey niche specialising mainly in cephalopods (Mansilla et al. 2012; Skern-Mauritzen et al. 2022) in 

the Southern Atlantic and Nordic Sea. Stable isotope analysis of G. m. edwardii in Chile revealed 

LFPWs relied heavily on oceanic squid such as the Ommastrephid Matialia hyadesi as well as 

Kondakovia longimana (closely related to M. ingens) and Histioteuthis sp., and less so on neritic squids 

or fish (Becker et al. 2021). Thus, LFPWs stranded at Farewell Spit, and more widely across New 

Zealand, are likely demonstrating a similar foraging style to G. m. edwardii in Argentina; typically 

displaying a specialist feeding style targeting mainly oceanic Ommastrephid squids and octopus, 

but with the ability to diversify target prey when necessary. 

Studies of nutritional composition of prey are recommended to aid explanations of dietary variation. 

Additionally, a focus on stomach content recovery during the austral winter is recommended to 

assess potential seasonal variation in target prey, whilst longer-term dietary techniques such as 

stable isotope and fatty acid analysis would be beneficial to aid understanding of LFPW dietary 

trends over longer timescales.  
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Chapter 3 — Isotopic niche analysis of long-finned pilot whales 

(Globicephala melas edwardii) in Aotearoa New Zealand waters 

 

 

 

 

A box of long-finned pilot whale Globicephala melas edwardii skin samples for stable isotope samples. 

Photo credit: Bethany Hinton.  
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In this chapter, stable isotope analysis of skin samples collected from long-finned pilot whales 

(Globicephala melas edwardii) stranded on the New Zealand coast (2009–2017; n = 125) are presented 

to address the second research objective:  

 

Objective 2: Assess ontogenetic, spatial, and temporal isotopic niche dynamics within the LFPW 

population.   

 

This chapter is a re-formatted version of the following published manuscript:  

Hinton B, Stockin KA, Bury SJ, Peters KJ, Betty EL (2022). Isotopic Niche Analysis of Long-Finned 

Pilot Whales (Globicephala melas edwardii) in Aotearoa New Zealand Waters. Biology 11: 1414.  
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3.1. Abstract 

The quantification of a species’ trophic niche is important to understand the species ecology and its 

interactions with the ecosystem it resides in. Despite the high frequency of long-finned pilot whale 

(LFPW; Globicephala melas edwardii) strandings on the Aotearoa New Zealand coast, their trophic 

niche remains poorly understood. To assess the isotopic niche of G. m. edwardii within New Zealand, 

ontogenetic (sex, total body length, age, maturity status, reproductive group) and spatiotemporal 

(stranding location, stranding event, and stranding year) variation were investigated. Stable isotopes 

of carbon (δ13C) and nitrogen (δ15N) were examined from skin samples of 125 LFPWs (67 females 

and 58 males) collected at mass-stranding events at Onetahua Farewell Spit in 2009 (n = 20), 2011 (n 

= 20), 2014 (n = 27) and 2017 (n = 20) and at Rakiura Stewart Island in 2010 (n = 19) and 2011 (n = 19). 

Variations in δ34S values were examined for a subset of 36 individuals. Generalised additive models 

revealed that stranding event was the strongest predictor for δ13C and δ15N values, whilst sex was 

the strongest predictor of δ34S isotopic values. Although similar within years, δ13C values were lower 

in 2014 and 2017 compared to all other years. Furthermore, δ15N values were higher within Farewell 

Spit 2017 compared to any other stranding event. This suggests that the individuals stranded in 

Farewell Spit in 2017 may have been feeding at a higher trophic level, or that the nitrogen baseline 

may have been higher in 2017 than in other years. Spatiotemporal differences explained isotopic 

variation of LFPWs in New Zealand waters better than ontogenetic factors. 
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3.2. Introduction 

Stable isotope analysis has steadily grown as an ecological tool over recent years (Newsome et al. 

2010), with the method now commonly applied to trophic analysis and foraging ecology (Bearhop 

et al. 2004; Crawford et al. 2008). For example, stable isotopes have been used to determine dietary 

niche and relative prey contribution to diet for a wide range of marine and freshwater species 

(Newsome et al. 2007; Boecklen et al. 2011; Gillespie 2013; Navarro et al. 2013; Jackson and Britton 

2014), including cetaceans (whales, dolphins, and porpoises; e.g., Mendes et al. 2007; Giménez et al. 

2017b; Borrell et al. 2021). 

Multiple isotopes have been used in foraging research including isotopes of carbon (McCutchan Jr 

et al. 2003; Cherel and Hobson 2007), nitrogen (DeNiro and Epstein 1981; Matthews and Ferguson 

2014), oxygen (Balasse et al. 2005), sulphur (Hoekstra et al. 2002; McCutchan Jr et al. 2003; Duffill 

Telsnig et al. 2019), and strontium (Crowley et al. 2017). Isotopic values of carbon are typically used 

to infer information relating to foraging habitat (Hobson 1990; Cherel and Hobson 2007; Kiszka et 

al. 2011), whereas nitrogen isotopes have been linked to protein quantity, quality, and trophic 

feeding level (Peterson and Fry 1987; Oelbermann and Scheu 2002). Sulphur isotopes (δ34S) 

combined with carbon (δ13C) and nitrogen (δ15N) isotopes, are now increasingly being used to 

provide clarity around prey source pathways, e.g., estuarine, or marine (Fry 2002; Connolly et al. 

2004b; Duffill Telsnig et al. 2019). The combination of these isotopes can elucidate approximate 

feeding habitats, trophic level source and food web pathways, and provide information on the 

isotopic niche of an animal. Triple isotope studies have been successfully used in studies of marine 

ecosystems (Connolly et al. 2004; Cardona et al. 2009), including those involving cetacea (Matthews 

and Ferguson 2015; Wilson et al. 2017; Valenzuela et al. 2018), especially to describe isotopic niche. 

Whilst isotopic niche should be considered as a distinct entity from trophic niche (Hette-Tronquart 
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2019; Shipley and Matich 2020), the two are likely correlated (Jackson et al. 2011). Hence, isotopic 

niche can be used to help describe trophic niche, given correct consideration of the ecological context 

(Marshall et al. 2019). 

Trophic niche partitioning between species is a common strategy to reduce resource competition 

(Hutchinson 1957). Isotopic niche differences have been observed between different cetacean species 

inhabiting the same geographical area (Gibbs et al. 2011; Praca et al. 2011; Giménez et al. 2018; Costa 

et al. 2020b; Borrell et al. 2021; Durante et al. 2021). This reduction in foraging competition could also 

be driving isotopic niche differences within socially distinct populations of the same species 

(Nicholson et al. 2021a) and even between individuals within the same population (Rossman et al. 

2015). Isotopic variation within a population has been linked to ontogenetic factors such as age 

(Marcoux et al. 2012; Valenzuela et al. 2018), sex (Reisinger et al. 2016), total body length (herein 

referred to as “TBL”; (Meissner et al. 2012; Riccialdelli and Goodall 2015), life stage (Jackson-Ricketts 

et al. 2019), or sexual maturity status (Riccialdelli et al. 2013). Although some species have shown 

isotopic homogeneity within a population (Borrell et al. 2012), diet may still change between 

spatially or socially distinct populations of the same species as is observed in killer whale Orcinus 

orca (Reisinger et al. 2016), bottlenose dolphins Tursiops truncatus (Gannon and Waples 2004) and 

Northern Hemisphere LFPWs G. m. melas (LFPWs; Abend and Smith 1995). 

Whilst both spatial and seasonal differences in G. m. melas isotopic values have been noted (Abend 

and Smith 1995; de Stephanis et al. 2008), dietary differences have also been reported to be related 

to body size (Desportes and Mouritsen 1988). In New Zealand, the Southern Hemisphere LFPW 

subspecies G. m. edwardii is the most frequently stranded cetacean by number and several locations 

have been identified as local stranding hotspots (Betty et al. 2020). Stomach content analyses of 37 

LFPWs from three stranding events in New Zealand described six cephalopod species present in 
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their stomachs (Beatson et al. 2007a; Beatson et al. 2007b; Beatson and O’Shea 2009). Whilst stomach 

content analysis provides important short-term dietary insights (Hyslop 1980; Sekiguchi and Best 

1997), it does not give information on diet that has already been assimilated over a longer timescale, 

which can be provided through isotopic investigation (Post 2002). Furthermore, insights to 

intraspecific dietary or trophic variation and local isotopic niche of this sub-species are also lacking. 

This study aimed to address some of these knowledge gaps by exploring ontogenetic and 

spatiotemporal variation in isotopic niche for LFPWs from two stranding hotspots in New Zealand. 

Specifically, (1) the isotopic niche of G. m. edwardii in New Zealand using carbon, nitrogen, and 

sulphur isotopes, (2) ontogenetic variation in isotope values by sex, body length, age, maturity status 

and reproductive group and (3) spatiotemporal overlap in isotopic niche were investigated.  

3.3. Materials and Methods 

To assess isotopic profiles of LFPWs in New Zealand waters, archived skin samples (n = 125) were 

analysed from individuals collected from stranding events between 2009 and 2017 (Appendix 3.1). 

Samples of skin were chosen for analysis preferentially from individuals where stomach contents 

had already been examined (see Chapter 2).  

3.3.1 Sampling 

Skin was sampled from six stranding events across two G. m. edwardii stranding hotspot locations in 

New Zealand; Onetahua Farewell Spit (FWS; −40.481° S, 172.870° E) and Rakiura Stewart Island (SI; 

−46.686° S, 167.685° E; Betty et al. 2020; see Figure 3.1). Of these, 87 carcasses were sampled at 

Farewell Spit during four mass-stranding events (2009, 2011, 2014, 2017) and 38 carcasses at Stewart 

Island during two mass-stranding events (2010, 2011). All of the mass-strandings sampled occurred 

during the austral summer between the months of November and February. 
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Skin sampling, along with measurements of body length and an anatomical assessment of sex, was 

undertaken in situ at stranding events using standard postmortem procedures (Geraci and 

Lounsbury 2005). All skin samples were stored at 4 °C in 70% ethanol prior to analysis. Teeth and 

reproductive organs were sampled where possible, as outlined in Betty et al. (2022), with age data 

Figure 3.1. Location of sampling sites of long-finned pilot whale (Globicephala melas edwardii) carcasses from 

mass-stranding events at Farewell Spit and Stewart Island, Aotearoa New Zealand. Bathymetry is depicted 

with darker shades of blue representing deeper waters (reprinted with permission from National Institute of 

Water and Atmospheric Research (NIWA) under a Creative Commons BY license, with permission from 

NIWA original copyright (CANZ 2008). Figure reproduced from Hinton et al. (2022). 
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available for 86% (108 of 125) of individuals and reproductive data available for 82% (102 of 125) 

individuals. Teeth were used to assess age via dentinal growth layer groups (Betty et al. 2022). 

Reproductive organs were used to assess sexual maturity status (herein referred to as maturity 

status) and reproductive group for mature females, where possible (Betty 2019; Betty et al. 2019). Six 

reproductive groups were defined: immature males, mature males, immature females, pregnant 

females, lactating females, and resting females. Male maturity was defined by presence/absence of 

sperm in testes (Betty et al. 2019). Females were defined as “pregnant” by the presence/absence of a 

foetus, as “lactating” by presence/absence of milk in the mammary glands, and as “resting” by the 

presence of ovarian corpora indicating previous ovulation, but with no foetus or milk present (Betty 

2019). However, if reproductive group and/or maturity status were not available, body length was 

used as an indicator of maturity status using estimations from the same G. m. edwardii population 

(Betty 2019; Betty et al. 2019). Where sample availability allowed, samples were compared in equal 

groups of mature males (n = 5), mature females (n = 5), immature males (n = 5) and immature females 

(n = 5) within each stranding event. In one stranding event (FWS2014), more mature females of 

known reproductive group were available, and these were therefore included in analyses to increase 

comparative statistical power of mature female reproductive groups (Table 3.1).  

Carbon and nitrogen stable isotopes from skin samples (n = 125) were analysed to compare 

ontogenetic and spatiotemporal variation. Additionally, a subset of 36 (13 male and 23 female) 

samples from sexually mature individuals with the highest, lowest, and median carbon and nitrogen 

isotope values recorded per stranding event were analysed for sulphur isotope values. Immature 

individuals were excluded from analyses of sulphur isotopes to avoid confounding the data with 

individuals that were not fully weaned. 
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Table 3.1. Ontogenetic characteristics of long-finned pilot whales (Globicephala melas edwardii) sampled for 

stable isotope analysis from mass-strandings on the New Zealand coast, 2009–2017. Unknown refers to 

individuals where reproductive group was unable to be determined from reproductive organs, but maturity 

status was instead classified from body length. Table reproduced from Hinton et al. (2022). 

Ontogenetic 

Status 
n Body Length Range (cm) Age Range (Years) 

Maturity status    

Immature 56 168–482 0–13 

Mature 69 364–595 6–33 

Reproductive group    

Immature male  26 255–482 1–13 

Mature male 18 467–581 14–31 

Immature female 25 168–375 0–8 

Pregnant female 17 364–461 6–33 

Lactating female 9 380–446 7–30 

Resting female 7 397–453 11–30 

Unknown 23 194–595  5–32 
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3.3.2. Sample preparation 

In preparation for stable isotope analysis, skin samples were placed under the fume hood for at least 

48 hours (Olin et al. 2014) to evaporate off the storage ethanol. Samples with excess ethanol 

remaining were further placed under a stream of nitrogen gas (which is not thought to interfere with 

results) until all ethanol had been removed from the sample. Samples were cut longitudinally to 

capture all skin layers, as recommended for isotopic studies of cetaceans aiming to consider trophic 

interactions and diet composition (e.g., Wild et al. 2018). Skin was then homogenized by finely 

slicing in a glass Petri dish using a clean scalpel blade. Approximately 40 mg of each sample was 

weighed into Eppendorf tubes and freeze-dried overnight for a minimum of 18 hours or dried in an 

oven at 60 °C for at least 48 hours.  

3.3.3. Carbon and nitrogen isotope analysis 

Carbon and nitrogen isotope analysis was carried out at the Environmental and Ecological Stable 

Isotope Analytical Facility at the National Institute for Water and Atmospheric Research (NIWA), 

Wellington. Around 1.0 mg of each homogenised skin sample was weighed into tin capsules using 

a six decimal place (g) microbalance. Tin capsules were formed into balls containing the sample and 

were analysed by a FLASH 2000 elemental analyser with MAS 200 R autosampler linked to a DELTA 

V Plus continuous flow isotope ratio mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany). Stable isotope values were calculated using ISODAT (Thermo Fisher Scientific) software; 

δ13C values were calibrated against Carrara Marble NSB-19 (National Institute of Standards and 

Technology (NIST), Gaithersburg, MD, USA) and δ15N relative to Pee Dee Beleminte (PDB) standard 

followed by correction for O17. International laboratory reference materials from NIST were run at 

the start and end of every batch of analyses for normalisation (Paul et al. 2007). A working laboratory 

standard of DL-Leucine (DL-2-Amino-4-methylpentanoic acid, C6H13NO2, Lot 127H1084, Sigma, 

Melbourne, Australia) and squid were run every 10 samples to correct for machine drift, for quality 
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control and to report on precision. The international standards USGS65 Glycine was also run every 

ten samples to check accuracy and precision. Data accuracy was measured to better than 0.15‰ for 

δ13C and δ15N values, whilst precision was measured to better than 0.24‰ for δ13C and 0.22‰ for 

δ15N values. Stable isotope ratios were expressed as delta values (δ) in per mil units (‰), which 

represent the ratios of heavy to light isotopes within a sample (Rsample), relative to the ratio in an 

international standard (Rstandard) as: 

δ= ((
Rsample

Rstandard
) − 1 ) × 1000 

 

 

 

 

 

3.3.4. Sulphur isotope analysis 

A subset of 36 skin samples from mature individuals was processed for sulphur isotope analysis at 

IsoTrace Limited, Dunedin (see Appendix 3.3). Samples were analysed using the Carlo Erba NC 

2500 elemental analyser coupled to a Europa Hydra isotope ratio mass spectrometer. Stable isotope 

values were normalised against international standards of Vienna PDB, AIR and Canyon Diablo 

Troilite for carbon, nitrogen, and sulphur, respectively. Two international reference materials 

comprising USGS40 mixed with IAEA-S1 (carbon = −26.39‰, nitrogen = −4.52‰, sulphur = −0.30‰), 

and USGS-41 mixed with IAEA-S2 (carbon = 36.55‰, nitrogen = 47.55‰, sulphur = 22.62‰) used 

for data normalisation in a three-point system. Replicate analysis of the keratin internal working 

laboratory standard was used to determine machine drift, and precision of ẟ13C (0.08‰), ẟ15N 

(0.04‰) and ẟ34S (0.16‰) was assessed from replicates positioned every ten samples.  
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3.3.5 Correction equations 

Lipids are depleted in 13C relative to 12C compared to proteins. The lipid content of ecological 

samples therefore affects δ13C values (Focken and Becker 1998). Lipids are thus either removed from 

the sample before carbon stable isotope analysis, (e.g., Choy et al. 2016; Groß et al. 2021) or a lipid 

correction equation is applied to samples with C:N mass ratios > 3.5 to correct for the lipid-affected 

δ13C values (Logan et al. 2008; Wilson et al. 2014; Giménez et al. 2017c). There is disagreement within 

published literature regarding the suitability of lipid correction equations being extrapolated to 

different species for isotopic studies (Arostegui et al. 2019). Therefore, lipids were extracted from a 

sub-set of 10 LFPW skin samples to check the validity of using published lipid correction equations 

(e.g., Fry 2002; Post et al. 2007; Logan et al. 2008; Peters et al. 2022; Appendix 3.2). Samples were 

selected from one location only (FWS) based on, (1) extreme carbon and nitrogen isotope values in 

comparison to the rest of the dataset and, (2) a wide range of C:N mass ratios. Selected samples had 

C:N mass ratios ranging from 3.27–4.48 and C:N atomic ratios ranging from 3.81–5.23. The lipid 

correction equation, which was based on a bootstrapping approach using 74 samples of odontocetes, 

including LFPWs from Peters et al. (2022), was found to be the best fit for the data. The lipid 

correction equation:  

δ13Ccorrected = 0.5301486 × –13C − 7.322335 

was applied to δ13C values for samples with a C:N mass ratio over 3.5. Bulk isotope uncorrected δ13C 

values were used when C:N mass ratios were <3.5. As lipid extraction can affect nitrogen and 

sulphur isotope values (Elliott et al. 2014), non-lipid extracted bulk samples were analysed to 

generate ẟ15N and ẟ34S values. Additionally, to account for changing carbon dioxide levels in the 

ocean due to anthropogenic activity (Körtzinger et al. 2003), commonly referred to as the Suess effect, 
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a correction equation of −0.022% y−1 (Quay et al. 2003) was applied to all δ13C values to the baseline 

of the most recent sample set collected in 2017.  

3.4. Statistical analysis 

Following testing assumptions of normality using Shapiro–Wilk tests, Kruskal–Wallis tests were 

used in the R package “rstatix” (Kassambara 2020) to compare differences in mean δ13C, δ15N and 

δ34S values both within and among groups defined as: sex, reproductive group, stranding location, 

stranding event, and stranding year. For δ13C and δ15N values, these were also compared among 

maturity status, which was not an option for δ34S as δ34S values were only available for mature 

animals. Where significant differences occurred, pairwise data were compared using Wilcoxon tests 

to determine differences between specific groups, (e.g., Fernández et al. 2011; Kiszka et al. 2011). 

Spearman’s correlation coefficient was used to determine if any relationship occurred between body 

length or age and δ13C, δ15N and δ34S values, respectively. The relationship between δ13C, δ15N, and 

δ34S values and a suite of predictive variables was investigated using generalised additive models 

(GAMs; Hastie and Tibshirani 1990) using the R package “mgcv” (Wood and Wood 2015). Predictive 

variables were sex, body length, maturity status (only for δ13C and δ15N values), stranding location, 

stranding event, and stranding year. Body length was fitted as a continuous variable, whereas sex, 

maturity status, stranding location, stranding event, and stranding year were fitted as factors. As 

body length and age were highly correlated (Spearman rank, rho = 0.85, p ≤ 0.01), and age was not 

available for all individuals, body length (n = 125) was included in GAM models as a proxy  (with 

larger animals expected to be typically older) rather than age itself (n = 108). Models were built with 

Gaussian distribution with gamma set to 1.4 to prevent overfitting (Wood 2017) with all possible 

combinations of variables. Akaike’s information criterion adjusted for small sample size (AICc; 

Burnham et al. 2011) was calculated using the R package “qpcR” (Ritz and Spiess 2008) to select the 
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best fitting model. Interactions for the five top-ranked models were also tested. Final models were 

checked for normality and obvious patterns in the residuals. Models within three AICc units of the 

optimum model were deemed equally likely, and the top three were reported. Niche partitioning 

was investigated using Bayesian inference using the R packages “SIBER” (Jackson et al. 2011) and 

“ggplot2” (Wickham 2011) with ellipses calculated at the 0.40 and 0.95 α level.  

Niche regions (NR) were presented in three-dimensions (‰3) using δ13C, δ15N and δ34S data using 

the R packages “scatterplot3d” (Ligges et al. 2018) and “nicheROVER” (Lysy et al. 2021). Volume of 

ellipses was set at the 0.40 α level (NR40, e.g., Borrell et al. 2021). Data were split into groups based 

on ontogenetic variation and stranding event to calculate pairwise isotopic niche overlap. For 

ontogenetic variation, data were classified as mature males, mature females, and pregnant/lactating 

females due to data availability. Published methods were followed (Swanson et al. 2015), replacing 

“Species” with “Group”, whereby pairwise niche overlap was defined as the probability (%) of an 

individual from one group being found within the NR40 of another group. Data were presented as a 

pairwise grid of one-dimensional isotopic density distributions, two-dimensional pairwise isotopic 

scatter plots and two-dimensional NR40 ellipses of five random NR40 estimates. Overlap probability 

was calculated at the 95% level using a Bayesian approach with 10,000 iterations and reported as 

mean posterior overlap (e.g., Borrell et al. 2021). 

The relationship between number of LFPWs stranded and triple isotope niche size was examined 

through Pearson’s correlation analysis both with and without FWS2009 data included. The FWS2009 

stranding event appeared anomalous as it had a much larger niche size for the number of animals 

stranded compared to all other events, and did not fit the trend of the other stranding events. Finally, 

isotopic range of δ13C using the highest and lowest values were calculated using the formula: 
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δ y= 𝛿13Cymax- 𝛿13Cymin 

where y = sample size (e.g., Graham et al. 2014). Isotopic ranges of δ15N and δ34S were calculated in 

the same way at the level of (1) the entire dataset, and (2) each stranding event. 

All data analysis was completed in R version 4.0.5 (R Core Team 2021). 

3.5.  Results 

Lipid corrections were performed on δ13C values from 71 (57%) samples, whilst 54 samples (43%) 

were not lipid-corrected (Appendix 3.4). Following δ13C corrections for lipid content and Suess 

effects, δ13C data were not normally distributed (Shapiro–Wilk, W = 0.96, p = 0.001). Overall, neither 

δ15N values (Shapiro–Wilk, W = 0.83, p ≤ 0.05) nor δ34S values (Shapiro–Wilk, W = 0.94, p = 0.03) were 

normally distributed. 

3.5.1. Ontogenetic variation in δ13C, δ15N and δ34S values 

The mean δ15N value was 12.59 ± 0.72‰ (Table 3.2), whilst the mean δ13C value was −17.12 ± 0.73‰ 

(n = 125). No significant correlations were found between δ13C values and body length (Spearman 

rank, rho = −0.06, p = 0.54) nor age (Spearman rank, rho = −0.12, p = 0.22), respectively. Furthermore, 

no significant differences were found in the δ13C values between males (−17.04 ± 0.65‰, n = 57) and 

females (−17.20 ± 0.79‰, n = 68; Kruskal–Wallis, H = 0.98, p = 0.32, Figure 3.2), between immature 

(−17.00 ± 0.70‰, n = 56) and mature (−17.23 ± 0.74‰, n = 69) individuals (Kruskal–Wallis, H = 2.89, 

p = 0.09) or among reproductive groups (immature males: −16.79 ± 0.81‰, n = 26; mature males: 

−17.00 ± 0.69‰, n = 18; immature females −17.12 ± 0.81‰, n = 25; pregnant females: −17.13 ± 0.73‰, 

n = 17; lactating females: −17.40 ± 0.71‰, n = 9; resting females: −17.59 ± 1.01‰, n = 7; Kruskal–Wallis, 

H = 9.06, p = 0.11, Table 3.2, Figure 3.3).  
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Figure 3.2. Carbon and nitrogen (δ13C and δ15N) stable isotope biplot from skin samples of male (n = 57) and 

female (n = 68) long-finned pilot whales (Globicephala melas edwardii) stranded on the New Zealand coast 

between 2009 and 2017. Figure reproduced from Hinton et al. (2022). 
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Table 3.2. Range, mean and standard deviations (±1 SD) of carbon and nitrogen (δ13C and δ15N) values of long-

finned pilot whales (Globicephala melas edwardii) stranded on the New Zealand coast, 2009–2017, presented by 

sexual maturity status and reproductive group. Unknown refers to individuals where reproductive group was 

unable to be determined from reproductive organs, but maturity status was instead classified from body 

length. Table reproduced from Hinton et al. (2022). 

  δ13C (‰) δ15N (‰) 

  n Range Mean SD Range Mean SD 

All 125 −18.80 to −15.53 −17.12 0.73 11.52 to 16.28 12.59 0.72 

Maturity status        

Immature 56 −18.80 to −15.53 −17.00 0.70 11.90 to 15.23 12.59 0.58 

Mature 69 −18.77 to −15.82 −17.23 0.74 11.52 to 16.28 12.60 0.82 

Reproductive group        

Immature male 26 −18.16 to −16.26 −16.79 0.52 11.97 to 13.27 12.38 0.30 

Mature male 18 −18.77 to −16.26 −17.00 0.69 11.52 to 13.27 12.34 0.53 

Immature female 25 −18.80 to −15.53 −17.12 0.81 11.90 to 13.93 12.64 0.53 

Pregnant female 17 −18.32 to −16.02 −17.13 0.73 11.83 to 14.85 12.53  0.72 

Lactating female 9 −18.59 to −16.39  −17.40 0.71 11.70 to 12.85 12.30 0.42 

Resting female 7 −18.74 to −15.82 −17.59 1.01 11.72 to 13.37 12.34 0.60 

Unknown 23 −18.62 to −15.99 −17.26 0.68 11.75 to 16.28 13.23 1.10 
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Similarly, no significant correlations were found between δ15N and body length (Spearman rank, rho 

= −0.08, p = 0.36) nor age (Spearman rank, rho = −0.09, p = 0.37), respectively. No differences in the 

δ15N values between males (12.62 ± 0.70‰, n = 58) and females (12.57 ± 0.75‰, n = 67, Kruskal–

Wallis, H = 0.41, p = 0.52), between immature (12.59 ± 0.58‰, n = 56) and mature individuals (12.60 

± 0.82‰, n = 69, Kruskal–Wallis, H = 0.53, p = 0.47) or among reproductive groups (immature males: 

12.38 ± 0.30‰, n = 26; mature males: 12.34 ± 0.53‰, n = 18; immature females 12.64 ± 0.53‰, n = 25; 

pregnant females: 12.53 ± 0.72‰, n = 17; lactating females: 12.30 ± 0.42‰, n = 9; resting females: 12.34 

± 0.60‰, n = 7; Kruskal–Wallis, H = 6.14, p = 0.29) were detected (Table 3.2).  

The mean δ34S value was 21.42 ± 0.91‰ for the pooled dataset (n = 36). Sulphur isotope values did 

not differ significantly between sex (males 21.14 ± 0.99, n = 13; females 21.58 ± 0.83, n = 23; Kruskal–

Wallis, H = 1.87, p = 0.17, Table 3.3). Similarly, no significant correlations were found between δ34S 

and age (Spearman rank, rho = −0.20, p = 0.27) nor body length (Spearman rank, rho = −0.21, p = 0.22). 
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Figure 3.3. Isotopic niche overlap of carbon and nitrogen (δ13C and δ15N) isotopic values of long-finned pilot whales (Globicephala melas edwardii) with immature female 

(n = 25), immature male (n = 26), lactating female (n = 9), mature male (n = 18), pregnant (n = 17) and resting (n = 7) females presented by stranding location on the New 

Zealand coast, 2009–2017. Ellipses represent 95% of data. Figure reproduced from Hinton et al. (2022). 
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Table 3.3. Mean and standard deviations (±1 SD) of carbon, nitrogen, and sulphur (δ13C, δ15N and δ34S) values 

of a subset of 36 mature long-finned pilot whales (Globicephala melas edwardii) stranded on the New Zealand 

coast (2009–2017), presented by sex and reproductive group. Table reproduced from Hinton et al. (2022). 

  δ13C (‰) δ15N (‰) δ34S (‰) 

  n Mean SD Mean SD Mean SD 

Male 13 −17.32 0.81 12.59 0.72 21.14 0.99 

Female 23 −17.06 0.82 12.70 1.04 21.58 0.83 

Pregnant/Lactating female 14 −17.12 0.73 12.68 0.75 21.56 0.90 

All 36 −17.14 0.78 12.66 0.93 21.42 0.91 

 

3.5.2. Spatial and temporal variation in δ13C, δ15N and δ34S values 

Overall, individuals that stranded at Farewell Spit (n = 87) had significantly lower δ13C and higher 

δ15N values (δ13C—17.39 ± 0.68‰, δ15N 12.71 ± 0.79‰) compared to those stranded at Stewart Island 

(δ13C—16.51 ± 0.39‰, n = 38; Kruskal–Wallis, H = 45.6, p ≤ 0.01; δ15N 12.32 ± 0.44‰, Kruskal–Wallis, 

H = 8.43, p ≤ 0.01, Figure 3.4). Total niche area (TA) and corrected standard ellipse areas (SEAC) were 

larger for females at both Farewell Spit (female TA = 7.64, SEAC = 1.89, n = 47; male TA = 4.72, SEAC 

= 1.25, n = 40) and Stewart Island (female TA = 2.74, SEAC = 0.79, n = 20; male TA = 0.83, SEAC = 0.28, 

n = 18). The TA and SEAc values were larger at Farewell Spit than Stewart Island for both males and 

females, respectively. The TA was largest for pregnant females at Farewell Spit (TA = 3.14, SEAC = 

1.96, n = 10), and smallest for mature males at Stewart Island (TA = 0.30, SEAC = 0.27, n = 7; Appendix 

3.5). 
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Figure 3.4. Long-finned pilot whales (Globicephala melas edwardii) isotopic niche overlap of carbon and nitrogen (δ13C and δ15N) values between males (n = 40) and 

females (n = 47) stranded at Farewell Spit, and males (n = 18) and females (n = 20) stranded at Stewart Island between 2009 and 2017. Stewart Island is represented as 

triangles and purple filled ellipses, and Farewell Spit as circles and grey filled ellipses, males are indicated in green and females in peach. Ellipses represent 40% of 

the data. Figure reproduced from Hinton et al. (2022).
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Differences in δ13C were recorded between stranding events (Kruskal–Wallis, H = 89.7, p = <0.01), 

with Wilcoxon tests describing four pairs as not significantly different: FWS2014, FWS2017 (p = 0.40); 

and FWS2009, SI2010 (p = 1); FWS2009, SI2011 (p = 0.25) and SI2010, SI2011 (p = 0.25). Mean δ13C 

values were lowest in FWS2017 stranded individuals (mean = −18.04 ± 0.52‰, n = 20), whereas the 

highest mean δ13C values were observed in those stranded at FWS2009 (mean = −16.65 ± 0.31‰, n = 

20). Nitrogen isotope values differed among stranding events (Kruskal–Wallis, H = 57.1, p ≤ 0.01), 

with higher δ15N values recorded in individuals from FWS2017 (n = 20) than any other stranding 

event. Nitrogen isotope values were also lower at the FWS2014 stranding event (n = 27) than any 

other Farewell Spit stranding event.  

Sulphur isotope values did not differ significantly between stranding events (Kruskal–Wallis, H = 

9.24, p = 0.10) nor stranding location (FWS: 21.33 ± 0.95‰, n = 32; SI: 21.61 ± 0.82‰, n = 18; Kruskal–

Wallis, H = 0.65, p = 0.42; Figure 3.5). 

3.5.3. GAM analysis 

The top three GAMs for δ15N retained only stranding event, location, and year. The top model 

retained only stranding event as a covariate, explaining 45% of the deviance (Table 3.4). For δ13C 

values, the top two best-fit models retained maturity status, location, year, and stranding event as 

covariates and explained 69% of the deviance. Sex was also retained as a covariate in the top three 

GAMs fitted for δ13C data (Table 3.4). Whilst body length was also fitted to GAMs, this was not 

retained in the top-ranked models. The top-ranked GAM for δ34S retained only sex as a covariate. 

Stranding location and year were also retained, respectively, as covariates in the top three models 

(Table 3.4). However, the deviation explained was less than 10% for all models (Table 3.4), indicating 

that the included predictor variables did not explain the data well. 
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Figure 3.5. Carbon, nitrogen, and sulphur (δ13C, δ15N and δ34S) stable isotope triplot of long-finned pilot whale (Globicephala melas edwardii) skin samples. Males are 

represented by “M” and females by “F”. Data are presented by stranding event as indicated by colour in the legend. Figure reproduced from Hinton et al. (2022).
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Table 3.4. Summary statistics for the top three generalised additive models (GAMs) selected based on Akaike 

Information Criterion corrected for small samples sizes (AICc) of long-finned pilot whale (Globicephala melas 

edwardii) skin samples, presented by carbon, nitrogen, and sulphur (δ15N, δ13C and δ34S) values. LL: log-

likelihood; % DE: % deviance explained; δAICc: difference in Akaike’s information criterion (AICC) of the 

current and top-ranked model; wAICc = AICC weight. Significant variables are highlighted in bold. Table taken 

from Hinton et al. (2022). 

Model R2 LL % DE δAICc wAICc 

δ15N      

~Stranding event 0.431 1.000 45.40 - 0.145 

~Location + Stranding event  0.431 0.885 45.40 0.250 0.128 

~Year + Location 0.425 0.553 44.90 1.190 0.080 

δ13C      

~Maturity + Stranding event 0.679 1.000 69.40 - 0.119 

~Maturity + Year + Location 0.679 1.000 69.40 - 0.119 

~Sex + Maturity + Year + Location 0.680 0.87 69.80 0.284 0.103 

δ34S      

~Sex 0.030 1.000 5.59 - 0.211 

~Year 0.020 0.885 4.77 0.250 0.186 

~Location 0.030 0.486 8.85 1.440 0.102 
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3.5.4. Triple isotope niche regions 

Triple isotope niche regions at the α = 40 level (NR40) were calculated by ontogenetic variation and 

stranding event. Pairwise comparisons showed the NR40 overlaps of individuals from differing 

ontogenetic groups (Table 3.5A). Females had the most unique isotopic niche space; with only a 48% 

chance any resting females would be found in the NR40 of mature males but a 75% chance they would 

be found in the NR40 of pregnant/lactating females (Table 3.5A). However, there was a high degree 

of probability that both mature males (82%) or pregnant/lactating females (91%) would be found 

within the NR40 of all females. Likewise, mean niche size was much larger for all females (mean ± SE 

= 53.58 ± 13.82‰3) than either pregnant/lactating females (33.56 ± 11.24‰3) or males (20.72 ± 7.18‰3). 

Mean niche size was similar across several stranding events; FWS2011 (6.62 ± 3.60‰3), FWS2014 

(4.32 ± 2.27‰3), SI2011 (4.11 ± 2.21‰3) and SI2010 (3.78 ± 2.04‰3). The combined niche width of 

individuals stranded at FWS2009 (17.62 ± 9.42‰3) and FWS2017 (15.52 ± 8.25‰3) were much larger 

than those of all other stranding events (Figure 3.6). 

There was a 59% chance of an individual from SI2011 being found in the NR40 of FWS2009, the 

highest probability recorded. However, there was only a 1% chance of an individual from FWS2017 

being found within the NR40 of SI2010. Individuals stranded at Farewell Spit had a 0–36% chance of 

being found in the NR40 of individuals stranded at Stewart Island, whereas there was a much higher 

chance (0–75%) of an individual from Stewart Island being found in the NR40 of an individual 

stranded at Farewell Spit. Several pairs were considered to have low probability of NR40 overlap 

(<10%), with individuals from FWS2017 seemingly the least likely to be detected within the NR40 of 

any other stranding event (Table 3.5B). The NR40 overlap appeared high both between stranding 

events occurring at the same site (e.g., SI2010 and SI2011) and those that were temporally close (e.g., 

FWS2009 and SI2010 which occurred only three months apart, Table 3.5B).  
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Figure 3.6. Two-dimensional scatterplots, one-dimensional density plots and two-dimensional 95% niche overlap ellipses of five random skin samples of carbon, 

nitrogen, and sulphur isotopes (δ13C, δ15N and δ34S) of long-finned pilot whales (Globicephala melas edwardii) from each of six stranding events on the New Zealand 

coast, 2009–2017. In the sample identifiers, FWS = Farewell Spit, SI = Stewart Island. Figure taken from Hinton et al. (2022).
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Table 3.5. Confusion matrices of triple isotope (δ13C, δ15N and δ34S) niche overlap at the 95% confidence level 

of mature long-finned pilot whales (Globicephala melas edwardii) processed from stranding events on the New 

Zealand coast between 2009 and 2017. Values are the chances (%) that an individual from the group in the left-

hand column would be found within isotope niche of any of the other groups in its row. Data presented by 

(A) maturity status and (B) stranding event. Table taken from Hinton et al. (2022). 

 

(A) 

 Mature Male Mature Female Pregnant/Lactating Female 

Male  82.14 75.73 

Female 48.41  74.90 

Pregnant/Lactating female 57.30 91.45  

(B) 

  FWS2009 FWS2011 FWS2014 FWS2017 SI2010 SI2011 

FWS2009  21.05 2.65 0.86 25.02 21.11 

FWS2011 36.13  17.57 4.07 5.81 27.04 

FWS2014 7.94 26.35  9.61 0.38 8.16 

FWS2017 1.49 3.51 2.48  0.00 0.75 

SI2010 74.78 20.34 1.09 0.01  41.57 

SI2011 58.80 29.13 7.26 0.76 37.41  
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No significant correlation between stranding group size and niche size (correlation = 0.55, p = 0.26) 

was detected. However, when the FWS2009 stranding event was removed from the dataset, a 

significant positive correlation was revealed between the number of animals involved in the 

stranding event and the niche width (correlation = 0.92, p = 0.03). Finally, isotopic range was found 

to be similar between δ13C (3.27‰), δ15N (4.75‰) and δ34S (4.30‰) values for the entire pooled 

dataset (Table 3.6). The smallest range of δ13C values was found at the SI2010 stranding event 

(0.76‰) along with the largest range of δ34S values (3.27‰). In contrast, the largest range of δ13C 

values was recorded at the SI2011 stranding event (1.90‰) and the smallest range of δ34S values 

(1.15‰) was recorded at FWS2014. Finally, the largest range of δ15N values was recorded at the 

FWS2017 (3.85‰) stranding event, whereas the smallest range was at the FWS2011 stranding 

(1.20‰).  

Table 3.6. Isotopic range expressed as a percentage of carbon, nitrogen, and sulphur (δ13C, δ15N and δ34S) values 

of long-finned pilot whales (Globicephala melas edwardii) sampled from mass-stranding events on the New 

Zealand coast, 2009–2017. Data are presented by overall dataset, and by each stranding event: FWS = Farewell 

Spit, SI = Stewart Island. Table taken from Hinton et al. (2022). 

Isotope 

Range (‰) 
Overall FWS2009 FWS2011 FWS2014 FWS2017 SI2010 SI2011 

n 125 20 20 27 20 19 19 

δ13C 3.27 1.15 0.96 1.64 1.58 0.76 1.90 

δ 15N 4.76 2.95 1.96 1.47 3.85 2.18 1.86 

n  36 6 6 6 6 6 6 

δ34S 4.30 2.24 2.72 1.15 2.80 3.27 1.18 
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3.6. Discussion 

Intraspecific variation in isotopic values has been explored in multiple cetacean species (Newsome 

et al. 2010). Here, ontogenetic, and spatiotemporal effects on the isotopic niche of a single cetacean 

species, LFPW, were analysed. Overall, isotopic data from this study were characterised by a high 

level of overlap between the 125 individuals analysed for δ13C and δ15N and the 36 individuals 

analysed for δ34S. Significant differences were found in both δ13C and δ15N, but not δ34S values when 

examined by location stranded and stranding event. No significant differences were found in the 

univariate comparisons of δ13C, δ15N and δ34S values vs. sex, body length, age, maturity status or 

reproductive group. 

In general, mean δ15N values for LFPWs reported in this study (mean = 12.71‰, n = 125) were lower 

than mean values reported for other cetacea in New Zealand waters around the same time period, 

e.g., teuthophagus common dolphins Delphinus delphis (female mean = 14.88‰, n = 33; male  mean 

= 14.81‰, n = 23; Peters et al. 2020) and male sperm whales Physeter macrocephalus (  mean = 15.6‰, 

n = 37; Guerra et al. 2020). However, mean δ15N values were still higher than other New Zealand 

marine mammals with diets that are more focused on copepods and krill, such as blue whales 

Balaenoptera musculus sp. (mean = 11.1‰, n = 8; Torres et al. 2015) and southern right whales 

Eubalaena australis (mean = 8.09‰, n = 18; Torres et al. 2017). Lower δ15N values were also recorded 

in G. m. melas in the Mediterranean in comparison to other teuthophagus odontocetes such as P. 

macrocephalus and Risso’s dolphins Grampus griseus (Praca et al. 2011). This could be indicative of 

offshore feeding (Ward-Paige et al. 2005; Abrantes and Barnett 2011; Troina et al. 2020). Indeed, δ15N 

values reported in this study were consistent with those of other LFPW populations globally (Abend 

and Smith 1995; de Stephanis et al. 2008; Fontaine et al. 2015; Monteiro et al. 2015a; Becker et al. 
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2021). Similarly, δ13C values recorded here were comparable to those measured in Northern 

Hemisphere LFPW populations (Abend and Smith 1995; Abend and Smith 1997; Pinzone et al. 2019).  

Sulphur isotopes can provide useful information on foraging prey source pathways (Connolly et al. 

2004; Duffill Telsnig et al. 2019), LFPW δ34S values from this study were similar to those reported in 

LFPWs in the Mediterranean (Pinzone et al. 2019). High δ34S (𝑥̅ = 21.52‰, n = 36) values indicated a 

large contribution to diet from marine sulphate, indicating marine foraging pathways (Connolly et 

al. 2004; Olin et al. 2012; MacAvoy et al. 2017). The combination of low δ13C values with high δ34S 

values observed in this study has previously been described as typical of oceanic feeding behaviour 

(Cardona-Marek et al. 2009), corroborating that LFPWs are primarily an oceanic species (Sekiguchi 

et al. 1992; Abend and Smith 1999; Giménez et al. 2017a).  

3.6.1. Ontogenetic variation in isotope values 

No observable differences in isotopic niche among the different ontogenetic groups were detected 

in this study, aligning with observed isotopic homogeneity of LFPWs in the Strait of Gibraltar (de 

Stephanis et al. 2008). Whilst sex differences in resource-use have been reported in other cetacean 

species including bottlenose dolphins T. truncatus (Rossman et al. 2015), this has not been recorded 

in LFPWs previously. Furthermore, higher cadmium levels have been reported in female LFPWs 

from New Zealand waters than in males (Lischka et al. 2021). Higher cadmium load in females could 

signify a greater reliance on cephalopod prey (Méndez-Fernandez et al. 2013), as cephalopods are 

known to accumulate cadmium in their tissues (Bustamante et al. 1998). Females had a larger TA 

than males when considering only δ13C and δ15N values and were less likely to be found in the triple 

isotope niche of males (56%) than the other way around (79%, Table 3.5A). Yet, no differences were 

detected in mean δ13C, δ15N or δ34S values between males and females. Whilst sex was retained as a 
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predictor in the top-ranked GAM for δ34S (Table 3.4), the deviance explained was very low (6%), 

indicating that there are likely other factors that determine δ34S values.  

Like many cetacean species, G. m. edwardii displays sexual dimorphism with males being larger than 

their female counterparts (Jefferson et al. 2011; Betty et al. 2022). It is possible that increased overall 

body size, rather than sex, could be driving the small isotopic niche differences reported here. 

However, body length was not retained as a predictor in the top-ranked models for δ13C, δ15N or δ34S 

(Table 3.4) nor significantly correlated with isotopic values. Whilst maturity status was retained as 

a predictor explaining δ13C variation, this was not the case for δ15N or δ34S data. Hence, this study 

did not reveal a link between consumption of prey from higher trophic levels and body length. 

Similarly, no relationship was evident between stable isotope values and body length in P. 

macrocephalus (Guerra et al. 2020; Palmer et al. 2022), or δ34S, sex and body size in T. truncatus 

(MacAvoy et al. 2017).  

An increased reliance on higher trophic levels with increased body length has been reported in 

weaned striped dolphins Stenella coeruleoalba (Meissner et al. 2012; Giménez et al. 2017a), whilst 

studies of P. macrocephalus, Commerson’s dolphins Cephalorhynchus commersonii, common dolphins 

D. capensis and T. truncatus all reported an increase in δ15N with age (Niño Torres et al. 2006). Though 

no statistical relationship was apparent between isotope values and body length or age in this 

dataset, high δ15N values were recorded in some of the smallest and youngest LFPWs, which is 

consistent with reliance on lactation in young cetacea (Knoff et al. 2008; Viola et al. 2017; Gelippi et 

al. 2020).  

The effect of reproduction on stable isotope values in cetaceans has not been well studied, but it has 

been suggested that energetic demands and nutrient intake of mature females can differ due to 

reproductive status (Bernard and Hohn 1989; Rechsteiner et al. 2013; Malinowski and Herzing 2015). 
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In this study, pregnant females had the largest isotopic niche of all reproductive groups. It has been 

suggested that the specific stage of pregnancy could affect isotope values of humpback whales 

Megaptera novaeangliae (Clark et al. 2016), so further distinction in reproductive groups, including 

pregnancy stage, may be necessary to elucidate isotopic variability. Furthermore, lactating LFPWs 

often had higher δ15N values than resting females, though this difference was not statistically 

significant. In general, older females that are no longer reproductively active may target riskier prey 

(Engen and Stenseth 1989), causing a change to their isotopic niche. However, resting LFPWs in this 

study were not necessarily of advanced age. Overall, isotopic homogeneity among reproductive 

groups could be due to trophic similarity within the population, lack of sufficient samples within 

each stranding event or indeed, varying stages of pregnancy. A similar lack of variation in isotope 

values by reproductive group has been reported in sei whales, B. borealis and Bryde’s whales, B. edeni 

(Takahashi et al. 2022). Differences in isotopic values that do not meet the threshold for statistical 

significance have been previously proven ecologically significant through the use of complementary 

dietary analysis methods such as fatty acid analysis (Browning et al. 2014). Accordingly, future 

examination of fatty acid profiles for the New Zealand G. m. edwardii population could shed further 

light on their foraging ecology. 

3.6.2. Spatial and temporal variation in stable isotope values 

Spatial differences in isotopic composition within a population are well recorded in cetacea, 

including G. melas (Abend and Smith 1995; Monteiro et al. 2015a). For example, spatial differences 

in δ15N values have been attributed to prey selection and trophic breadth, whilst differences in δ13C 

have been linked to feeding area (e.g., offshore, or coastal) and latitude (Newsome et al. 2007; 

Newsome et al. 2010). It was predicted that stable isotope strandings events would have lower δ13C 

values compared to Farewell Spit due to the more southerly location (Rau et al. 1982), however the 
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opposite was true (Figure 3.4). Furthermore, δ15N values were consistently lower in Stewart Island 

than Farewell Spit. The lack of significant differences in sulphur isotope values suggests that these 

carbon and nitrogen isotopic variances are likely due to variation in primary productivity and 

baseline isotope values between the two locations rather than differences in diet or food web 

pathways. Future studies would benefit from baseline isotopic information obtained from either: (1) 

sampling suspended particulate organic matter in surface waters or a sessile primary consumer; or 

(2) employing compound specific isotope analysis to tease out confounding baseline versus trophic 

level drivers of elevated ẟ15N values (Chikaraishi et al. 2009; Hannides et al. 2009; Chikaraishi et al. 

2014). 

The isotopic ranges of values per stranding event for carbon, nitrogen and sulphur were much 

smaller than those observed in the overall dataset. Furthermore, stranding event was retained in 

three of the top six GAMs reported for ẟ13C and ẟ15N, indicating that stranding event was an 

important driver of variation for carbon and nitrogen isotopic values. Individuals involved in the 

SI2010 mass-stranding had the smallest niche size of all the stranding events, which indicates little 

inter-individual difference in prey and foraging locations for animals involved in this stranding 

event. However, SI2010 was also the event with the smallest number of overall individuals stranded 

(Appendix 3.1) which may confound the results. The widest NR40 was recorded at FWS2009 even 

though this stranding did not comprise the most animals stranded. When FWS2009 was removed 

from the dataset, a positive correlation was seen between niche size and the total number of LFPWs 

from all other stranding events. Although LFPWs are generally believed to live in matrilineal pods 

(Foote 2008; Whitehead et al. 2017), mass-stranding events of LFPWs on the New Zealand coast have 

been reported to involve individuals from many different maternal lineages (Oremus et al. 2013). 

This wider NR40 and isotopic variability could therefore signify multiple groups that have 
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previously been dispersed from each other (Dammhahn et al. 2017), but have fused to form a “super 

pod” shortly prior to stranding. With little other information available, such as genetic barcoding 

for individuals within stranding events, it is impossible to assume the genetic or social composition 

of the FWS2009 stranding event. It could be that the individuals stranded in FWS2009 represented a 

single pod. If that were the case, a wide NR could indicate a more heterogeneous feeding strategy 

or utilisation of more varied resources (Scholz et al. 2020). Both a wide isotopic niche and 

heterogeneity of isotopic niche within a population can indicate a generalist feeding strategy, 

diversified diet, or a degree of individual dietary specialization (Vander Zanden et al. 2010; Jourdain 

et al. 2020; Källberg Normark et al. 2022). 

The large niche size recorded in FWS2009 appeared to be driven by a larger range of δ15N values 

compared to other stranding events (Table 3.6). The individuals stranded in the FWS2017 event also 

recorded a large niche size, driven by both the largest range of δ15N values and second largest range 

of δ34S values compared to other stranding events (Table 3.6). This indicates that individuals in these 

two stranding events had a more varied diet. This could be due to ingestion of a mixture of different 

trophic level prey which themselves feed in a variety of benthic/pelagic, and coastal/oceanic habitats. 

Isotopic density plots for both FWS2011 and SI2010 (Figure 3.6) also had lower δ34S values, 

suggesting an inshore or benthic component to feeding prior to these stranding events (Connolly et 

al. 2004; Barros et al. 2010). Globally, LFPWs have been recorded as having some dietary plasticity, 

either following prey that have migrated due to changes in oceanic currents and water temperatures 

or adapting their diet to locally available prey (Gannon et al. 1997b; Cañadas et al. 2002; de Stepahais 

et al 2008; Chalcobsky et al. 2021). Indeed, observations of a single captive LFPW showed a 

preference shift to the more abundant prey when prey proportions were varied (Kritzler 1952). 
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Stomach content studies of LFPWs from New Zealand waters suggest a large dietary reliance on 

arrow squid Nototodarus spp. (Chapter 2; Beatson 2007; Beatson et al. 2007a; Beatson et al. 2007b).  

It is difficult to ascertain whether changes such as a widening NR40 are indicative of a temporal niche 

change since the data in this study only span a few years. Whilst δ15N values were highest in 2009 

they were also high in 2017, suggesting there is not a linear temporal pattern in δ15N values. 

However, a temporal decline in δ13C values at Farewell Spit was noted between 2009 and 2017 

(Figure 3.6), echoing similar findings from marine predators such as tuna (Tunnus albacares, T. obesus 

and T. alalunga; Lorrain et al. 2020) and D. delphis (Peters et al. 2020) across the Pacific Ocean in recent 

years. Whilst seasonal differences in prey have been recorded in LFPW populations in the northern 

hemisphere (Santos et al. 2014)], data in this study are exclusively from mass-strandings that 

occurred during the austral summer (November to February) in New Zealand, preventing seasonal 

comparisons. 

Resource partitioning of socially and spatially distinct groups has been noted in other cetacea 

(Giménez et al. 2017b; Nicholson et al. 2021b). Although stranding records and sightings data show 

that G. m. edwardii strand all around New Zealand, only two stranding hotspot locations (Betty et al. 

2020) were explored here. Despite the geographic separation of Stewart Island and Farewell Spit 

(~800 km apart) there was little isotopic variability between stranding events at the two locations 

when strandings occurred within the same year. In the absence of tracking, genetic, or migratory 

data, it is not known whether any surviving members of the FWS2009 stranded pod were involved 

in the stranding event three months later at Stewart Island.  

Population homogeneity has been recorded in northern hemisphere LFPW populations (Gannon et 

al. 1997a), suggesting that individuals in the same pods may feed in similar environments. As 

stranding event appeared to be the most prominent predictor of niche, a degree of individual/group 
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specialisation (de Stephanis et al. 2008) or cooperative foraging may exist, as has been observed in 

other odontocetes (Ruiz-Cooley et al. 2021). Multiple feeding techniques have been observed in 

LFPW populations, including both shallow and deep foraging dives (Sivle et al. 2012; Isojunno et al. 

2017) and nocturnal (Robin et al. 2002; Mengual et al. 2015) and suction feeding (Werth 2000) in 

captive animals. Satellite tagging of the closely related short-finned pilot whales G. macrorhynchus in 

the northeastern Atlantic revealed that individuals may be able to adapt foraging states and 

behaviour per dive in response to immediate physiological and environmental constraints (Quick et 

al. 2017). However, it is not clear what foraging strategy G. m. edwardii utilise in New Zealand waters 

due to a lack of tagging, video, or distribution data for this species. 

This study was the first to investigate isotopic variation of G. m. edwardii in New Zealand waters. 

Overall, spatiotemporal variation appeared to have a greater effect on isotopic values than 

ontogenetic variation, with significant differences in δ13C and δ15N values detected between 

stranding location and event. Whilst δ34S values did not directly relate to ontogenetic or 

spatiotemporal factors, incorporating sulphur isotope data improved isotopic niche calculations and 

provided insight into drivers of other isotopic differences. In particular, δ34S values determined 

possible drivers of isotopic niche differences between stranding events, which were not easily 

identified using just δ13C and δ15N values. Finally, this study showed the benefits of long-term tissue 

archiving when supported by robust life history datasets. Further sampling of G. m. edwardii and 

their associated prey from additional locations over multiple seasons would improve understanding 

of spatial and seasonal niche changes for G. m. edwardii. In addition, satellite tagging of G. m. edwardii 

individuals would provide missing information about their movements, foraging ranges, and 

habitats.  
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Chapter 4 — Comparative analysis of long-finned pilot whales 

(Globicephala melas edwardii) and their primary prey: insights from 

stable isotope and fatty acid analyses 

 

 

 

 

 

 

Photo credit: Bethany Hinton. A squid. 
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In this chapter, stable isotope, and fatty acid values from long-finned pilot whales (Globicephala melas 

edwardii) stranded at Farewell Spit in 2014 (n = 15) were compared to stable isotope and fatty acid 

values of their five primary prey species at Farewell Spit to address the final research objective:  

 

Objective 3: Evaluate the use of biochemical tracers in key prey species to quantify LFPW dietary 

variation. 

 

This chapter is a re-formatted version of the manuscript:  

Hinton et al (in prep). Comparative analysis of long-finned pilot whales (Globicephala melas edwardii) 

and their primary prey: insights from stable isotope and fatty acid analyses. 
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4.1. Abstract 

Knowledge of a species’ foraging ecology is essential for understanding its function within the 

ecosystem and its biological interactions with other species. Multi-method approaches allow 

validation of dietary findings and account for inherent biases in single-method dietary 

investigations. A multi-method approach, using both stable isotope  and fatty acid analyses was 

utilised to assess contribution of five key prey species (arrow squid Nototodarus spp., common 

octopus Pinnoctopus cordiformis, conger eel Congridae sp., carpet shark Cephoscyllium sp. and hoki 

Macruronus novaezelandiae) to the diet of long-finned pilot whales (LFPWs; Globicephala melas 

edwardii) in Aotearoa New Zealand waters. Skin and blubber collected from carcasses sampled 

during a mass-stranding event at Onetahua Farewell Spit in 2014 were used to assess stable isotope 

and fatty acid variation, respectively. Muscle tissue (n = 15) of prey sourced either from LFPW 

stomachs or local commercial fisheries were used in assessment of prey. Arrow squid was 

statistically distinguishable from other prey species through carbon stable isotopes, whilst conger 

eel had significantly higher nitrogen stable isotopes than other prey. No differences were found in 

sulphur stable isotopes or overall dietary fatty acids. Although arrow squid showed the most 

similarity to LFPWs through both stable isotope and fatty acid comparisons, point-to-point prey 

polygons suggested that key prey species could be missing from this analysis. While LFPWs are 

likely a teuthophagus predator (cephalopod eater), future research should focus on identifying the 

missing pelagic squid and/or fish species that this present study has highlighted. 
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4.2. Introduction 

Natural and/or anthropogenic changes to an ecosystem can be associated with temporal or spatial 

changes in target prey species, thus an understanding of diet has important management 

implications (Sinclair et al. 2018). Baseline data on target prey species, and any changes to these, are 

particularly important in environments such as open oceans, which are difficult to monitor (Pierce 

and Boyle 1991; Phillips et al. 2003; Chiu-Werner et al. 2019). To account for inherent biases in 

methodology, multidisciplinary combinations of approaches are recommended to address questions 

of foraging ecology (Nielsen et al. 2018). 

One combination of methods used to determine diet is that of stable isotope and fatty acid analyses 

(Allan et al. 2010; O'Donovan et al. 2018). Stable isotope analysis of carbon and nitrogen has been 

applied extensively to determine relative prey contribution to diet (Kiszka et al. 2014b; Giménez et 

al. 2017b; Díaz-Gamboa et al. 2018; Zhang et al. 2019; Borrell et al. 2021; Teixeira et al. 2021; Teixeira 

et al. 2022) with other stable isotopes such as sulphur included to improve clarity of foraging 

pathways (Tucker et al. 2014; Matthews and Ferguson 2015; Pinzone et al. 2019; Borrell et al. 2021). 

However, diet-tissue trophic discrimination factors (TDF; i.e., the difference between the dietary 

isotope value and the resulting predator tissue value (Caut et al. 2009), key to stable isotope data 

interpretation, are still to be determined for many species. Although closely related species are 

widely thought to have similar TDFs, the uncertainty of these values requires caution when 

interpreting stable isotope results (Wyatt et al. 2010; Bond and Diamond 2011; Kadye et al. 2020). 

Similarly, specific fatty acids, such as those synthesised by primary producers and only acquired by 

diet, are retained between trophic levels (Egeler et al. 2003).  Thus, variations in fatty acid profiles 

can be used as biomarkers of diet within or between populations (Stowasser et al. 2012), or to identify 

dietary source (Auel et al. 2002; Dalsgaard et al. 2003). Quantitative Fatty Acid Signature Analysis 
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(QFASA; Iverson et al. 2004) has further been applied to determine dietary composition (Happel et 

al. 2016). However, the use of calibration coefficients (CCs) is only known for a limited number of 

species. This makes QFASA an inaccessible analysis for many species, hence literature often still 

focuses on qualitative methods to distinguish likely trophic interactions (e.g., Bradshaw et al. 2003; 

Grahl-Nielsen et al. 2010; Guerrero et al. 2020). Accordingly, it is advisable to apply multiple 

complimentary methodologies to validate dietary findings where possible (e.g., Tucker et al. 2008). 

Multi-method approaches are useful to discern foraging complexities that individual methodologies 

alone would not clarify (Young et al. 2018). This is particularly relevant for marine ecological 

systems where organisms are difficult to access (Iverson 2009; Bowen & Iverson 2013). Stomach 

content, stable isotope and fatty acid studies have been used in isolation to elucidate marine 

mammal diet in Aotearoa New Zealand (e.g., Meynier et al. 2008c; Beatson and O’Shea 2009; 

Lambert et al. 2013; Miller et al. 2013; Meynier et al. 2014; Guerra et al. 2020; Peters et al. 2020). 

However, each method has a different capacity to distinguish between prey species. For example, 

stable isotope values of arrow squid Nototodarus spp. overlapped with hoki Macruronus 

novaezelandiae in New Zealand waters, although fatty acid values between the species differ (Vlieg 

and Body 1988; Meynier et al. 2008b). Therefore, identification of key prey species from stomach 

contents analysis, in addition to a combination of fatty acid and stable isotope analysis of the same 

prey specimens, may provide a clearer understanding of the overall diet of a predator.  

Within New Zealand, the long-finned pilot whale LFPW; Globicephala melas edwardii is the most 

common cetacean species to mass strand (Betty et al. 2020). Despite this, little is known about the 

long-term diet, distribution, or foraging behaviour of this species. Whilst diet homogeneity has been 

noted in the days prior to stranding based on stomach content analysis (Beatson et al. 2007b; Beatson 

and O’Shea 2009; Chapter 2), long-term dietary trends of LFPWs in New Zealand waters remain 
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poorly understood. To address this knowledge gap, analyses of stable isotope and fatty acid 

biomarkers were applied together to explore comparisons between LFPWs and key prey species 

(Beatson and O’Shea 2009; Chapter 2). Specifically, the aims of this study were to: (1) assess whether 

LFPW prey can be distinguished via stable isotopes (δ13C, δ15N, δ34S) analysis; (2) examine if LFPW 

prey can be distinguished through analysis of dietary fatty acid profiles; and (3) explore relative 

importance to LFPW diet of prey species through a combination of stable isotope and fatty acid 

techniques.  

4.3. Methods 

4.3.1. Sampling of long-finned pilot whales 

Blubber and skin samples (n = 15) were collected from a mass-stranding event of LFPWs on 

Onetahua Farewell Spit, Golden Bay, New Zealand in January 2014 (Figure 4.1, Table 4.1). Sampling 

was undertaken in situ following standard post-mortem procedures (Geraci and Lounsbury 2005; 

IJsseldijk and Brownlow 2016). Skin was stored in ethanol and blubber at -20℃ prior to analysis. 

Whilst care was taken to sample the full skin layer (sampling described in further detail in Chapter 

3), only the inner blubber layer was used for fatty acid analysis as is common for dietary studies 

(Hooker et al. 2001; Krahn et al. 2004; Smith & Worthy 2006; Grahl-Nielsen et al. 2010b).   

4.3.2. Sampling of pilot whale prey  

Five prey types (arrow squid Nototodarus spp., common octopus Pinnoctopus cordiformis, conger eel 

Congridae sp., carpet shark Cephoscyllium sp. and hoki Macruronus novaezelandiae) accounted for 99% 

of the prey recovered from stomach contents of LFPWs stranded at Farewell Spit, by index of  
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Figure 4.1. Tissue source locations around Aotearoa New Zealand. Prey sourced from vessels within area of 

the black box (Cook Strait;  n = 9) in 2021, long-finned pilot whale (LFPW; Globicephala melas edwardii) tissue (n 

= 15) in 2014 and prey from LFPW stomachs (n = 6) sourced from mass-stranding events at Farewell Spit, in 

2011. A single prey specimen was sourced from the stomach contents of a LFPW mass-stranded on Stewart 

Island in 2010. Bathymetry is depicted with darker shades of blue representing deeper waters (reprinted with 

permission from National Institute of Water and Atmospheric Research (NIWA) under a Creative Commons 

BY license, with permission from NIWA original copyright (CANZ 2008). Figure modified from Hinton et al. 

(2022), Chapter 3. 

 

  

N 
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relative importance (IRI, n = 141; Chapter 2, Appendix 4.1). Representatives of these five prey types 

were either recovered from the stomach contents of LFPWs mass-stranded in Farewell Spit in 

November 2011 or Stewart Island in February 2010, or sourced from commercial fishing vessels 

operating in the Cook Strait in between January and March 2021 (Figure 4.1, Table 4.1). Three 

individuals of each prey species were selected for stable isotope and fatty acid analysis, in line with 

previous dietary studies involving stable isotope (e.g., Catry et al. 2019; Krajcarz et al. 2019; 

McCluskey et al. 2021) and fatty acid data (Tucker et al. 2008; Choy et al. 2019; Madgett et al. 2019). 

Where possible, three specimens of each prey type were obtained from the same source. This was 

possible for all prey other than carpet sharks, of which only two specimens were available from a 

LFPW mass-stranding on Farewell Spit in 2011. The third carpet shark sample was sourced from the 

mass-stranding at Stewart Island in February 2010 (Figure 4.1, Table 4.1). A 1 cm3 sample was 

dissected from lateral muscle of fish and mantle tissue of cephalopods using a scalpel. Samples were 

subsequently stored frozen at -20 ℃ prior to analysis (e.g., Arriola et al. 2013; Olin et al. 2014). 

4.3.3. Stable isotope measurements 

Stable isotope measurements were performed on skin tissue of LFPWs that had been stored in 70% 

ethanol. Skin samples were first placed under the fume hood for at least 48 hours (Olin et al. 2014) 

to allow all ethanol to evaporate. Lateral muscle tissue of fish and mantle muscle tissue of 

cephalopods stored frozen were defrosted for at least two hours and prepared whilst partially 

frozen. Both skin and muscle were sliced finely using a scalpel blade and glass petri dish. All 

equipment (including glassware, scalpel blade and metal tweezers) was rinsed with distilled water 

followed by 70% ethanol in between samples to prevent cross-contamination (Levin and Currin  
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Table 4.1. Source, year sourced, total body length (TBL) and mass of long-finned pilot whale (LFPW; 

Globicephala melas edwardii) prey species arrow squid (Nototodarus spp.), carpet shark (Cephoscyllium sp.), 

common octopus (Pinnoctopus cordiformis), conger eel (Congridae sp.) and hoki (Macruronus novaezelandiae) 

investigated for carbon and nitrogen (δ13C and δ15N) stable isotopes and fatty acid profiles in New Zealand. 

Cook Strait refers to the location of the commercial fishery from which prey was sourced. Farewell Spit and 

Stewart Island refer to location of LFPW mass-strandings; prey with these locations indicated in the “Source” 

column were taken from the stomachs of LFPW carcasses in those locations. No length or mass measurements 

were taken from prey sampled from stomachs of carcasses. 

 

  

Species ID  Source Year TBL (cm) Mass (kg) 

Arrow squid  AS1  Cook Strait  2021 34.5 1.037 

Arrow squid  AS2  Cook Strait  2021 39.4 1.342 

Arrow squid  AS3  Cook Strait  2021 24.7 4.233 

Carpet shark S1  Farewell Spit    2011 N/A N/A 

Carpet shark S2  Farewell Spit   2011 N/A N/A 

Carpet shark S3  Stewart Island  2010 N/A N/A 

Common octopus O1  Cook Strait  2021 99.2 1.844 

Common octopus O2  Cook Strait  2021 100.6 1.851 

Common octopus O3  Cook Strait  2021 119.3 2.228 

Conger eel CE4  Farewell Spit   2011 N/A N/A 

Conger eel CE5  Farewell Spit   2011 N/A N/A 

Conger eel   CE6  Farewell Spit    2011 N/A N/A 

Hoki H1  Cook Strait  2021 81.9 1.505 

Hoki H2  Cook Strait  2021 83.1 1.386 

Hoki H3  Cook Strait  2021 83.0 1.875 
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2012). Samples were initially sliced longitudinally to capture all skin layers (e.g., Wild et al. 2018). 

Skin and muscle samples were subsequently transferred into individual labelled Eppendorf tubes, 

and were oven dried at 60℃ for 48 hours.  

All LFPW skin samples were processed at the Environmental and Ecological Stable Isotope 

Analytical Facility at National Institute of Water and Atmospheric Research (NIWA), Wellington, 

New Zealand). Methods described in detail in Chapter 3 and Hinton et al (2022) were followed. 

Briefly, a MAS 200 R autosampler and analysed by a FLASH 2000 elemental analyser linked to a 

DELTA V Plus continuous flow isotope ratio mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany) was used for sample analysis. Stable isotope ratios were expressed as delta values (δ) in 

per mil units (‰) as: 

δ= ((
Rsample

Rstandard
) − 1 ) × 1000 

All nitrogen values were reported against atmospheric air, and carbon values against a CO2 

reference gas, relative to the international standard Carrara Marble NSB-19 (National Institute of 

Standards and Technology (NIST), Gaithersberg, MD, USA). This was then calibrated against the 

original Vienna Pee Dee Belemnite (PDB) limestone standard and was then corrected for 17O. Carbon 

isotope data were corrected via a two-point normalisation process (Paul et al. 2007) using NIST 8573 

(USGS40 L-glutamic acid; certified δ13C = -26.39 ± 0.09 ‰ and NIST 8542 (IAEA-CH-6 Sucrose; 

certified δ13C = -10.45 ± 0.07 ‰). Nitrogen isotope data were corrected using the same two-point 

normalisation process using NIST 8573 (USGS40 L-glutamic acid; certified δ15N = -4.52 ± 0.12 ‰) and 

IAEA-N-2 (ammonium sulphate: = +20.41 ± 0.20 ‰). After every ten samples, squid, and a working 

laboratory standard of DL-Leucine (DL-2-Amino-4-methylpentanoic acid, C6H13NO2, Lot 

127H1084, Sigma, Australia) were run to report on precision and to control for quality. Accuracy 
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and precision were checked by running the international standard USGS65 (glycine: certified δ15N = 

20.68 ± 0.06; certified δ13C = - 20.29 ± 0.04 ‰) every ten samples also. Data accuracy was measured 

to better than 0.15 ‰ for δ13C and δ15N values, whilst precision was measured to better than 0.24 ‰ 

for δ13C and 0.22 ‰ for δ15N values. 

Lateral muscle tissue of fish and mantle tissue of cephalopods, alongside one LFPW skin sample, 

were processed at IsoTrace Limited, Dunedin following methodology described in Chapter 3 and 

Hinton et al. (2022), using a Carlo Erba NC 2500 elemental analyser coupled to a Europa Hydra 

system. Stable isotope values for carbon, nitrogen, and sulphur were calculated and normalised 

against international standards of Vienna PDB atmospheric air and Canyon Diablo Troilite, 

respectively. A three-point data normalisation was carried out using two international reference 

materials containing USGS40 mixed with IAEA-S1 (with certified values of: carbon = -26.39 ± 0.04 

‰, nitrogen = -4.52 ‰ ± 0.06, and sulphur = -0.30 ± 0.03 ‰), and USGS-41 mixed with IAEA-S2 (with 

certified values of: carbon = 37.63 ± 0.05 ‰, nitrogen = 47.57 ± 0.11 ‰, and sulphur = 22.62 ± 0.08 ‰). 

Machine drift, and precision of ẟ13C (0.08 ‰), ẟ15N (0.04 ‰) and ẟ34S (0.16 ‰) values were assessed 

from replicate analysis of a keratin internal laboratory working standard positioned every ten 

samples.   

4.3.4. Fatty acid analysis 

Prey muscle and LFPW blubber tissue were sampled semi-frozen immediately prior to analysis. 

Approximately 2–4 g of each tissue was sub-sampled and individually wrapped in aluminium foil. 

For blubber, fatty acids were obtained from lipid extracts using standard methodology (Bligh and 

Dyer 1959). In summary, 3.75 mL of a chloroform: methanol (1:2, v:v) solution was added to 

approximately 40 mg of sample (Grahl-Nielsen et al. 2010a; Salama et al. 2013), and then vortexed 

for four minutes. Subsequently, a further 1.25 mL of chloroform was added, and the resulting 
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solution was vortexed for two minutes.  A further 1.25 mL of 8% sodium chloride in milliQ water 

was next added, which was vortexed for a further minute. After centrifuging at 2,000 rpm for five 

minutes, the bottom layer, containing all the lipids, was extracted using a double pipette technique. 

The bottom layer was transferred into a new 15 mL Kimax tube and dried to remove all residues of 

solvent using a steady stream of nitrogen gas at 40oC. For prey samples, fatty acids were directly 

methylated (e.g., Parrish et al. 2015) from approximately 40 mg of wet muscle tissue, without 

extracting the fatty acid (see methylation protocol below).  

4.3.5. Fatty acid methylation 

The fatty acid methylation procedure is described in detail within Chapter 5. Briefly, 100 µl of C19 

internal standard solution (0.5 ml/mL in methanol) was added to samples, and fatty acids were 

methylated using 2 mL of a methanol:hydrochloric acid:chloroform (10:1:1, v:v:v) solution. Samples 

were heated at 100 oC in two 45-minute intervals, stopping for 15 minutes of sonification in the 

middle, totalling 1.5 hours of heating. Samples were then cooled for at least 10 minutes until reaching 

room temperature, before adding 2 mL of hexane and vortexing. A further 1 mL of milliQ water was 

added to samples, which were then vortexed again. The hexane (top) layer was transferred to a new 

Kimax tube, and solutions were placed under nitrogen gas until only fatty acid methyl esters 

(FAMEs) remained. The FAMEs were resuspended in 2 mL hexane then transferred to a 2 mL amber 

gas chromatograph (GC) vial.  All FAMEs were measured using an Agilent GC- mass spectrometry 

machine (GC 6890N/MS 5975B, Agilent Technologies Ltd FAs) and were separated on a HP-5 

column (5% phenyl methyl siloxane, DB-5MS UI, 30 m x 0.25 mm, 0.25 µm film thickness; Agilent 

Technologies Ltd). The carrier gas used was helium, and inlet pressure was maintained at 250 °C. 

All FAME peaks were identified based on their mass spectra, and concentrations of individual fatty 
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acids were quantified against the C19 internal standard (see Appendix 4.2 for an example of a 

chromatogram). 

4.4. Statistical data analysis 

4.4.1. Stable isotope analysis 

Only prey samples that had a mass C:N ratio of over 3.5 were lipid corrected (Skinner et al. 2016) 

using equations for fish from Post et al. (2007). All LFPW samples with a C:N ratio of over 3.5 were 

also lipid corrected using lipid correction equations from Peters et al. (2022).  Carbon isotope data 

were further corrected for the Suess effect (Quay et al. 2003), accounting for annual oceanic carbon 

uptake, using 2021 as the baseline as this was the most recent year in the study. Suess-corrected δ13C 

values, along with δ15N and δ34S values, were tested for normality using Shapiro-Wilk tests. 

Significant differences in mean isotope values between species were tested using one-way analysis 

of variance (ANOVA) with post-hoc Tukey test. Non-normally distributed data were tested using 

Kruskal Wallis with post hoc Wilcoxon test using the base statistics package in R (R Team, 2021). 

Stable isotope biplots were created using R package “SIBER” (Jackson et al. 2011). To test the effect 

of different TDFs on δ15N values,  the R package “SIDER” (Healy et al. 2018) was used to estimate 

TDFs for carbon and nitrogen only using the tissue option “collagen”. Additionally, TDF values for 

δ15N values calculated for LFPW skin (Abend and Smith 1997) were also used in a comparative 

analysis. Muscle tissue was analysed to generate stable isotope values for all 15 prey items (Tables 

4.2 and 4.3), therefore, SIDER estimates for TDF values of 3.5 ± 1.6‰ were used for nitrogen and 1.6 

± 2.0‰ for carbon. Since δ13C, δ15N and δ34S values were normally distributed for all species, ANOVA 

with post-hoc Tukey tests were applied to compare data.  

4.4.2. Fatty acid analysis 

Fatty acids were reported using the nomenclature: 

CA:Bnx 
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where the word ‘carbon’ is represented by C, A refers to the number of carbon atoms in the chain, 

the number of double bonds is represented by B, and the placing of the first double bond in relation 

to the final methyl group in represented as x (Budge et al. 2006). Three key essential polyunsaturated 

fatty acids (PUFAs) were named in a different way as typical in the literature: C20:5n3, 

eicosapentaenoic acid = EPA, C22:5n3, docosapentaenoic acid = DPA and C22:6n3, docosahexaenoic 

acid = DHA.  

The mass of each individual fatty acid was calculated first in µg. Duplicate measurements were run 

per sample, so a mean µg was calculated for each fatty acid. The final individual mass was used to 

calculate the mean proportion (%) of each fatty acid. Although all fatty acids were reported, only 

fatty acids with proportions over 0.1% were included in further analysis (Galloway et al. 2014). 

Therefore, once scarce fatty acids had been removed, proportions were re-scaled to 100% for further 

analysis (e.g., Thiemann et al. 2022). All proportional fatty acid data were then transformed, using 

the equation: 

𝐹𝐴𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  = ln (
𝐹𝐴𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛

𝐹𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) 

where FAtransformed is the transformed version of a fatty acid, FAproportion is the original proportional 

data value, and FAreference is the reference fatty acid (C18:0; Budge et al. 2006). Fatty acids were 

presented individually and grouped into monounsaturated fatty acids (MUFAs), polyunsaturated 

fatty acids (PUFAs) and saturated fatty acids (SFAs) . All analyses were carried out on dietary fatty 

acids only, as defined by Iverson (2004), and comprised: C20:1n9, C20:1n11, C22:1n11, C22:1n13, 

C18:2n6, C20:4n6, EPA and DHA. Differences in dietary fatty acids amongst prey groups and LFPWs 

were assessed using one-way ANOVA with post-hoc Tukey tests, using transformed data.  
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4.4.3.  Comparisons of pilot whale and prey biomarkers, and contribution of prey to diet 

Permutational ANOVA (PERMANOVA; Anderson 2014) was used on non-transformed fatty acid 

data (e.g., Guerrero et al. 2020) to assess distance between LFPWs and prey (e.g., Clerc et al. 2017). 

The normal distribution of data is not a requirement for PERMANOVA analysis. Contribution of 

each dietary fatty acid to dissimilarity was assessed via similarity percentages (SIMPER) analysis. 

Variation of fatty acid profiles between prey groups and LFPWs was visualised through non-metric 

multidimensional scaling (nMDS) of non-transformed data (e.g., Guerrero et al. 2020) using the 

dietary fatty acid suite.  

Predator isotopic values are required to fall within the bounded polygon of prey values for mixing 

models to be viable (Phillips and Gregg 2003). Prey mixing polygons were created with two 

combinations using: 1) TDF values for δ13C (1.6 ± 2.0‰) and δ15N (3.5 ± 1.6‰) from SIDER (as no 

TDF data is available for this species in this area); and 2) TDF values for δ13C from SIDER and for 

δ15N from Abend and Smith (1997). There were no δ13C TDF values from Abend and Smith (1997, 

hence the δ13C values from SIDER were compared to the to the values from Abend and Smith (1997) 

were used to see if TDF values caused different results. Visual inspection of prey polygons and stable 

isotope biplots (corrected for TDF) was used to determine if data fell within the 95% confidence 

interval and thus were suitable for Bayesian mixing model analysis (Smith et al. 2013). 

4.5. Results 

4.5.1. Stable isotope variation of prey 

Arrow squid (n = 3, -19.2 ± 0.4‰) were more depleted in δ13C compared to common octopus (n = 3, 

mean = -17.31 ± 0.05 ‰; p = <0.01), conger eel (n = 3, mean= -17.58 ± 0.19 ‰; p = <0.01), carpet shark 

(n = 3, mean= -17.58 ± 0.19 ‰; p = <0.01) and hoki (n = 3, mean = -18.09 ± 0.16 ‰; p = <0.01) and hoki 

were more depleted in δ 13C compared to both common octopus (p = 0.02) and carpet shark (p = 0.02, 

Table 4.2, Figure 4.2). Conger eel (n = 3, mean = 17.31 ± 0.24‰) had significantly higher δ15N values 
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compared to arrow squid (n = 3, mean = -11.87 ± 1.58 ‰; p = <0.01), common octopus (n = 3, mean = 

13.57 ± 0.19‰; p = 0.02) and hoki (n = 3, mean = 13.98 ± 0.17‰; p = 0.03),while carpet shark (n = 3, 

mean = 15.52 ± 1.21‰) had higher δ15N values compared to arrow squid (p = 0.01). No differences 

were observed in δ34S values among prey species (F4-8 = 1.164, p = 0.395; Table 4.2, Figure 4.2).   
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Table 4.2. Mean ± standard deviation of carbon, nitrogen, and sulphur (δ13C, δ15N and δ34S) values of long-

finned pilot whales (Globicephala melas edwardii; LFPWs) and five of their key prey species arrow squid 

(Nototodarus spp.), carpet shark (Cephoscyllium sp.), common octopus (Pinnoctopus cordiformis), conger eel 

(Congridae sp.) and hoki (Macruronus novaezelandiae). Key prey species were identified from stomach content 

analyses; Chapter 2) from New Zealand waters. All LFPWs were sampled following a mass-stranding event 

on Farewell Spit, Golden Bay, New Zealand, in January 2014. *Only one sample available.  

Species n δ13C (‰) δ15N (‰) δ34S (‰) 

Arrow squid  3 -19.2 ± 0.5 11.9 ± 1.9 21.0 ± 1.8 

Carpet shark 3 -17.5 ± 0.2 15.5 ± 1.2 *20.4 

Common octopus 3 -17.3 ± 0.1 13.6 ± 0.2 21.3 ± 0.4 

Conger eel  3 -17.6 ± 0.2 17.3 ± 0.3 22.1 ± 1.1  

Hoki 3 -18.1 ± 0.2 14.0 ± 0.2 22.4 ± 0.2 

Long-finned pilot whale 16 -17.6 ± 0.6 12.1 ± 0.3 *21.8 
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 Figure 4.2. A: Stable isotope biplots of carbon and nitrogen (δ13C and δ15N) from skin long-finned pilot whales (LFPWs; Globicephala melas edwardii) involved in a mass 

stranding at Farewell Spit, New Zealand in January 2014, and muscle tissue of five of their key prey species (arrow squid (Nototodarus spp.), carpet shark (Cephoscyllium 

sp.), common octopus (Pinnoctopus cordiformis), conger eel (Congridae sp.) and hoki (Macruronus novaezelandiae). Prey species were defined by prior stomach content 

analyses, Chapter 2). B: Stable isotope biplots of carbon and sulphur (δ13C and δ34S) from skin of a single long-finned pilot whale, and muscle tissue of the same five 

of key prey species.  

A 
B 
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4.5.2. Fatty acid variation within prey 

Both conger eel and carpet shark were characterised by similarly high levels of MUFAs, particularly 

C18:1n9 and C18:1n7. Conversely, common octopus were characterised by the highest C20:4n6 

proportions, typical of octopus species. Arrow squid and hoki recorded similar values of most FAs, 

though hoki displayed higher C16:0 and lower overall PUFA values than arrow squid.  

Dietary fatty acids were similar in the three common octopus individuals tested (Figure 4.3), but 

more variable within all other prey species. Yet, prey species revealed no difference in individual 

dietary fatty acids other than EPA (ANOVA, F = 19.94, p = <0.01) and DHA (ANOVA, F = 8.80, p = 

<0.01). Post hoc Tukey tests revealed the proportion of EPA was significantly lower in conger eel (n 

= 3, mean = 2.97%) compared to arrow squid (n = 3, mean = 11.75%; p = <0.001), common octopus (n 

= 3, mean = 22.16%; p = 0.001) and hoki (n = 3, mean = 13.52%; p = 0.005). Proportions of EPA were 

also significantly lower in carpet shark (n = 3, mean = 4.49%) compared to arrow squid (p = <0.001), 

common octopus (p = <0.001) and hoki (p = 0.003). Similarly, DHA was also lower in conger eel (n = 

3, mean = 9.12%) compared to arrow squid (n = 3, mean = 35.91%; p = 0.002). Dietary fatty acids were 

in the highest proportions in common octopus, at an average of 59.89%, followed by arrow squid 

(55.09%), hoki (52.42%), carpet shark (32.32%) and conger eel (14.99%), although these differences 

were not significant (ANOVA, F = 4.34, p = 0.27). Overall, prey species could not be distinguished 

through dietary fatty acids (PERMANOVA, pseudo-F = 33.23, p = 0.08). 
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Figure 4.3. Dietary fatty acid profiles of long-finned pilot whales (Globicephala melas edwardii, n = 15) compared 

to dietary fatty acid profiles of five prey species (arrow squid Nototodarus spp., n = 3; carpet shark Cephoscyllium 

sp., n = 3; , common octopus Pinnoctopus cordiformis, n = 3; conger eel Congridae sp., n = 3; and hoki Macruronus 

novaezelandiae n = 3) as identified by prior stomach content analyses, see Chapter 2, Appendix 4.1. Dietary fatty 

acids were identified from Iverson (2004). As nMDS plot axes do not have quantitative meaning, arrows are 

included in the top graph to show fatty acids responsible for the distance.  
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Table 4.3. Fatty acid profiles of long-finned pilot whales (Globicephala melas edwardii) and key prey species (arrow squid Nototodarus spp.; carpet shark Cephoscyllium 

sp.; common octopus Pinnoctopus cordiformis; conger eel Congridae sp., and hoki Macruronus novaezelandiae) from New Zealand waters presented as a proportion of 

total fatty acids. Fatty acids in bold relate to dietary fatty acids as defined by Iverson (2004).  Pilot whale = mean values of all 15 long-finned pilot whales tested, SFAs 

= saturated fatty acid, MUFAs = monounsaturated fatty acids and PUFAs = polyunsaturated fatty acids, and ∑ = total.   

 

Arrow squid 

  

Common octopus 

  

Conger eel 

  

Carpet shark 

  

Hoki  

  

Pilot 

whale 

ID AS1 AS2 AS3 Mean O1 O2 O3 Mean CE4 CE5 CE6 Mean S1 S2 S3 Mean H1 H2 H3 Mean Mean 

C14:0 1.27 2.00 1.33 1.53 0.96 1.02 1.17 1.05 5.28 3.72 2.93 3.98 3.95 0.99 0.84 1.93 1.46 1.35 0.00 1.40 10.84 

C15:0 0.66 0.00 0.00 0.66 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.47 0.64 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.99 

C16:0 22.95 34.27 32.77 29.99 19.88 17.60 20.91 19.46 23.47 23.30 24.26 23.68 18.08 20.31 22.03 20.14 35.52 25.33 26.01 28.95 20.09 

C17:0 1.09 0.00 0.00 1.09 1.19 0.00 0.00 1.19 0.48 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00 1.09 0.00 1.09 0.72 

C18:0 5.01 5.18 4.59 4.93 10.37 9.25 9.48 9.57 5.81 5.10 4.53 5.15 6.26 10.11 8.20 8.19 4.73 10.79 6.91 7.48 3.76 

C16:1n7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.36 0.67 0.91 0.00 0.79 0.00 0.00 0.00 0.00 4.21 

C16:1n9 0.00 0.00 0.00 0.00 0.84 0.65 0.00 0.75 8.94 9.53 10.11 9.53 8.72 4.35 4.74 5.93 0.00 0.00 0.00 0.00 12.69 

C17:1 0.73 0.00 0.00 0.73 0.00 0.00 0.00 0.00 0.76 0.73 0.00 0.75 1.22 0.00 0.00 1.22 0.00 2.18 0.00 2.18 0.86 

C18:1n9 1.01 1.86 2.12 1.66 2.36 2.53 2.47 2.45 32.76 36.56 41.86 37.06 26.21 21.14 18.03 21.79 2.25 2.64 12.32 5.74 25.68 

C18:1n7 1.09 1.43 0.00 1.26 2.62 2.63 2.33 2.53 3.70 4.46 4.14 4.10 5.68 6.01 5.68 5.79 1.12 2.91 2.18 1.90 4.01 

C18:1n11 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.36 0.00 2.36 0.60 
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Table 4.3. continued  
 

Arrow squid 

  

Common octopus 

  

Conger eel 

  

Carpet shark 

  

Hoki  

  

Pilot 

whale 

ID AS1 AS2 AS3 Mean O1 O2 O3 Mean CE4 CE5 CE6 Mean S1 S2 S3 Mean H1 H2 H3 Mean Mean 

C20:1n11 6.14 0.00 0.00 6.14 0.00 0.00 0.00 0.00 1.69 0.00 0.00 1.69 2.89 0.00 0.00 2.89 4.37 5.33 1.89 3.86 1.51 

C20:1n9 3.97 6.14 4.75 5.15 3.61 4.36 4.25 4.07 0.00 1.94 1.88 1.92 1.12 1.62 2.62 1.79 0.00 3.56 0.00 3.56 5.25 

C22:1n11 4.94 0.00 0.00 4.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.42 0.00 0.00 0.00 0.00 1.47 

C22:1n13 0.50 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.82 

C18:2n6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.55 1.00 0.90 0.00 0.95 0.00 0.00 0.00 0.00 1.20 

C20:4n6 1.16 1.19 1.38 1.24 5.33 5.27 5.01 5.20 1.46 1.16 0.00 1.31 1.86 4.08 4.75 3.56 1.39 0.00 2.88 2.13 0.57 

EPA 10.59 12.94 11.73 11.75 20.89 23.27 22.31 22.16 3.36 2.82 2.74 2.97 3.78 3.04 6.66 4.49 11.12 21.39 8.06 13.52 1.27 

DHA 31.69 34.70 41.33 35.91 24.48 30.75 30.13 28.45 10.53 9.29 7.54 9.12 14.41 25.43 22.03 20.63 36.34 23.28 37.65 32.42 3.48 

DPA 29.50 0.00 0.00 29.50 2.02 2.66 1.94 2.21 0.37 1.76 1.89 1.23 2.74 1.12 4.41 2.76 1.69 1.95 2.11 1.91 2.09 

∑SFAs 37.63 41.44 38.69 39.58 27.22 27.87 31.56 28.88 35.51 32.13 31.73 33.75 22.67 21.30 22.87 22.28 41.71 38.01 32.91 37.55 35.80 

∑MUFAs 5.03 9.44 6.87 7.11 9.43 10.18 9.05 9.55 48.21 52.84 57.05 55.40 46.93 34.02 31.07 37.34 7.75 16.34 16.39 13.49 55.84 

∑PUFAs 57.74 48.82 54.44 53.67 52.71 61.95 59.39 58.02 16.28 15.03 11.23 15.18 23.78 34.57 37.86 32.07 50.54 45.64 50.70 48.96 8.00 

∑Dietary FAs 58.99 54.97 59.19 57.72 54.31 63.65 61.70 59.89 17.59 15.21 12.16 14.99 25.84 35.07 36.06 32.32 50.88 53.56 50.48 51.64 15.57 



  

4.5.3. Comparisons of pilot whale and prey biomarkers, and contribution of prey to diet 

The LFPWs displayed a higher proportion of C14:0, C16:1n9, and C17:1, and a lower proportion of 

PUFAs, when compared to any of the prey species tested. The fatty acid profiles of prey species were 

characterised by high individual variation, but all had elevated levels of C16:0 compared to other 

fatty acids (Table 4.3), as is common in marine animals. Differences in dietary fatty acids were 

observed between predator and prey species (PERMANOVA, pseudo-F = 2.82, p = 0.04). Post-hoc 

Tukey tests showed that dietary fatty acids in LFPWs were significantly different to carpet sharks 

only (p = 0.02). Finally, SIMPER analysis revealed the three dietary fatty acids with most contribution 

to dissimilarity between LFPWs and carpet sharks were C22:1n11, C20:1n11 and C18:2n6 (Appendix 

4.3).  

As the prey groups in the study sample could only be separated isotopically and not by fatty acid 

profiles, only mixing polygons were carried out for stable isotope data. The mixing polygon 

demonstrated that none of the LFPW stable isotope values fell within 95% mixing region of the prey 

using SIDER values only (Figure 4.4), indicating that those data were not suitable for mixing models. 

However, when substituting TDF values for nitrogen from SIDER for those in Abend and Smith 

(1997), some of the consumers (n = 6) fell within the 95% confidence polygon (Figure 4.4, Appendix 

4.5). However, none of the consumers fell within the inner contours, indicating (1) a low probability 

that they occurred within the prey mixing polygons, and (2) that they were unsuitable for Bayesian 

mixing model analysis (see Appendix 4.7 for further exploration).  
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Figure 4.4. Isotope biplots (A and C) and point-to-point polygons (B and D) of carbon and nitrogen (δ13C and 

δ15N) values from skin of long-finned pilot whales (LFPWs; Globicephala melas edwardii; n = 15) and muscle of 

five key prey species (arrow squid Nototodarus spp. n = 3; carpet shark Cephoscyllium sp., n = 3; common octopus 

Pinnoctopus cordiformis n = 3; conger eel Congridae sp., n = 3; and hoki Macruronus novaezelandiae, n = 3) as 

defined by prior stomach content analyses (Chapter 2) from New Zealand waters. All LFPWs were sampled 

following a mass-stranding event on Farewell Spit New Zealand in January 2014. White dots in the plots B 

and D represent mean prey values and black dots represent consumers (LFPWs), each line represents 10% 

confidence interval. Prey data in all plots are corrected for trophic discrimination factors (TDF) δ13C values 

(δ13C 1.57 ± 2.03) from R package SIDER. The TDF correction in for δ15N values in A and B was from SIDER 

(δ15N 3.46 ± 1.60) and C and D used LFPW specific TDFs (δ15N 1.7 ± 0.24) from Abend and Smith (1997). 

  

A 

C 

B 

D 
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4.6. Discussion  

Overall, prey species showed a high level of similarity with each other for both stable isotope and 

fatty acid biomarkers. Overlap was highest between stable isotope values of arrow squid and 

LFPWs, indicating that arrow squid were an important component of LFPW diet, as previously 

demonstrated by stomach contents analysis (Beatson et al. 2007a; Beatson et al. 2007b; Beatson and 

O’Shea 2009; Chapter 2). Conversely, fatty acid analysis showed LFPWs and carpet sharks had 

differences in dietary fatty acids, suggesting that carpet sharks contribute little to LFPW diet.  

4.6.1. Stable isotope variation within prey  

Several of the prey species (common octopus, conger eel, carpet shark and hoki) displayed large 

similarity in δ13C values, whilst all prey species demonstrated high overlap in δ34S values, indicating 

that over the timeframe of isotopic tissue equilibrium, they had resided in similar marine habitats. 

Arrow squid, however, recorded statistically lower δ13C values than other prey, consistent with their 

deep-sea, pelagic habitat (Jackson et al. 2000; McClatchie et al. 2005). In addition, arrow squid 

demonstrated a large variation in δ13C, δ15N and δ34S values, suggesting the derivation of prey from 

multiple source pathways (Vander Zanden et al. 2010; Codron et al. 2012; Duffill Telsnig et al. 2019; 

Scholz et al. 2020). This aligns with the reported generalist feeding behaviour of arrow squid (Braley 

et al. 2010). Both common octopus and carpet sharks displayed the highest mean δ13C values along 

with low mean δ34S values, suggesting a reliance on benthic food source pathways (Duffill Telsnig 

et al. 2019;  Figure 4.2). This aligns with known distribution of these species; common octopus and 

carpet sharks occur mainly in coastal waters around New Zealand, in depths of up to 300 m and 500 

m, respectively (Carrasco 2014; Horn 2016). Similarly, carpet shark δ15N and δ34S values were very 

variable, as might be expected from a scavenging species (Horn 2016).  
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Common octopus exhibited the narrowest overall within-species overlap for stable isotopes of all 

prey species (Figure 4.2), which suggests a degree of dietary homogeneity among individuals tested 

(Flaherty and Ben-David 2010). More unexpectedly, only modest isotopic variation was noted in 

hoki, which is known to be an opportunistic pelagic feeder (Clark 1985; Connell et al. 2010). Given 

hoki diet is thought to vary by factors such as individual specimen size, foraging location (i.e., 

longitude) and water depth (Connell et al. 2010), the low variation in stable isotope values could 

reflect just a subset of the population. Indeed, all hoki specimens examined in this study were 

obtained from the same source, so could have originated from one catch. 

4.6.2. Fatty acid variation within prey  

Dietary fatty acid profiles of prey species had a high degree of overlap, which can indicate a food 

chain where multiple prey species are also interacting with each other. Indeed, fatty acids of arrow 

squid have previously been grouped with mesopelagic fish due to similarities in fatty acid profiles 

(Pethybridge et al. 2012), although some differences were noted. For example, a single arrow squid, 

along with a single carpet shark, were the only two of the 15 prey specimens tested that included 

the long-chain dietary MUFAs C22:1n11 and C22:1n13 (Table 4.3). The fatty acids derived from C20:0 

and C22:0 are characteristic of food chains based on calanoid copepods (Pascal and Ackman 1976; 

Stowasser et al. 2012) from marine pelagic environments (Stibor et al. 2004; Turner 2004). 

Furthermore, n-3 PUFAs (represented by EPA and DHA in this study) were significantly increased 

in all arrow squid (Table 4.3), consistent with previous studies of fatty acids in arrow squid in New 

Zealand waters (Meynier et al. 2008b) and are indicative of oceanic phytoplankton (Sargent 1987). 

As arrow squid demonstrate foraging pathways from both phytoplankton and copepods, this 

provides further evidence of a pelagic feeding pattern. 
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Conversely, common octopus and conger eel demonstrated the highest and lowest proportions of 

PUFAs recorded in prey, respectively. Studies examining the effect of water depth on fatty acid 

profiles from multiple shrimp species found higher levels of PUFAs in shallow water individuals 

(Yerlikaya et al. 2013). This would suggest that common octopus and conger eel were the shallowest 

and deepest dwelling of the prey species analysed, respectively. However, this does not align for 

conger eel given their isotopic values (Figure 4.2) or what is known about the habitats and 

distribution of conger eels in the marine environment (Cau and Manconi 1984; Anderson 2005). 

Nevertheless, no difference was detected in fatty acid profiles of corals growing at different depths 

(Meyers et al. 1978), and lower levels of PUFAs have also been attributed to fish rich in lipids (Prato 

and Biandolino 2012), and those living in decreased light or cooler waters (Dalsgaard et al. 2003; 

Burgess et al. 2018). Thus, a combination of high fat content and nocturnal feeding (Correia et al. 

2009), rather than depth, could be driving the low PUFA levels reported here in conger eels.  

4.6.3. Comparisons of long-finned pilot whale and prey biomarkers, and contribution of prey to 

LFPW diet 

The fatty acid values of LFPWs in this study aligned with those reported for G. m. edwardii stranded 

on the Australian coast (Walters 2005). However, a larger number of dietary fatty acids (n = 10) were 

reported in the Australian LFPWs compared to this study (n = 8), which could relate to the larger 

number of LFPWs sampled (n = 63, Walters 2005). Even so, the number of dietary fatty acids 

recorded was larger still (n = 14) in a Northern Hemisphere study of 56 G. m. melas across four 

locations (Monteiro et al. 2015b). A greater range of fatty acids in Northeast Atlantic LFPW 

populations may indicate a diverse diet (Guest et al. 2010) or foraging over a wider spatial area. 

Indeed, stomach content and stable isotope studies suggest that fish are a more abundant dietary 

component for Northeast Atlantic LFPWs than those foraging in waters around Argentina, 

Australia, or New Zealand (Gales et al. 1992; Beatson and O’Shea 2009; Beasley et al. 2019; Becker et 
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al. 2021). Similar spatial variability in diet has been recorded in the bottlenose dolphin Tursiops 

truncatus, as well as grey Halichoerus grypus, harp Pagophilus groenlandicus, and hooded seals 

Cystophora cristata (Samuel and Worthy 2004; Beck et al. 2007; Tucker et al. 2009). The extended 

dietary fatty acid suite and spatial variation in dietary fatty acids noted in the Northeast Atlantic 

(Monteiro et al. 2015b) could alternatively be a function of multiple sampling sites, with variation 

resulting from different baseline foraging pathways between locations (Rooker et al. 2006). 

Therefore, it is tentatively suggested that the small number of dietary fatty acids noted in the current 

study is a function of the single site sampled, which indicates that the LFPWs sampled in this study 

foraged in similar habitats, consuming a similar diet prior to stranding.  

Overall, δ13C values of LFPWs overlapped with those of common octopus, conger eel, carpet shark 

and hoki, indicating a similar foraging habitat for all these species. Only arrow squid and hoki 

displayed a lower mean δ13C value (Figure 4.2). Given the TDF value of 1.57 ± 2.03% used for δ13C 

values, only arrow squid looked to contribute highly to LFPW diet. However, these results must be 

interpreted with the understanding that LFPW δ13C values may have been affected by ethanol 

storage (Hidalgo-Reza et al. 2019; Durante et al. 2020).  

Further isotopic analysis of sulphur values revealed similar results to δ13C values. Though the δ34S 

value was only obtained for one LFPW in this study, the value of 21.8 ‰ was very similar to the 

mean value of 21.42 ± 0.91 ‰ recorded in 36 LFPWs stranded on the New Zealand coast between 

2009 and 2017 (Hinton et al 2022; Chapter 3). Sulphur values of LFPWs also appear to overlap with 

δ34S values for both octopus and arrow squid (Table 4.2, Appendix 4.4). As δ34S values fractionate 

little through the food chain (McCutchan Jr et al. 2003), it would be expected for predators to display 

very similar δ34S values to their prey, providing further evidence that arrow squid remain a key prey 

species for LFPWs. This would be consistent with stomach contents analysis of LFPWs in New 
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Zealand waters, which revealed a high contribution of both arrow squid and octopus to diet (Beatson 

and O’Shea 2009; Chapter 2).  

Furthermore, LFPWs also had lower δ15N values than all prey other than arrow squid, which could 

indicate a low to zero contribution to LFPW diet from all other prey species. However, previous 

studies of investigating the stable isotope values of LFPW and their prey have also found similar 

δ15N values between LFPW skin and their cephalopod prey (Jackson 2017, Praca et al 2011). It could 

be that the TDF values between LFPWs and their prey are low, although further studies would be 

required to confirm this. Still, it must be noted that δ15N values could be confounded by 

decomposition of prey tissue that was sourced from stomach contents (i.e., conger eel and carpet 

shark; Table 4.1). Mean δ15N values of LFPWs were similar to those reported for the dusky dolphin 

Lagenorhynchus obscurus, Risso’s dolphin Grampus griseus, and Gray’s beaked whale Mesoplodon grayi 

in New Zealand, which are all known to predate on a mixture of pelagic fish and squid (Vaughn et 

al. 2007; Loizaga de Castro et al. 2015; Peters et al. 2022). This may suggest that LFPWs are feeding 

further offshore, where δ15N values are thought to be lower due to fewer anthropogenic influences 

(Hobson 1999; Gaston et al. 2004; Ward-Paige et al. 2005; Sabadel et al. 2020). Indeed, a preference 

for offshore waters has been reported in other LFPW populations from multiple locations (Findlay 

et al. 1992; Buckland et al. 1993; Shane 1995; Cañadas et al. 2002; Heide-Jørgensen et al. 2002; Mate 

et al. 2005; Azzellino et al. 2008; Pinzone et al. 2015). It is possible that the prey specimens sourced 

from fisheries for this study (i.e., arrow squid, common octopus and hoki) may not have been from 

waters far enough offshore to be representative of LFPW diet, thus restricting this study’s ability to 

elucidate true contribution to diet.  

As mixing polygons indicated that some key dietary species could remain missing (Figure 4.4), 

Bayesian analyses were not able to be applied in this study. This was despite key species (99% IRI) 
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found in stomachs of LFPWs stranded on Farewell Spit being included (Chapter 2; Appendix 4.1). 

However, global studies have concluded that LFPWs forage on multiple cephalopod species 

(Gannon et al. 1997b; Mansilla et al. 2012; Santos et al. 2014; Monteiro et al. 2015a; Beasley et al. 2019; 

Becker et al. 2021). Indeed, squid of the families Lycoteuthidae, Moroteuthidae, Chiroteuthidae, 

Cranchiidae, Pholidoteuthidae, and Histioteuthidae were also detected in stomachs of stranded 

LFPWs from wider New Zealand waters, accounting for up to 34% of the diet, by IRI, dependant on 

location stranded (Beatson et al. 2007b; Chapter 2). These additional squid species could account for 

missing prey species in this study, since only one species of squid (arrow squid) was sampled.  

Qualitative analysis of fatty acids revealed that DHA was one of the most prominent dietary fatty 

acids in LFPW blubber, which is typical of a diet high in squid (Guerrero et al. 2020). Arrow squid 

was the prey species that contained the highest proportions of DHA also, suggesting a key 

importance of arrow squid to LFPW diet. Arrow squid also contained the highest proportions of 

C20:1n9 and C20:1n11, the two most abundant dietary fatty acids detected in LFPWs in this study. 

Studies from Southeastern Australia listed C20:1n9 and C20:1n11 as markers of bathypelagic squid 

and fish, respectively (Pethybridge et al. 2010). It is therefore recommended to conduct further stable 

isotope and fatty acid analyses on a range of squid and fish as potential LFPW prey species (e.g., 

Riccialdelli et al. 2013), which may further elucidate missing prey items.  

If indeed prey items were missing from stomach contents analysis, this could signify dietary change 

either seasonally or as a function of stranding events. This is because stable isotope and fatty acid 

biomarkers assimilate into cetacean tissue over a period of weeks to months (Newsome et al. 2010; 

Watt et al. 2019), whereas stomach contents analysis only investigates feeding from the previous 

day/s (Sekiguchi and Best 1997) and is therefore, biased towards prey that preserve well or have 

hard parts. Seasonal dietary change has been recorded in G. m. melas from the Faroe Islands 
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(Desportes and Mouritsen 1993). Furthermore, G. m. edwardii stranded in the South Atlantic 

displayed foraging plasticity by consuming neritic prey when in coastal waters (Becker et al. 2021), 

a strategy that LFPWs in New Zealand may use when in coastal areas prior to stranding. Still, it is 

not currently understood where LFPWs that strand from New Zealand waters forage. As LFPWs 

can travel up to 200 km within 24 hours (Bloch et al. 2003; Gales et al. 2012), there is a wide range of 

potential foraging areas available to these individuals in the weeks to months prior to stranding. A 

better understanding of how, where and what LFPWs forage on in New Zealand waters, possibly 

via telemetry studies, would help elucidate if changes in target prey are occurring either over time, 

by season or immediately prior to stranding.  

Additionally, temporal differences in stable isotope and fatty acid baseline values may partially 

explain differences noted among LFPW and prey biomarkers. To account for isotopic differences in 

species between sites and seasons (Dethier et al. 2013; Teixeira et al. 2022), prey samples were taken 

preferentially from stomachs of LFPWs stranded at Farewell Spit, or from fisheries operating within 

a nearby area during the austral summer months. However, prey tissue was not able to be obtained 

from LFPWs and prey during the same year, due to a lack of fresh intact prey tissue available in 

stomachs (Appendix 4.6). Given that several of the prey species are generalist feeders (Cau and 

Manconi 1984; Braley et al. 2010; Connell et al. 2010), source pathways for both stable isotope and 

dietary fatty acids could have varied between sampling years dependent on prey consumed. Indeed, 

variation in both stable isotope and fatty acids of fish have been described by season, location and 

even size (Guest et al. 2010; Britton et al. 2021), whilst seasonal fatty acid variation has also been 

noted for arrow squid Nototodarus gouldi in Australian waters (Pethybridge et al. 2012). An 

assessment of baseline stable isotope and fatty acid variation via analysis of suspended particulate 

organic matter, or through compound-specific isotope analysis of fatty acids and/or amino acids 
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from LFPW tissue (e.g., McClelland and Montoya 2002; Chikaraishi et al. 2009; Hannides et al. 2009; 

Chikaraishi et al. 2014; Sabadel et al. 2019; Guerra et al. 2020) is therefore recommended in future 

studies to uncover drivers behind stable isotope and fatty acids variation. 

Finally, this study displayed the influence of TDF values on trophic studies. The δ15N TDF value for 

LFPWs estimated at 3.5 ± 1.6 ‰ in SIDER has also been used in studies of LFPWs G. m. edwardii in 

the Southern Atlantic (Becker et al. 2021), whilst marine mammal literature historically uses a 2–4‰ 

TDF for δ15N values between trophic levels (e.g., DeNiro and Epstein 1981; Bentaleb et al. 2011). 

However, uncertainty surrounding specific δ15N enrichment factors has led to calls for caution when 

interpreting differences in δ15N values (Bond and Diamond 2011) as, although essential for 

considering trophic interactions, TDF values are not well-defined in cetaceans (Borrell et al. 2012). 

In the western North Atlantic, the δ15N enrichment factor was only 1.57 ‰ in skin of captive 

bottlenose dolphins T. truncatus (Giménez et al. 2016), whilst the mean value was 1.4 ‰ for multiple 

cetaceans in the Mediterranean (Mèndez-Fernandez et al. 2012), and a similar 1.7 ± 0.24 ‰ for skin 

of LFPWs G. m. melas in the Atlantic (Abend & Smith 1997). Using the revised δ15N TDFs of 1.7 ± 0.2 

from Abend and Smith (1997), rather than those from SIDER, resulted in more LFPWs falling within 

the prey polygon (Figure 4.4, Appendix 4.5). This indicates that the Abend and Smith (1997) value 

may be more accurate and highlights the need for robust and accurate species-specific TDFs within 

trophic analyses.  

Whilst quantitative contribution to LFPW diet using stable isotope and fatty acid analysis was not 

able to be assessed in this study, qualitative methods provided novel stable isotope and fatty acid 

data of known LFPW prey in New Zealand waters. Indeed, results presented here broadly agree 

with previous studies, suggesting that LFPWs are likely to rely on oceanic prey, in particular squid, 

with the ability to also forage coastally (demonstrating plasticity in their diet), possibly prior to 
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strandings. Future studies utilising larger sample sizes of LFPWs, and potential prey are 

recommended to elucidate dietary importance of oceanic squid species and the effects of life history 

on diet. Combining stable isotope and fatty acid analyses provided greater interpretive power to 

qualitatively assess LFPW diet. Therefore, this work highlights the benefits of using multiple 

methodologies to better elucidate drivers of variation when comparing predator with prey 

biomarkers (e.g., Tucker et al. 2008; Kelly and Scheibling 2012; King et al. 2017; Young et al. 2018), 

particularly given the constraint of relatively small sample sizes. 
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Chapter 5 — Body condition measurements and fatty acid profiles 

from long-finned pilot whales (Globicephala melas edwardii) 

stranded on the Aotearoa New Zealand coast. 

 

Long-finned pilot whales Globicephala melas edwardii refloated after stranding at Onetahua Farewell 

Spit, New Zealand in 2021. Photo credit: Rebecca Boys.   
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In this chapter, fatty acid analysis from blubber samples of long-finned pilot whales (Globicephala 

melas edwardii) stranded at Farewell Spit in 2014 (n = 15) were compared to body condition 

measurements of the same individuals to address the third research objective:  

 

Objective 4: Explore possible linkages between chemical dietary tracers and individual LFPW body 

condition. 

 

This chapter is a re-formatted version of the manuscript:  

Hinton et al (in prep). Body condition measurements and fatty acid profiles from long-finned pilot 

whales (Globicephala melas edwardii) stranded on the Aotearoa New Zealand coast.  
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5.1. Abstract 

Body condition measurements are widely used to assess marine mammal health and nutritional 

status, though little agreement exists as to which measurements are the most informative across 

species. This study aimed to understand what relationships, if any, occur between body condition 

measurements and fatty acid profiles in long-finned pilot whales, LFPWs; Globicephala melas edwardii. 

Fatty acid profiles and six body condition measurements, including % blubber lipid content and five 

morphometric measurements (dorsal, lateral, and ventral blubber thickness, axillary girth, body 

length:girth ratio [body condition index; BCI]), were assessed in 15 carcasses originating from a 

mass-stranding on Onetahua Farewell Spit, Aotearoa New Zealand in 2014. Age was a good 

predictor of variation in axillary girth only, likely due to increased body size in older individuals. 

Fatty acid profiles were characterised by high levels of monounsaturated fatty acids (MUFAs), 

which was most likely due to insulation, and/or relative fatty acid profiles of local primary 

producers. Notably, no variation was recorded in fatty acid profiles by sex or maturity status, and 

none of the body condition measurements were able to consistently predict relative fatty acid 

proportions in examined LFPWs. However, axillary girth was able to explain some variation in 

saturated fatty acids, polyunsaturated fatty acids, and dietary fatty acid C20:1n9, though sample 

sizes were low. Further investigation into the links between body condition measurements, 

particularly axillary girth, and fatty acids on a larger sample of G. m. edwardii is recommended. This 

would be helpful when attempting to quantify individual condition and nutritional status at 

stranding events. 
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5.2. Introduction  

It is important to understand the factors that influence health, reproductive fitness, and survivorship 

of a species to ensure effective conservation management (Deem et al. 2001; Reed 2005; Beausoleil et 

al. 2018). Body condition measurements attempt to gather information through measurable 

morphometric or chemical indicators of energy reserves (e.g., lipid content), therefore providing 

standardised information on an animal’s individual condition (Hanks 1981; Loudon et al. 1983; 

Clutton-Brock and Sheldon 2010; Castrillon and Bengtson Nash 2020; Christiansen et al. 2020; Dalle 

Luche et al. 2021). A multitude of body condition measurements are currently in use, including 

measurements of adipocyte number, cortisol, or body/fat mass/volume (Lockyer et al. 1985; Oregui 

et al. 1997; Bengoumi et al. 2005; Alapati et al. 2010; Cook et al. 2012; Castrillon et al. 2017; Pearson 

et al. 2018; Carbajal et al. 2021; Ogloff et al. 2022). 

Body condition measurements have been applied as stand-alone indicators or calculated as 

measurements relative to frame size (Audige et al. 1998; Vargas et al. 1999; Joblon et al. 2014; 

Wijeyamohan et al. 2015). Although factors such as sex, body size, maturity stage, or reproductive 

status may affect body condition and/or composition (Bearhop et al. 2004b; Nielsen et al. 2013; 

Adamczak et al. 2021), there is also evidence of environmental and anthropogenic impacts (Reading 

and Clarke 1995; Gibson et al. 2018). Whilst external disturbances are thought to affect food intake 

(Kastelein et al. 2019), the effect of dietary change on body condition is less clear. Though dietary 

change has little consequence for the body condition of some species (Severud et al. 2013; Yeung and 

Yang 2017), in some taxa, such as convict cichlids Archocentrus nigrofasiatus diet does impact 

individual condition (Brown et al. 2004). Thus, it is important to understand, on a species-specific 

level what effects, if any, dietary change has on individual body condition.  
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Fatty acid analysis is an effective means of studying dietary change (Couturier et al. 2020), widely 

applied across several species of marine mammals (Williams et al. 1977; Iverson et al. 1997; Guitart 

et al. 1999; Herman et al. 2005; Smith and Worthy 2006; Meynier et al. 2008a; Loseto et al. 2009; 

Tucker et al. 2009; Grahl-Nielsen et al. 2010a; Williams and Buck 2010; Lambert et al. 2013; Meier et 

al. 2016; Haug et al. 2017; Knox et al. 2019; Kolodzey et al. 2021; Meyers et al. 2022a). For marine 

mammals, fatty acids are sampled across various tissues, though most commonly blubber (e.g., 

Borobia et al. 1995; Brenna et al. 2018; Guerrero et al. 2020) which presents in three key layers 

(Samuel and Worthy 2004), with stratification of fatty acids (i.e., varying compositions and 

concentrations of individual fatty acid) across these different layers (Aguilar and Borrell 1990; Krahn 

et al. 2004; Lambert et al. 2013). The inner blubber layer is the most metabolically active within 

marine mammals (Ellisor et al. 2013), so dietary fatty acids are thought to assimilate to the inner 

blubber layer first (Lockyer et al. 1984). The inner blubber layer is therefore predicted to be most 

indicative of diet on a scale of weeks-months (Smith and Worthy 2006; Strandberg et al. 2008a; 

Guerrero and Rogers 2017). 

Blubber fatty acid profiles, prey availability and nutritional status have all been linked to body 

condition measurements of blubber across a variety of marine mammals (Learmonth 2006; Miller et 

al. 2011a; Hart et al. 2013; Williams et al. 2013; Kastelein et al. 2019; Bernier-Graveline et al. 2021; 

Stewart et al. 2021). Multiple blubber metrics have been applied as body condition measurements 

including mass, thickness, weight, and lipid content (Lockyer 1986; Koopman et al. 2002; Evans et 

al. 2003; Marón et al. 2021). Yet, despite blubber lipid content commonly being linked to body shape 

and condition in cetacea (Lockyer 1986; Aguilar and Borrell 1990; Read 1990; Evans et al. 2003; Miller 

et al. 2012), recent studies suggest blubber lipid content provides little indication of body condition 

(Kershaw et al. 2019; Christiansen et al. 2020).  
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As there are contrasting reports on the validity of different body condition measurements among 

cetacean species, the relationship between measurements of body condition and fatty acid profiles 

was investigated for a single cetacean species; long-finned pilot whales (LFPWs; Globicephala melas 

edwardii). Specifically, the aims of this study were to: (1) assess variation in body condition 

measurements (dorsal, lateral, and ventral blubber thickness, axillary girth, body length:girth ratio 

[body condition index; BCI]), and % blubber lipid content) by ontogenetic factors (age, sex, maturity 

status), (2) assess variation in blubber fatty acid profiles by ontogenetic factors (sex, maturity status), 

and (3) calculate the predictive power of body condition measurements on the proportion of fatty 

acid classes present in the inner blubber layer from LFPWs stranded on the Aotearoa New Zealand 

coast. 

5.3. Materials and methods 

5.3.1. Sample collection 

Standardised external morphometric measurements were taken from carcasses originating from a 

mass-stranding on Farewell Spit, New Zealand in January 2014 (n = 15; Figure 5.1), following Geraci 

and Lounsbury (2005). The sample size used in this study is small but aligns with similar dietary 

fatty acid studies in Atlantic walruses Odobenus rosmarus rosmarus in Norway (Skoglund et al. 2010; 

n = 18), as well as Northern bottlenose whales Hyperoodon ampullatus and ground squirrels Ictidomys 

tridecemlineatus in Canada (Hooker et al. 2001; Price et al. 2013; n = 12). Five morphometric 

measurements were used to assess body condition (Figure 5.2); blubber thicknesses from the A) 

axillary dorsal, B) lateral, and C) ventral areas, D) the axillary girth (herein referred to as girth, used 

to calculate body length:girth ratio), and E) the total body length (herein referred to as body length, 

used to calculate body length:girth ratio; Figure 5.2). All measurements were taken to the nearest 

millimetre. Carcass decomposition state was assessed using standard scoring, where 1 = Freshly 

dead, 2 = Fresh, 3 = Moderate decomposition , 4 = Advanced decomposition and 5 = Skeletal remains  
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Figure 5.1. Location of stranding site (Farewell Spit, Golden Bay, South Island, New Zealand) from which 

long-finned pilot whales (Globicephala melas edwardii, n = 15) were sampled for body condition measurements 

and fatty acid profiles for this study. Bathymetry is depicted with darker shades of blue representing deeper 

waters (reprinted from National Institute of Water and Atmospheric Research (NIWA) under a Creative 

Commons BY license (CANZ 2008), with permission from NIWA original copyright. 

  

N 
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(for more detailed descriptions, see Geraci and Lounsbury (2005) and  IJsseldijk et al. (2019)). All 

carcasses selected for analysis were deemed to be in a similar decomposition state (between scores 

2-3; (IJsseldijk et al. 2019) to minimise any effects of decomposition on analytical results. Sex was 

determined anatomically based on visual inspection of reproductive organs in situ.  

 

 

5.3.2. Sampling of blubber for fatty acid analysis  

A full depth blubber sample approximately 10 cm x 10 cm was extracted from the axillary dorsal 

region (Figure 5.2, location A) of each individual for chemical analysis. A small layer of skin and 

muscle remained on the sample in order to distinguish blubber alignment at later subsampling. The 

inner blubber was sub-sampled, foil-wrapped, then stored frozen at -20℃ until further analysis.   

5.3.3. Age, sexual maturity, and reproductive status 

The ages of LFPWs were estimated from dentinal growth layer groups in teeth, as outlined by Betty 

et al. (2022). Sexual maturity and reproductive status were determined based on histological 

Figure 5.2. Representation of locations of long-finned pilot whale (Globicephala melas edwardii) blubber 

measurements dorsal (A), lateral (B) and ventral (C) and measurements of axillary girth (D) and total body 

length (E).  
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examination of testes (Betty et al. 2019) and gross examination of ovaries (Betty 2019). Six 

reproductive groups were defined as: immature male, mature male, immature female, pregnant 

female, lactating female, and resting female, following Chapter 2. Male maturity was defined by 

presence/absence of sperm in testes (Betty et al. 2019). Females were defined as ‘pregnant’ by the 

presence/absence of a foetus, as ‘lactating’ by presence/absence of milk, and as ‘resting’ by the 

presence of ovarian corpora scarring indicating previous ovulation, but with no foetus or milk 

observed (Betty 2019).  

5.3.4. Chemical analysis of blubber samples 

Immediately prior to chemical analysis, 2–4 g of blubber from the inner layer were sub-sampled 

from semi-frozen tissue for ease of sampling, using a scalpel blade. Equipment was cleaned using 

an 80% ethanol solution and distilled water between each sample. Sub-samples were subsequently 

re-wrapped in foil and transported frozen to the Environmental and Ecological Stable Isotope 

Analytical Facility at the National Institute for Water and Atmospheric research, Wellington, New 

Zealand (NIWA) for lipid content analysis and fatty acid profiling.  



  

Table 5.1. Summary of ontogenetic and body condition measurements of long-finned pilot whales (Globicephala melas edwardii) stranded on Farewell Spit, New Zealand 

in 2014 (n = 15). Body condition measurements are blubber lipid content (inner layer, %) dorsal, lateral, and ventral blubber thickness (mm) and body length:girth 

ratio (BCI). TBL = total body length.  

Sex TBL (cm) Maturity status Reproductive status Estimated Age  Lipid content (%) Girth (cm) Dorsal (mm) Lateral (mm)  Ventral 

(mm) 

BCI 

F 326 Immature Immature 4 N/A 170 36 18 27 0.52 

F 360 Immature Immature 8 55 176 32 23 32 0.49 

F 324 Immature Immature 5 82 178 28 15 21 0.55 

F 406 Mature Lactating 10 68 19 29 18 27 0.47 

F 423 Mature Lactating 30 59 234 20 19 36 0.55 

F 396 Mature Pregnant 7 N/A 194 32 22 32 0.49 

F 460 Mature Pregnant 22 55 210 38 22 22 0.46 

F 397 Mature Resting 11 31 204 32 16 42 0.51 

F 410 Mature Resting 13 53 248 36 24 36 0.60 

M 276 Immature Immature 2 85 160 32 19 26 0.58 

M 433 Immature Immature 10 55 214 32 19 32 0.49 

M 340 Immature Immature 4 50 184 29 23 28 0.54 

M 545 Mature Mature 22 N/A 230 45 27 46 0.42 

M 556 Mature Mature 15 82 220 31 31 46 0.40 

M 496 Mature Mature 17 70 230 32 20 34 0.46 

 



  

5.3.5. Lipid extraction  

Lipids were extracted from blubber samples following Bligh and Dyer (1959; see Appendix 5.1 for 

exploration of appropriate methodology for these samples), approximately 40 mg (Grahl-Nielsen et 

al. 2010b; Salama et al. 2013) wet blubber tissue was weighed using weighing paper and transferred 

using clean dissecting forceps into individual 15 mL Kimax tubes. To extract lipids, 3.75 mL of a 

chloroform:methanol (1:2, v:v) solution was added to each sample, which was subsequently 

vortexed for four minutes. A further 1.25 mL of chloroform was added before vortexing for an 

additional two minutes. Then, 1.25 mL of 8% NaCl in milliQ water was added to the sample followed 

by a final vortex of one minute. The samples were subsequently centrifuged at 2,000 rpm for five 

minutes to separate lipids. After clear phase separation, the bottom layer, containing all the lipids, 

was extracted using a double pipette technique, whereby a short Pasteur pipette was inserted into 

the sample to the bottom of the tube, and the bottom layer was then collected using a long Pasteur 

pipette inside the short one. This lipid phase was transferred into a second clean, pre-weighed, screw 

top, 15 mL Kimax tube and dried using a steady stream of nitrogen gas at 40℃ to remove all residues 

of solvent. The Kimax tube containing the lipid was subsequently weighed to the nearest 0.001 mg. 

The weight of the Kimax tube was subtracted from the weight of tube plus lipid sample to obtain 

the weight of the lipids. The lipid content was reported against the wet weight of the original blubber 

tissue as a percentage (%). Lipid content was estimated for a subset of 12 individuals (Clavijo et al. 

1999) and was used as the sixth measurement of body condition. 

5.3.6. Fatty acid profiling 

The fatty acids contained in the extracted lipid fraction of the LFPW blubber were derivatised into 

fatty acid methyl esters (FAMEs) prior to measurement via gas chromatography-mass spectrometry 

(GC-MS). After the addition of 100 µL of C19 internal standard solution (0.5 mL/mL in methanol), 

fatty acids were methylated using 2 mL of a methanol:hydrochloric acid:chloroform (10:1:1, v:v:v) 
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solution. Samples were then heated at 100℃ for 1.5 h in two 45-minute intervals, with 15 minutes of 

sonification in the middle. Samples were cooled to room temperature for 10 minutes before adding 

2 mL of hexane. After vortexing for two minutes, 1 mL of milliQ water was added and samples were 

vortexed for a further one minute. After waiting for one minute for the solution to settle, the hexane 

layer (top layer) was transferred into a new Kimax tube. These final steps were repeated twice more 

to recover as many fatty acids as possible. Solutions were placed under a stream of nitrogen gas until 

only FAMEs remained. FAMEs were resuspended in 2 mL hexane then transferred to a 2 mL amber 

GC vial.  FAMEs were measured using an Agilent gas chromatograph (GC 6890N) connected to a 

mass spectrometer (MS 5975B; Agilent Technologies Ltd, California). Individual FAMEs were 

separated on a HP-5 column (5% phenyl methyl siloxane, 30 m x 0.25 mm, 0.25 µm film thickness: 

Agilent Technologies Ltd California). Helium was used as the carrier gas. The inlet temperature was 

maintained at 250°C. The oven temperature programme began at 70°C, was held for one minute, 

ramped to 250°C at 5.0°C minute−1, held for 6 minutes, ramped to 320°C at 10°C minute−1 and held 

for 10 minutes. All fatty acids were identified based on their mass spectra. Relative weights of 

individual fatty acids were quantified against C19, the internal standard, using percentage relative 

area method (e.g., Monteiro et al. 2021; see Appendix 4.2 for example chromatogram). 

5.4. Statistical analysis 

5.4.1. Body condition measurements   

The BCI was calculated for all LFPWs by dividing the girth by the body length (Raverty et al.,2020) 

where: 

𝐵𝐶𝐼 =  
𝑎𝑥𝑖𝑙𝑙𝑎𝑟𝑦 𝑔𝑖𝑟𝑡ℎ

𝑡𝑜𝑡𝑎𝑙 𝑏𝑜𝑑𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 
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In total, six body condition measurements were assessed: dorsal, lateral, and ventral blubber 

thicknesses, girth, lipid content, and BCI, selected based on a review of cetacean body condition 

measurements by Castrillon and Bengston-Nash (2020).  

Normality of data was first tested using Shapiro-Wilk tests. Due to small sample size, models with 

a single explanatory variable were selected for the analysis. To test for relationships between 

morphometric measurements as described in objective one, general linear models were used to 

investigate the relationships between all six body condition measurements and age. The 

relationships between TBL and girth, dorsal, lateral, and ventral blubber thickness, and lipid content, 

respectively, were also assessed using general linear models whereas the non-linear relationship 

between BCI and TBL was assessed by Spearman rank coefficients (e.g., Raverty et al. 2020). Models 

were tested in both directions, but as results were the same, only one direction is reported. Variation 

in blubber fatty acid profiles by ontogenetic factors described in objective two was also tested.  

Where significant relationships were found between the TBL and body condition measurements, 

analysis of covariance (ANCOVA) was used to test for variation by sex and maturity status, 

respectively, whereas analysis of variance (ANOVA) was used where no significant relationship was 

found (see Appendix 5.2). Significance was tested to the 0.05 level. 

5.4.2. Fatty acid profiles   

Individual fatty acids were reported using the nomenclature: 

CA:Bnx, 

whereby C refers to ‘carbon’, A gives the number of carbon atoms in the FA, B gives the number of 

double bonds in the chain, and x gives the positioning of the first double bond, in relation to the 

final methyl group. Three fatty acids were named differently: EPA (C20:5n3, eicosapentaenoic acid), 
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DPA (C22:5n3, docosapentaenoic acid) and DHA (C22:6n3, docosahexaenoic acid), all considered 

essential polyunsaturated fatty acids (PUFAs).  

The mass of individual fatty acids was stated in µg. As samples were analysed in duplicate, mean 

mass of each fatty acid was calculated along with mean total fatty acids. These values were then 

used to calculate the proportion (%) of each fatty acid within a sample. Although all fatty acids were 

reported, those recording a value under 0.1% were excluded from further analysis (Galloway et al. 

2014). The proportion of fatty acids were therefore re-scaled to 100% for use in further analysis once 

low proportion fatty acids were eliminated (e.g., Thiemann et al. 2022).  

For univariate analyses, fatty acid proportion data were normalised according to the data 

transformation in Budge et al. (2006) whereby: 

𝐹𝐴𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  =  𝑙𝑛 (𝐹𝐴𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛/𝐹𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

where FAtransformed is the transformed value of the fatty acid in question, FAproportion is the original 

datum and FAreference is the reference fatty acid. The FAreference used in this study is C18:0, as suggested 

in Budge et al (2006). The transformed fatty acid data were grouped into classes of saturated fatty 

acids (SFAs), MUFAs, and PUFAs. One-way ANOVAs were used to investigate differences in SFAs, 

MUFAs and PUFAs respectively with both sex and maturity status (e.g., Guzmán-Rivas et al. 2022).  

A one-way permutational analysis of variance (PERMANOVA; Anderson 2014) was performed on 

non-transformed data as this is the most appropriate analysis for ecological data including fatty acid 

studies (see Couturier et al. 2020 for a review of fatty acid analyses for use in marine studies). 

PERMANOVAs were used to check for dissimilarity in fatty acid values between sex and maturity 

status. A similarity percentage (SIMPER) analysis was performed to establish which fatty acids 

contributed the most to dissimilarity (e.g., Ricardo et al. 2015; Couturier et al. 2020; Fonseca et al. 
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2022). Though no statistical tests were performed on reproductive status due to small sample size, 

dissimilarity was visualised by reproductive groups using nMDS plots, with ellipses calculated by 

sex at the 90% level. Significance for all statistical tests was set at the 0.05 level.  

5.4.3. Predictive power of morphometric body condition measurements on fatty acid classes 

To assess whether any of the morphometric measurements were able to predict variation in lipid 

content or fatty acid concentrations as described in objective 3, generalised linear models (GLMs) 

were applied to non-transformed data. Following methods used in Kershaw et al. (2019) modified 

for fatty acids rather than lipid content, data were modelled with GLMs rather than GLMMs as there 

were no repeat measurements being tested. GLMs were modelled along with variation inflation 

factors (VIFs) and the dredge function in R package “vegan” (Oksanen et al. 2013).  In summary, 

collinearity od regression coefficients was first checked using VIFs were. If strong co-linearity was 

detected, then covariates were removed from analysis using a stepwise technique, with the covariate 

showing highest VIF score removed at each stage. This continued until all covariate values were less 

than three (Zuur et al. 2010). The dredge method ran all possible combinations of remaining 

covariables, and the optimal model was selected using small-sample size corrected Akaike 

Information Criterion (AICc; Burnham et al. 2011). The lower the AICc score, the better fit the model 

is, but models within three AICc units of the optimum model were deemed equally likely to reflect 

the true situation. Model weight scores were also reported: the closer to one that a model weight is, 

the higher the predictive power of that model. If the optimum model includes the intercept only, 

this indicates that none of the covariables or interactions between those factors had predictive power 

of the variable under investigation.  

Modelling was performed to establish any relationships between morphometric measurements and 

proportions of: 1) C20:1n9, 2) DHA, 3) C20:1n11, 4) SFAs, 5) MUFAs and 6) PUFAs in LFPWs. The 
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three dietary fatty acids included (C20:1n9, DHA and C20:1n11) were all identified in the top ten 

fatty acids to contribute to dissimilarity in SIMPER analysis. Covariables for all models were defined 

as: dorsal, lateral, and ventral blubber thicknesses, body length, girth and BCI. Body length and age 

were both also added to GLMs as covariables for comparison of effects.  

Data analysis and graphical visualisations were performed in statistical software R (R Core Team, 

2021). All computation of nMDS was completed in R package “vegan” (Oksanen et al. 2013), VIFs 

were calculated using R packages “tidyverse” (Wickham and Wickham 2017) and “caret” (Kuhn et 

al. 2020), AICc was calculated in R package “MuMIN” (Barton and Barton 2015). The R packages 

“ggplot2” (Wickham 2011), “ggpubr” (Kassambara and Kassambara 2020) and “ggvegan”  (Simpson 

2021) were used for data visualisation. 

5.5. Results 

5.5.1. Variation in body condition measurements  

Dorsal blubber thickness was most commonly the largest of the blubber thickness measurements 

(mean = 32.27, SD = 5.44; Table 5.1). Dorsal blubber thickness did not vary with sex, maturity status 

or age. Conversely, lateral blubber thickness was the lowest of the blubber thickness measurements 

and ranged between 16–27 mm (mean = 21.07; SD = 4.20; Table 5.1), whilst ventral blubber thickness 

ranged between 21 and 46 mm (mean = 32.47; SD = 7.78; Table 5.1). No significant differences were 

observed between either lateral or ventral blubber thicknesses and sex or maturity status 

respectively, nor age.  

The BCI ranged from 0.40 to 0.58 (mean = 0.50; SD = 0.06; Table 5.1). However, BCI was not 

significantly different by sex or maturity status, nor correlated with age. Lipid content ranged from 

31 to 85% (mean = 62.08%; SD = 15.87; Table 5.1). The highest lipid contents were observed in the 

smallest immature male (85%, body length: 276 cm), smallest immature female (82%, body length: 
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324 cm) and largest male (82%, body length: 556 cm) investigated. No effects of sex, maturity status 

or age were detected on blubber lipid content.  

Table 5.2. Pairwise general linear models of body condition measurements taken from the carcasses of long-

finned pilot whales (Globicephala melas edwardii) stranded on Farewell Spit, New Zealand in 2014. General 

linear models with t- statistic (t) and p-values are reported. Significant p-values are given in bold. BCI = body 

condition index, girth = axillary girth, Dorsal = dorsal blubber thickness, Lateral = lateral blubber thickness, 

Ventral = ventral blubber thickness and Lipid = % blubber lipid content.  

 

Measurement Variable t p-value 

Age Girth  4.607 <0.01 
 

Dorsal 0.002 0.998 
 

Lateral 1.086 0.297 
 

Ventral 1.756 0.103 
 

BCI -1.329 0.207 
 

Lipid  -0.570 0.581 

    

Girth  Dorsal 0.448 0.661 
 

Lateral 1.600 0.134 
 

Ventral 2.765 0.016 
 

BCI -0.821 0.427 
 

Lipid  -0.877 0.401 

    

Dorsal Lateral 1.526 0.151 
 

Ventral 0.778 0.450 
 

BCI -1.387 0.189 
 

Lipid -0.508 0.623 

    

Lateral Ventral 2.570 0.023 
 

BCI -2.149 0.051 
 

Lipid  0.478 0.643 

    

Ventral BCI -1.734 0.107 
 

Lipid -0.821 0.431 

    

BCI Lipid content -0.344 0.738 

 

  



155 

 

Finally, girth ranged from 160 to 248 cm (mean = 202.80; SD = 26.47; Table 5.1). Whilst girth showed 

no significant differences by sex or maturity status it was correlated with age (t = 4.607, p < 0.01).  

The only body condition measurements that were significantly positively correlated with one 

another were: girth and ventral blubber thickness (p = 0.004; Table 5.2), ventral and lateral blubber 

thickness (t = 2.510, p = 0.02) 

5.5.2. Variation of fatty acid profiles 

A total of 21 fatty acids were detected in LFPW blubber (Table 5.3). The fatty acids with the highest 

proportions were C18:1n9 (Oleic acid), C16:0 (Palmitic acid), C16:1n9 (Palmitoleic acid) and C14:0 

(Myristic acid). All 21 fatty acids were present across all sex and maturity status classifications apart 

from C20:4n6 (Eicosadienoic acid) which was not reported in mature males. Although males 

displayed a higher SFA content (Table 5.3, Figure 5.3), differences were not significant. In fact, no 

significant difference was found in the proportions of SFAs, MUFAs and PUFAs respectively, by 

either sex or maturity status (Figure 5.3).  

  



  

Table 5.3. Fatty acids (FAs) from the inner blubber layer of long-finned pilot whales (Globicephala melas edwardii) stranded on Farewell Spit, New Zealand in 2014. 

Values for each fatty acid are presented as a proportion (%) of total fatty acids reported. SD = standard deviation, ∑SFAs refers to total proportion of saturated fatty 

acids, ∑MUFAs to total proportion of monounsaturated fatty acids, ∑PUFAs to total proportion polyunsaturated fatty acids, EPA = eicosapentaenoic acid C20:5n3, 

DPA = docosapentaenoic acid C22:5n3 and DHA = docosahexaenoic acid C22:6n3. Dietary fatty acids (Iverson, 2004) are given in bold. 

 Female    Male    

Fatty Acid  Immature SD Mature SD Immature SD Mature  SD 

C14 7.89 0.83 11.18 1.71 11.64 1.93 13.57 2.90 

C15 0.80 0.31 1.03 0.30 1.20 0.17 0.84 0.14 

C16 16.11 3.16 20.75 5.15 19.20 1.58 25.04 2.17 

C17 0.38 0.15 0.55 0.15 0.56 0.27 0.30 0.28 

C18 2.66 0.62 3.98 1.10 3.68 0.23 3.25 1.14 

C16:1n7 2.90 0.19 3.47 0.80 8.84 8.08 2.63 0.20 

C16:1n9 18.41 3.35 13.16 3.28 10.04 7.73 9.50 0.88 

C17:1 1.09 0.57 0.71 0.44 0.29 0.06 0.27 0.23 

C18:1n9 27.25 3.08 25.07 1.90 24.16 1.00 26.25 0.55 

C18:1n7 3.61 0.47 3.87 0.43 4.18 0.33 4.38 0.04 

C18:1n11 0.14 0.20 0.25 0.16 0.70 0.55 0.07 0.10 

C20:1n11 0.43 0.47 1.60 1.00 2.36 1.57 0.62 0.33 

C20:1n9 4.34 1.92 5.17 2.32 4.28 2.84 6.35 1.53 

C22:1n11 0.48 0.35 1.40 0.22 1.16 0.90 0.69 0.53 

C22:1n13 0.37 0.31 0.61 0.15 0.81 0.16 0.85 0.32 

C18:2n6 1.21 0.06 1.14 0.35 0.97 0.36 0.46 0.37 

C20:4n6 0.75 0.24 0.42 0.37 0.47 0.10 0.00 0.00 

EPA 1.14 0.45 0.70 0.39 1.19 0.33 0.63 0.31 

DHA 3.91 1.42 3.74 0.88 2.99 1.95 3.46 0.38 

DPA 5.58 6.15 0.94 0.32 1.20 0.19 0.53 0.36 

SFAs 27.84 2.79 37.49 7.54 36.28 3.00 43.00 0.57 

MUFAs 59.03 9.34 55.32 6.55 56.81 1.33 51.60 0.74 

PUFAs 12.59 7.32 6.94 1.35 6.81 1.98 5.08 1.12 

 



  

 

Figure 5.3. Mean proportions (%) of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) from the inner 

blubber layer of long-finned pilot whale (Globicephala melas edwardii) stranded on Farewell Spit, New Zealand in 2014. Fatty acid content is presented using the 

following sex/maturity groups: Female Immature, Female Mature, Male Immature, Male Mature (see Chapter 2 for sex/maturity group definitions). 
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Neither maturity status, nor sex, had a significant impact on fatty acid profiles. Fatty acids 

contributing most to dissimilarity between males and females were: C16:1n9, C16:0, C14:0, C20:1n9, 

DPA, C18:1n9, C16:1n7, DHA, C18:0, C20:1n11, whilst fatty acids that contributed most to 

dissimilarity between mature and immature individuals were: C16:0, C16:1n9, C14:0, C20:1n9, 

C18:1n9, C16:1n7, DPA, DHA, C18:0, C20:1n11. A high degree of individual variability in fatty acid 

profiles was evident, with males exhibiting a larger range of dissimilarity compared to females 

(Figure 5.4).  

5.5.3. Predictive power of morphometric body condition measurements on fatty acids 

The intercept was retained as the only covariate in the optimum GLM for lipid content and two of 

the dietary fatty acids (C20:1n11 and DHA), respectively (Table 5.4). Weight was under 0.50 for both 

models, suggesting a relatively low level of data variance explained. The girth was retained as the 

only covariable in the optimum GLMs for C20:1n9, SFAs and PUFAs respectively, where girth 

increased with increasing C20:1n9 and SFAs but decreased with increasing PUFAs. The MUFA 

variation was best explained by ventral blubber thickness (Table 5.4). The model with the highest 

weight (0.51), and therefore best explained data variation was SFA ~ girth. 

  



  

 

 

Figure 5.4. Non-parametric multidimensional scaling (nMDS) plot of dissimilarity in fatty acid profiles of long-finned pilot whales (Globicephala melas edwardii). Shapes 

relate to reproductive status  and colours relate to sex. Ellipses are calculated by sex at the 95% level.   
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Table 5.4. Summary table of generalised linear model and small-sample size corrected Akaike Information 

Criterion (AICc) model selection results investigating predictive power of various body condition 

measurements on fatty acid (FA) classes and dietary fatty acids C20:1n11, C20:1n9 and docosahexaenoic acid 

(DHA) C22:6n3 of long-finned pilot whales (Globicephala melas edwardii). logLiK = log likelihood, SFAs = 

saturated fatty acids, MUFAs = monounsaturated fatty acids, PUFAs = polyunsaturated fatty acids. The top 

models within three AICc points are presented, with the optimal model given in bold.  

 
Model  AICc Weight logLik 

SFAs ~ girth 100.9 0.51 -46.37 

 ~ girth + ventral blubber thickness  103.9 0.11 -45.96 

     

MUFAs ~ ventral blubber thickness  102.6 0.17 -47.22 

 ~ intercept only 103.2 0.13 -49.12 

 ~ age  103.6 0.11 -47.70 

     

PUFAs ~ girth 91.4 0.26 -41.62 

 ~ intercept only 91.7 0.22 -43.37 

 ~ age 93.7 0.08 -42.75 

     

C20:1n9 ~ girth 72.1 0.29 -31.96 

 ~ intercept only 73.2 0.17 -34.11 

 ~ ventral blubber thickness   74.2 0.10 -33.00 

 
    

C20:1n11 ~ intercept only  53.2 0.35 -24.12 

 
~ BCI 54.8 0.16 -23.19 

 
~ girth  55.3 0.12 -23.56 

     

DHA ~ intercept only 54.7 0.37 -24.87 

 ~ BCI 55.9 0.21 -23.85 

 ~ dorsal blubber thickness 57.3 0.11 -24.54 
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5.6. Discussion  

This study offers the first insights into blubber measurements and fatty acid composition of LFPWs 

in New Zealand waters. Whilst stomach content analysis (Beatson et al. 2007b; Beatson and O’Shea 

2009; Chapter 2) and stable isotope analysis (Hinton et al. 2022; Peters et al. 2022; Chapter 3) of the 

same population offer short-term dietary insights, this qualitative fatty acid analysis investigates 

longer-term diet and how this may relate to individual body condition.  

5.6.1. Variation in body condition measurements  

Overall, blubber thickness measurements were generally consistent with other odontocetes, with 

lateral and dorsal blubber measurements being the thinnest and the thickest for each individual, 

respectively (e.g., Konishi 2006; Marón et al. 2021). Significant pairwise correlations were recorded 

between two sets of body condition measurements only: ventral and lateral blubber thickness, and 

girth and ventral blubber thickness, respectively (Table 5.3). Mysticetes considered visually “fat” 

had large lipid deposits in the ventral region (Ackman et al. 1975), while thicker ventral blubber in 

mature sei Balaenoptera borealis and fin whales B. physalus was attributed to enhanced energy storage 

in the ventrum (Lockyer et al. 1985). An increase in ventral blubber thickness may, therefore, have a 

particular impact on girth. As dorsal and ventral blubber thicknesses were also reported to increase 

in minke whales B. acutorostrata during the feeding season (Niæss et al. 1998), this suggests a link 

between increased food intake and thicker blubber, which would logically increase girth. Therefore, 

girth may be a useful non-invasive measurement of nutritional state in LFPWs, though 

investigations using a larger sample size are recommended to validate this suggestion. 

Interestingly, girth was also the only measurement correlated positively with age, which could be a 

function of increasing TBL (see Appendix 5.2). Overall, no differences were found between body 

condition measurements and sex or maturity respectively, even when the effects of TBL were 
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removed. Notably, this is unlike the larger blubber thickness found in in younger bottlenose 

dolphins Tursiops truncatus thought to be due to increased buoyancy and thermodynamic 

requirements of immature marine mammals (Adamczak et al. 2021). Furthermore, adipocyte 

number and density were found to be higher in the middle blubber layer of immature than mature 

Indo-Pacific bottlenose dolphin Tursiops aduncus (Roussouw et al. 2022) and all layers of bowhead 

whales Balaena mysticetus blubber (Ball et al. 2015). However, increased energy demands of growth 

(Read et al. 1993) could cause decreased body condition (Russell et al. 2022) or quicker mobilisation 

of fatty acids in immature LFPWs, leading to a reduced blubber thickness than may be expected. 

Alternatively, lack of foraging experience in immature individuals may lead to fewer successful 

feeding events (Aoki et al. 2021), which may be further compounded during summer, when recovery 

from nutritional stress is thought to be more difficult (Jeanniard du Dot et al. 2008). As noted by 

Rosen et al. (2007), failure to ingest prey may cause catabolism of blubber in marine mammals, which 

is likely enhanced during stranding events, especially in smaller individuals with fewer energy 

reserves to draw upon. Whilst it is difficult to conclusively prove, starvation effects from protracted 

stranding events, where whales remain in shallow waters for several days prior to stranding, could 

explain why a larger blubber thickness was not reported here in younger LFPWs.   

The range of lipid content reported for LFPWs in New Zealand waters is consistent with ranges 

recorded in other odontocetes (Aguilar and Borrell 1990). The mean lipid content (62%) of LFPW 

blubber from this study was typical of cold water cetacea (mean = 60%; Koopman 2007) and was 

comparable to G. m. edwardii from Australian waters (range = 34.6 – 87.9%; Walters 2005). Though a 

higher mean lipid content was recorded in G. m. melas from the Northeast Atlantic and Faroe Islands 

(Lockyer 1993; Borrell et al. 1995; Koopman 2007), lower lipid content levels have also been reported 

in blubber of G. m. edwardii from the South Atlantic, and G. m. melas from the Northwest Atlantic 



163 

 

and Mediterranean (Weisbrod et al. 2000; Pinzone et al. 2015; Garcia-Cegarra et al. 2021). Lipid levels 

of LFPWs appear to show spatial variability which could represent environmental factors including 

latitude. Furthermore, the inner region of blubber may contain a lower lipid content than other 

blubber layers due to higher metabolic activity (e.g., Bagge et al. 2012). Decreased lipid content could 

therefore indicate a degree of emaciation (Kajiwara et al. 2001), as lipid is replaced with water in the 

blubber of emaciated cetacea to retain structural integrity (Dunkin et al. 2005; Agusti et al. 2022).  

However, no pathological examination of carcasses was undertaken to confirm this in the present 

study.  

5.6.2. Variation of fatty acid profiles  

All fatty acid profiles were characterised by high total MUFA proportions, especially C16:0, C18:0, 

C18:1n7, C18:1n9 and C16:1n7, as is typical in marine mammals (Käkelä and Hyvärinen 1996; Smith 

and Worthy 2006; Waugh et al. 2014; Guerrero et al. 2020), including comparable studies involving 

LFPWs (Walters 2005; Monteiro et al. 2015b). Overall, fatty acid profiles did not differ significantly 

by maturity status or sex, although males did show a larger dissimilarity range than females (Figure 

5.5). As fatty acids from the inner blubber layer most closely reflect the composition of prey, this 

could indicate a wider range of diet consumed by males. However, dietary homogeneity of LFPWs 

within New Zealand waters (Chapter 2, Beatson and O’Shea 2009) are likely to result in minimal 

dietary fatty acid differences between sexes.  

Elevated concentrations of SFAs were recorded across all examined animals, accounting for 36% of 

total fatty acids (Table 5.2, Figure 5.4). Notably, SFA proportions were also higher than has been 

previously reported for other odontocetes (e.g., Guitart et al. 1999; Ko et al. 2016; Tang et al. 2021). 

This may be partially explained by stratification of both lipid and fatty acids within marine mammal 

blubber (Strandberg et al. 2008), resulting in higher SFA concentration in the inner blubber layer. 
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Such stratification has been recorded in multiple species, including elephant seals Mirounga leonina 

(Guerrero and Rogers 2017) and common dolphins Delphinus spp. (Smith and Worthy 2006). 

However, stratification of lipids has not been previously recorded in the blubber of LFPWs (Lockyer 

1993; Walters 2005; Koopman 2007). The values of two specific SFAs (C14:0 and C16:0) were found 

to be more elevated in G. m. edwardii from this study compared to those sampled from Australia 

(Walters 2005) or G. m. melas in the Northeast Atlantic (Monteiro et al. 2015b). Both C14:0 and C16:0 

have been identified as “phase change” fatty acids which have thermodynamic functions (Dunkin 

et al. 2005). Indeed, environmental differences have explained fatty acid de-saturation across 

multiple marine mammal species (Guerrero and Rogers 2019), and fatty acid de-saturation has also 

been recorded in multiple marine organisms towards the poles (Guerrero & Rogers 2019; Parzanini 

et al. 2020). This suggests that elevated SFA values from LFPWs in New Zealand waters could be 

related to lower latitude. However, Iverson et al. (2004) noted that both C14:0 and C16:0 accumulate 

in marine mammals through a mixture of biosynthesis and diet, so could therefore be reflective of 

local food webs. Indeed C14:0 and C16:0 were the most abundant SFAs recorded in zooplankton 

from New Zealand waters (Meyers et al. 2022). Hence, raised levels of C14:0 and C16:0, and 

consequently elevated SFAs, in LFPW blubber are likely due to a combination of local dietary and 

environmental inputs. 

The mean proportion of PUFAs reported in LFPWs was lower than in previous odontocete studies 

(Grahl-Nielsen et al. 2010; Koopman 2007; Smith & Worthy 2006; Strandberg et al. 2008). Higher 

consumers are unable to biosynthesize PUFAs (Zhang et al. 2020) and obtain all PUFAs from prey 

(Castro et al. 2016), consumer PUFA levels therefore reflect those found in their prey. Conversely, 

prior metabolisation of PUFAs results in lower proportions recovered (Grahl-Nielsen et al. 2010) 

possibly indicating disease or starvation, which could be a function of the stranding events that 
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samples were obtained from (Hart et al. 2013). Additionally, low PUFA content in organisms has 

been linked to feeding in low light conditions (Burgess et al. 2018), suggesting New Zealand LFPWs 

feed either at depth, at night, or both. Indeed, nocturnal feeding has been noted in G. m. melas from 

the Ligurian Sea (Baird et al. 2002). Knowledge of the fatty acid concentrations of prey would, 

therefore, be beneficial to help confirm drivers behind low PUFA proportion.  

5.6.3. Predictive power of morphometric body condition measurements on fatty acid proportions 

None of the body condition measurements succeeded in consistently predicting dietary fatty acid 

variation via GLM models. In fact, the intercept was retained as the only covariate in optimal GLMs 

for two of the three dietary fatty acids (Table 5.4). One explanation for this is the influence of TBL, 

though this was removed from GLMs due to high correlation (see Appendix 5.3). Alternatively, the 

relationships between morphometric measurements and dietary fatty acid proportions in the inner 

blubber layer may not be linear as was tested here. This could be tested with larger sample sizes in 

the future using other statistical measures such as generalised additive models. Varied functions of 

each fatty acid within the predator may have a large influence on body condition measurements. 

Indeed, low C17:0 levels have potentially been linked to metabolic syndrome in bottlenose dolphins 

T. truncatus (Venn-Watson et al. 2015); although this is not a dietary fatty acid, it does show that 

individual differences in fatty acid function occur.   

Girth was retained as a covariable in the optimal model for variation in dietary fatty acid C20:1n9, 

PUFA and SFA proportions, respectively (Table 5.4). C20:1n9 is a long-chain PUFA typical to marine 

pathways (Parzanini et al. 2020). Long-chain PUFAs are preferentially deposited in the inner blubber 

layer due to relative low melting point and therefore ease of mobilisation (Lockyer et al. 1984; Grahl-

Nielsen et al. 2005). The increased PUFAs in the inner blubber layer of LFPWs with decreased girth 

shown in this study may therefore be due to increased need for PUFA mobilisation, possibly during 
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times of stress. As girth also increased with increased SFA levels, girth may, therefore, be a good 

predictor of variation in fatty acid deposition in LFPWs.  

There is debate as to the ability of either fatty acids or body condition to reflect dietary intake in 

marine mammals. For example, in harp seal Pagophilus groenlandicus a weak correlation between 

prey and predator fatty acids is noted, concluding that fatty acids may be more reflective of 

metabolism (Grahl-Nielsen et al. 2011). However, a collection of five fatty acids was able to separate 

the odontocetes killer whales Orcinus orca by ecotype (Herman et al. 2005).  However, body condition 

measurements have been linked to prey more commonly for mysticetes; body condition correlated 

with prey abundance per capita in fin whales B. physalus (Williams et al. 2013), nutrition in right 

whales Eubalaena glacialis and Eubalaena australis (Miller et al. 2011), and foraging success in North 

Pacific gray whales Eschrichtius robustus (Soledade Lemos et al. 2020). In contrast, polar bear Ursus 

maritimus, body condition was not correlated with any particular prey consumption (Florko et al. 

2021). These disparities between taxa would suggest that body condition measurements and prey 

consumption may be more closely linked in fully aquatic marine mammals, possibly due to 

differences in blubber function, such as temperature regulation and buoyancy needs. Indeed, 

blubber is known to be a multi-faceted organ capable of several functions including structural 

integrity, thermoregulation, buoyancy, and energy storage (Biuw et al. 2003; Iverson 2009; Ball et al. 

2017; Davis 2019). Therefore, investigations into cetacean body condition are now advised to 

incorporate multiple morphometric and blubber measures for validation (Castrillon and Bengtson 

Nash 2020), and studies into the relationships between morphological parameters, feeding 

behaviours and health status have been proposed as a priority for future research (Sharp et al. 2014). 

Even if not related to diet, body condition measurements may provide useful information to 

interpret overall fatty acid composition, and therefore, still have implications for understanding 



167 

 

individual condition. Reliance on BCI over blubber thickness alone has been suggested as a better 

proxy for individual condition in killer whales (Raverty et al. 2020). However, there was not one 

morphological measurement, or set of measurements, that consistently predicted the fatty acid 

variation recorded in New Zealand LFPWs, although it is acknowledged that the small sample size 

may in part, explain this finding.  

Overall, both body condition measurements and fatty acid profiles of LFPWs in this study were 

comparable to those of other odontocetes, especially LFPW populations from Australian waters 

(Walters 2005). Significant differences in girth with age suggested that older LFPWs in New Zealand 

have larger girth than younger individuals, though this may be a function of increasing body size. 

A larger sample size to investigate the effects of reproductive status and season on body condition 

measurements is recommended to help elucidate drivers behind variation.  

Fatty acid profiles presented in this chapter were characterised by high levels of MUFAs, particularly 

C16:1n9 and C18:1n9, as is typical in cetacea. A high SFA content was also noted in comparison to 

other LFPW populations, most likely due to thermoregulatory response, or relative to the fatty acid 

profiles of local primary producers. Reported fatty acid variation was not able to be explained by 

one body condition measurement alone, although this study has shown that girth holds the most 

promise in its ability to predict relative fatty acid proportions of G. m. edwardii. Further work is 

recommended to elucidate how body condition measurements relate to fatty acid composition in 

this species, which would be helpful when attempting to quantify individual condition and 

nutritional status at stranding events. Specifically, a larger sample size of both LFPW body condition 

indices and fatty acids should be explored throughout all blubber layers.   
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Chapter 6 – General Discussion 

 

 

 

 

 

Long-finned pilot whales Globicephala melas edwardii refloated after stranding at Onetahua Farewell 

Spit, New Zealand in 2021. Photo credit: Rebecca Boys. 
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6.1. General discussion  

This thesis has presented new insights into long-finned pilot whale (LFPW; Globicephala melas 

edwardii) foraging ecology in Aotearoa New Zealand waters. Differences in diet composition were 

observed on both ontogenetic and spatiotemporal scales, with isotopic investigations supporting the 

tendency for pelagic feeding observed from stomach content analysis. Both stomach contents and 

isotopic investigations noted the ability to forage benthically/coastally, especially in mature males 

and in the most recent year investigated, 2017. Although six new taxa were discovered in the diet of 

LFPWs in this study, biochemical dietary tracers examined in five of the top prey species to LFPW 

diet revealed that at least one key prey species was missing from analysis. Regardless, arrow squid 

(Nototodarus spp.) contributed most to LFPW diet in all methods explored. In addition, an initial 

exploration into potential insights gained from morphometric body condition measurements 

signalled that relationships between girth, ventral blubber thickness and fatty acids would be worth 

exploring further. Overall, this thesis has provided novel contributions to, and improved 

understanding of, the foraging ecology of LFPWs in New Zealand waters. This chapter outlines the 

key research contributions to science, and management implications resulting from themes explored 

within this thesis. Furthermore, recommendations for future research are discussed.  

6.2. Summary of main results and scientific contributions 

This thesis addressed gaps in knowledge of the foraging ecology of LFPWs in New Zealand waters 

by investigating samples collected from carcasses involved in mass strandings along the New 

Zealand coast. To do this, research focussed on assessing diet composition, variation, and its effect 

on individual body condition in New Zealand waters, using multiple complementary 

methodologies to address the four thesis objectives outlined in Chapter 1: 
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Objective 1: Investigate intraspecific variation in the prey composition of LFPWs stranded 

on the New Zealand coast. 

Objective 2: Assess ontogenetic, spatial, and temporal isotopic niche dynamics within the 

LFPW population.   

Objective 3: Evaluate the use of biochemical tracers in key prey species to quantify LFPW 

dietary variation. 

Objective 4: Explore possible linkages between chemical dietary tracers and individual 

LFPW body condition.  

Variation in the prey composition of LFPWs stranded on the New Zealand coast was investigated 

in Chapter 2. Whilst the contents of LFPW stomachs were dominated by arrow squid Nototodarus 

spp., dietary composition varied by sex and body size (Chapter 2). This differed from previous 

international studies of LFPWs in the literature (e.g., Gannon et al. 1997b; Santos et al. 2014), where 

no differences in diet have been determined between sexes. Furthermore, six new taxa were 

discovered in the diet of LFPWs in this region. New taxa were primarily fish species, whereas no 

fish species had previously been identified within the diet of LFPWs in this New Zealand region 

(Beatson et al. 2007a; Beatson et al. 2007b; Beatson and O’Shea 2009). Fish have been described in the 

diet of Northern Hemisphere G. m. melas (Overholtz and Waring 1991; Spitz et al. 2011; Nøttestad et 

al. 2015), but the incidences of fish in the diet of Southern Hemisphere G. m. edwardii are less common 

(e.g., Chalcobsky et al. 2021), possibly indicating a level of geographic variation in diet reflecting 

abundance and availability of local prey species.  

The first investigation of LFPW isotopic niche in New Zealand waters was conducted in Chapter 3. 

Spatiotemporal factors had a larger effect than ontogenetic factors on intraspecific isotopic variation, 
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consistent with overseas studies (de Stephanis et al. 2008; Monteiro et al. 2015a). Sulphur was used 

for the first time in isotopic studies of Southern Hemisphere LFPWs, elucidating drivers of isotopic 

variance both in temporal and ontogenetic variation (Chapter 3).  

Following this, Chapter 4 evaluated the use of biochemical tracers in key prey species to quantify 

LFPW dietary variation. Complimentary methodologies of stable isotope and fatty acid analyses 

were applied to quantify the dietary importance of five key prey species (identified from Chapter 2) 

to LFPWs stranded at Farewell Spit. Qualitative analysis of both stable isotope and fatty acid data 

suggested that arrow squid were an important component of diet, consistent with stomach contents 

findings from Farewell Spit (Chapter 2, Beatson et al. 2009). Overall, however, analysis revealed that 

key prey species tested may not have been isotopically matched to LFPWs, inappropriate trophic 

discrimination factors used or missing key species from the study, supported by the much wider 

range of species reported in stomachs of LFPWs overseas (Gannon et al. 1997b; Mansilla et al. 2012; 

Beasley et al. 2019). This was likely because only the top five dietary species were selected for their 

stable isotope and fatty acid profile analyses and sample sizes were small. This could be improved 

by examining a larger sample and wider range of potential prey species than reported herein.  

The potential linkages between the proportion of fatty acids from the inner dorsal blubber and body 

condition measurements of LFPWs were explored in Chapter 5. Measurements of girth increased 

significantly with total body length and age, consistent with Northern Hemisphere LFPWs off the 

Faroe Islands (Lockyer 1993). Furthermore, axillary girth explained some variation in the proportion 

of 1) saturated, 2) polyunsaturated fatty acids and 3) dietary fatty acid C20:1n9 in the inner layer of 

dorsal blubber. Whilst no single body condition measurement was consistently linked to all dietary 

fatty acids studied, a larger sample size than was used in this exploratory chapter would be required 

to make any firm conclusions.  
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Finally, this thesis utilised a long-term, archived collection of samples, from LFPWs that stranded 

on New Zealand shores between 2009 and 2017. Long-term datasets are integral to the 

understanding changes in the marine environment (Wolfe et al. 1987), and their benefits should not 

be underestimated.  

6.3. Key research findings 

6.3.1. Reliance on arrow squid  

Arrow squid were consistently considered an important prey species to the diet of LFPWs stranded 

in New Zealand between 2009 and 2017, across all chapters and methodologies explored: stomach 

content, stable isotope, and fatty acid analyses. This concurs with stomach content analysis of a 

smaller subset (n = 37) of LFPWs examined from New Zealand strandings between 2005 and 2008 

(Beatson et al. 2007; Beatson and O’Shea 2009). These findings are most consistent with the trace 

prey (defined as hard part remains only) analysed by Gannon et al (1997b) who reported a single 

squid species accounted for 70% by number, 83.9% by mass and 86% by index of relative importance 

(IRI) of trace prey with 100% frequency of occurrence in LFPWs. Similarly, individual LFPW 

stomachs have been reported to contain remains of only one squid species in stranding studies 

(Overholtz and Waring 1991). Comparisons of prey from 13 cetacean species classified LFPWs as 

“specialist” feeders in  (MacLeod et al. 2006) and their diet has also been described as “restricted” in 

comparison to other marine mammals in the Norwegian Sea (Skern-Mauritzen et al. 2022).  

Arrow squid are part of the Ommastrephidae family (Dunning and Förch 1998; Wakabayashi et al. 

2012). Whilst most studies have not indicated one species to be so overwhelmingly important to 

LFPW diet, a reliance on Ommastrephid squids has been widely reported elsewhere, especially at 

higher latitudes (Santos et al. 2014). Within other odontocetes, dietary specialists have been 

identified in particular geographic areas. For example, gadids were reported to account for 98% of 

the weight of white-beaked dolphins Lagenorhynchus albirostris diet in the North Sea only (Jansen et 
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al. 2010). Similarly, killer whales Orcinus orca in the northwest Pacific are the only killer whale 

population known to rely heavily on a diet of various salmonids (Ford and Ellis 2006). Furthermore, 

an environmental difference in dietary plasticity is noted, with subantarctic ecotypes the most reliant 

on a singular prey species (Foster 2019). Therefore, LFPWs could be targeting fewer species in New 

Zealand waters because of local environmental conditions.  

The reliance on arrow squid noted in this thesis may alternatively be due to assessments being 

carried out primarily on samples collected from LFPWs stranded within the austral summer, which 

could be reflecting seasonal dietary preference. As noted in Chapter 2, this is an important 

consideration when interpreting these data as other marine mammals in local waters have been 

shown to rely heavily on arrow squid in summer only (Fea et al. 1999). Optimal foraging theory 

would predict that LFPWs, and other local marine mammal predators, may simply be feeding on 

abundant, energy-rich prey, implying neither specialisation nor opportunism. Indeed, all three 

methodologies explored (Chapter 2, 4) indicated that arrow squid may be overestimated in diet. 

From stomach contents in Chapter 2, the prey curve did not reach an asymptote indicating that not 

all prey groups were detected. Furthermore, fish number often could not be accurately estimated 

due to lack of identifiable remains, leading to a suspected underestimation of fish importance to 

diet. Similarly, both stable isotope and fatty acid analyses of prey in Chapter 4 could be interpreted 

to suggest that some key prey species were omitted, consistent with the suggestion that fatty acid 

and stable isotope nitrogen data suggest a lesser importance of cephalopods to diet than stomach 

contents (Rodhouse 2013).  

Whilst there is a reported reliance of LFPWs on cephalopods in other areas of the world (Gannon et 

al. 1997b; Aguiar dos Santos and Haimovici 2001; Beasley et al. 2019), the potential underestimation 

of fish to the diet of LFPWs in New Zealand waters cannot be excluded. As there was high overlap 
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in biochemical data of LFPW prey species (see Chapter 4), LFPW prey species are likely to occupy 

similar habitats within New Zealand waters. Therefore, fisheries data may provide insight into 

possible prey species missing from diet. Whilst 347 species were bycaught in the arrow squid trawl 

between 1990 and 2017 (Finucci et al. 2019), only two of the top 30 most frequently bycaught species 

were detected in stomachs of LFPWs examined in Chapter 2; hoki Macruronus novaezelandiae 

(number 8) and carpet shark Cephaloscyllium sp (number 30). Furthermore, of the commercial 

fisheries recorded to have incidentally captured LFPWs, hoki is the only prey species that has been 

reported in the stomachs of LFPWs to date (Chapter 2). The fact that LFPWs were captured by 

vessels targeting other fish (jack mackerel Trachurus declivis and T. novaezelandia, ling Genypterus 

blacodes, bluefin Thunnus maccoyi and bigeye tuna T. obesus, school shark Galeorhinus galeus, hake 

Merluccius australis and tarakihi Nemadactylus macropterus; Fisheries New Zealand Protected Species 

Bycatch Open Database) raises the potential that some or all of these fish could be the prey species 

missing from LFPW diet (Chapter 2, 4). Investigations of bycaught LFPW stomach contents would 

be helpful to help clarify this uncertainty and should be considered a priority for LFPW dietary 

research going forward. 

Still, the vast number of arrow squid identified in LFPW stomachs from all stranding events indicate 

that arrow squid is a key prey species of LFPWs, at least over the summer months. Furthermore, the 

similarities of both chemical tracers (stable isotopes and fatty acids, see Chapter 4) from LFPWs to 

those of arrow squid indicated that LFPWs may be feeding on arrow squid for at least several weeks 

prior to stranding.   

6.3.2. Dietary variation 

The samples examined in this thesis were taken exclusively from stranded individuals. The use of 

samples from strandings could confound data, as stranded animals may display irregular feeding 
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patterns due to illness or injury (Praca et al. 2011). However, this is considered more of an issue in 

events involving a single stranded animal, rather than the mass-stranding events (MSEs) that 

involve a large pod, which for the most part represent healthy individuals (Betty et al. 2020). 

Furthermore, previous reports on stranded cetacea have indicated that one sex may strand more 

frequently (e.g., Silva and Sequeira 2003) which can introduce bias in results and not consider certain 

ontogenetic traits. The effects of this were somewhat minimised through the study design; whilst all 

LFPWs in the dataset were analysed for stomach contents in Chapter 2, samples used in Chapters 3, 

4 and 5 were selected from larger MSEs to allow for intraspecific analysis and to cover a range of 

reproductive groups, maturity status, ages, body lengths, and sex.  

Although arrow squid was identified as the key prey species overall, this thesis revealed for the first 

time, that variation in other species ingested was apparent on both ontogenetic and spatiotemporal 

scales. Notably, diet varied with stranding location in both stable isotope and stomach content 

analyses (Chapter 2, 3), suggesting a level of spatial variability in diet. Indeed, there were a higher 

number of fresh tissue remains in the stomachs of LFPWs from Stewart Island (Chapter 2) indicating 

very recent feeding in comparison to other areas. Furthermore, LFPWs stranded at Stewart Island 

had a higher diversity of prey in stomachs (Chapter 2) in comparison to other locations, which may 

indicate a degree of spatial variance in feeding. This has also been recorded internationally, where 

key prey species in LFPW populations varied spatially (Overholtz and Waring 1991; Gales et al. 

1992b; Clarke 1994; Gannon et al. 1997b; Aguiar dos Santos and Haimovici 2001; De Pierrepont et al. 

2005; Santos et al. 2014). 

Sex was also a key driver in variation of stomach contents (Chapter 2) and sulphur isotopes (Chapter 

3), though not carbon and nitrogen isotopes (Chapter 3). Both sulphur isotopes and stomach contents 

indicated that mature males displayed a more benthic/coastal foraging pattern compared to female 
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counterparts, although the explanatory power of this finding was low (Chapter 3). Similarly in 

Chilean waters, diet between sexes was notably different, but not statistically, as males consumed 

larger Ilex argentinus squid than females (Chalcobsky et al. 2021). Although males also demonstrated 

a wider range of dissimilarity in their fatty acid profiles than females within this thesis, this analysis 

included all fatty acids, not just those linked to diet (Chapter 5). In fact, two of the top three fatty 

acids contributing to dissimilarity between males and female were C16:1n9 and C14, both of which 

were noted as considerable higher in LFPWs than any of their key prey species tested in Chapter 4. 

One explanation is this represents further evidence of a key prey species missing from analysis (see 

Chapter 4). Conversely, since C14 is obtained from biosynthesis as well as diet (Iverson et al. 2004), 

variation in C14 may not accurately reflect dietary variation intake between males and females at 

all. Instead, differences in fatty acids may reflect metabolism and ontogeny, as has been suggested 

in odontocetes generally (Koopman 2007) and in individual species such as sperm whales Physeter 

macrocephalus (Jackson et al. 2022) and bottlenose dolphins (Samuel and Worthy 2004).  

Indeed, it was the larger, mature males that were found to have the most unique diet and isotopic 

niche in this study (Chapter 2, 3). This trend may also be true for fatty acids, but due to the small 

sample size (n = 15, Chapter 4), a comparison between the dietary fatty acids of mature males and 

other reproductive groups could not be confirmed. Nonetheless, these first insights still suggest that 

ontogeny or even body size, rather than sex alone, may be the driver behind variation recorded 

between both diet and biochemical tracers in LFPWs in New Zealand.  

6.3.3. Insights into long-finned pilot whale foraging  

Whilst the foraging locations around New Zealand are currently unknown, knowledge could be 

improved by utilising telemetry, which has helped reveal foraging areas and depths for a range of 

marine mammal species (e.g., Hooker et al. 2002; Abecassis et al. 2015; Arranz et al. 2019; Benoit-
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Bird et al. 2019; Visser et al. 2021). In the meantime, the distribution of key prey species and carbon 

stable isotope analysis can provide insights into the likely foraging locations and habitats of 

predators (e.g., Burton and Koch 1999; Aurioles et al. 2006; Rossman et al. 2010; Szpak and Buckley 

2020). 

Distribution of arrow squid, the primary LFPW prey species identified in this thesis, is thought to 

be ubiquitous across New Zealand waters. Arrow squid have been reported to occur up to 1000 m 

depth but are more commonly reported at depths less than 500 m (Anderson et al., 1998). Sampling 

from the southern waters of New Zealand revealed negligible numbers of arrow squid deeper than 

500 m, with the highest density of arrow squid shallower than 300 m depth (Jackson et al. 2000). 

Indeed, commercial catch of this species in New Zealand is focussed at around 150–400 m depths 

(Anderson and Edwards 2018).  Studies in the Chatham Rise, New Zealand determined arrow squid 

to be shallow shelf dwellers during both larval and adult life stages (Uozumi and Forch 1995). Other 

LFPW prey species identified such as Moroteuthopis ingens, Lycoteuthis lorigera and hoki (Chapter 2) 

are all described as deep-water species inhabiting the continental shelf and slope seas (Jackson et al. 

2000; McClatchie et al. 2005; Hoving et al. 2007; Fontaine et al. 2015). Furthermore, carbon and 

sulphur isotope values of arrow squid, hoki and LFPWs (Chapter 3, 4) in New Zealand indicated 

that marine rather than coastal food source pathways were commonly utilised.  

It is plausible, therefore, that LFPWs in New Zealand waters are currently feeding off the continental 

slope. Specifically, the abundance of squid and hoki reported around the Stewart Snares shelf 

(Roberts et al. 2018), and Chatham Rise (Dunn 2009; O’Driscoll et al. 2011) would appear good 

potential feeding locations. Telemetry studies suggest that LFPWs can dive as deep as 2000 m in the 

Ligurian Sea but spend the majority of their time in shallower waters (Robin et al. 2002; Sivle et al. 

2012). Given the depth of their known prey in New Zealand waters and the isotopic values recorded 
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from LFPW skin between 2009 and 2017, LFPWs are likely feeding down to 500 m depth in this 

region.  

All dietary investigations in this thesis indicated a level of plasticity in foraging (Chapters 2, 3, 4). 

The consumption of more coastal prey species such as conger eel Congridae sp., octopus P. cordiformis 

and carpet shark was more commonly associated with mature male LFPWs (Chapter 2). However, 

sulphur stable isotope values suggested that benthic/coastal feeding was also more common in the 

year 2017 (Chapter 3), even when the number of mature males sampled was similar, indicating a 

possible temporal shift in foraging area to more coastal regions for either LFPWs or their prey. 

Plasticity in coastal feeding has also been attributed to LFPWs in Chilean waters (Becker et al. 2021), 

and around Canada, where nearshore foraging hotspots have been identified (McComb-Turbitt et 

al. 2021). The PUFA levels in coastal species conger eel Congridae sp. (Chapter 4) corroborated with 

reports Congridae sp. are nocturnal feeders (Levy et al. 1988; Choi et al. 2008; Shoji et al. 2017). The 

presence of conger eels and nocturnal octopus (Bassett et al. 2008; Hesse et al. 2016) in small numbers 

in LFPW diet (Chapter 2, 4) therefore, indicates an element of nocturnal feeding within coastal New 

Zealand waters. Indeed, long, deep LFPW dives recorded at night were assumed to be foraging trips 

(Shane 1995; Robin et al. 2002; Nawojchik et al. 2003; Mate et al. 2005), showing a likely diurnal 

foraging strategy for LFPWs.  

6.3.4. Diet and body condition  

No single body condition measurement was found to consistently explain variation in all three of 

the dietary fatty acids tested (Chapter 5). However, girth did increase with increasing dietary fatty 

acid C20:1n9. This fatty acid was in higher proportions in arrow squid than any of the other prey 

tested (Chapter 4) and is further considered a marker of bathypelagic squid in the Southern Ocean 

(Pethybridge et al. 2010). Whilst this could suggest a degree of increased girth with squid 
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consumption, the explanatory power of girth on C20:1n9 variation was low in this study. Still, 

insights agreed with fatty acid analysis of polar bears Ursus maritimus which found reduced 

consumption of preferred prey also correlated with reduced body condition (indicated by lipid 

content; Florko et al. 2021). Furthermore, prey availability was the best predictor of body condition 

in killer whales (Stewart et al. 2021). The link between diet and body condition may, therefore, be 

worth investigating further in LFPWs in New Zealand waters. 

As an exploratory study, both fatty acids and body condition were investigated for only a subset of 

individuals (n = 15). Consequently, it was not possible to conclude causality from this limited sample 

size. Notably, the role of blubber is multi-faceted (Lockyer 1993; Iverson 2009), so factors such as 

metabolism, growth, response to stimuli such as ocean temperature, or ontogeny could all contribute 

to changes noted to blubber (Guerrero and Rogers 2019; Tang et al. 2021), although they were not 

able to be explored here. Furthermore, other measurements of body condition have been used in 

marine mammals previously, including photogrammetry (Christiansen et al. 2020; Stewart et al. 

2021), adipocyte number (Castrillon et al. 2017) and trunk mass (Gómez-Campos et al. 2011). 

Although this study was unable to examine all body condition measurements (Castrillon and 

Bengtson Nash 2020), these should be included in future studies for a more comprehensive study of 

body condition measurements for LFPWs.  

6.4. Management and conservation implications  

The LFPW is considered nationally “not threatened” within New Zealand waters, with qualifiers of 

“S?O” (an indication of uncertainty as to the security status of a species overseas) and “data poor” 

(Baker et al. 2019). Furthermore, an assessment of the risk to marine mammals from fishing vessels 

in the New Zealand exclusive economic zone showed a medium risk ratio for LFPWs from fishing 

vessels (Abraham et al. 2017). The risk assessment ranked 35 marine mammal species in terms of 
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their risk from fishing vessels; LFPWs were originally ranked 9th mainly due to data uncertainty 

(Abraham et al. 2017). This work was updated with both new data and methodology in 2022 to 

include a total of 54 species, with LFPWs ranked 15th most impacted based on estimated New 

Zealand population sizes (MacKenzie 2022). Whilst demographic parameters were available for 

LFPWs and others such as common dolphins, the recent assessment notes cautious interpretation is 

required given appropriate demographic parameters are unknown for many marine mammals 

species within New Zealand waters (MacKenzie 2022). This thesis contributed novel data on the 

foraging ecology of LFPWs to a nationally data poor species, which has implications for fisheries 

management, changing oceanic conditions and strandings.   

6.4.1. Implications for fisheries 

A total of 21 LFPWs have been incidentally captured by commercial fisheries in the 15 years between 

the 2002/03 to 2019/20 fishing years within New Zealand waters (Fisheries New Zealand Protected 

Species Bycatch Open Database), all occurring in areas of the continental shelf. Though LFPWs have 

the second highest recorded captures of any cetacean in New Zealand waters, the number is still 

relatively low in comparison to reported bycatch of common dolphins Delphinus delphis within the 

same time period (n = 220, Ministry for Primary Industries). Whilst the closely related short-finned 

pilot whale (Globicephala macrorhynchus) is regularly bycaught in long-line fisheries overseas 

(Stepanuk et al. 2018; Thorne et al. 2019), LFPWs are not as heavily captured. The largest of the LFPW 

incidental captures in New Zealand occurred in Taranaki (West Coast North Island), where six 

LFPWs were captured by trawl fisheries targeting jack mackerel in 2004/05 year (22.2% tows 

observed). A further two LFPWs were captured in the jack mackerel fishery in the 2008/09 year 

(37.5% tows observed) and five captures were recorded 2012/13 year (87.7% tows observed; Fisheries 

New Zealand Protected Species Bycatch Open Database; Abraham 2016). Trawl fisheries for hoki 
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(2017/18 fishing year; Childerhouse and Johnston 2019; 34.5% tows observed) and hake (2019/20 

fishing year; 75.4% tows observed) accounted for two LFPW captures combined, whilst the further 

captures were recorded in a school shark setnet (n = 1; 2007/08 fishing year; 4% net observed) off 

west coast South Island and long-line fisheries for bluefin tuna (n =2; 2003/04 fishing year; 46.1% 

hooks observed), bigeye tuna (n = 1; 2017/18 fishing year; 9% hooks observed) and ling (n = 2; 2002/03 

fishing year; 55.8% hooks observed; Fisheries New Zealand; Childerhouse and Johnston 2019).   

New Zealand does also hold an active commercial fishery for arrow squid, the most important prey 

species in the diet of LFPWs according to this thesis. Fishing intensity for arrow squid is variable 

around New Zealand, with trawl vessels operating in the vicinity of the Stewart Snares shelf (near 

Stewart Island) accounting for most of the commercial catch in recent years (Fisheries New Zealand 

2022). Observer effort of the squid trawl has increased from < 40% tows observed prior to 2012 to 

over 80% tows observed in more recent years; exceptions were the 2016/17 and 2019/20 fishing years 

where 74.2% and 79.4% tows were observed respectively (Fisheries New Zealand Protected Species 

Bycatch Open Database). Arrow squid are commercially sourced though trawling almost exclusively 

in New Zealand since jigging stopped on any large scale in the 2016/17 fishing year. Jigging is 

considered to produce less bycatch than other fishing techniques (Wakefield et al. 2016), though 

trawling is generally considered more dangerous for marine mammals (Slooten 2013; Allen et al. 

2014). No direct interactions between LFPWs and the New Zealand arrow squid fishery have been 

reported between 2002 and 2020 (Finucci et al. 2019; Fisheries New Zealand Protected Species 

Bycatch Open Database; Fisheries New Zealand 2022). However, the reliance of LFPWs on arrow 

squid consumption appears to have persisted over at least a 12-year period 2005 – 2017 (Chapter 2, 

Beatson and O’Shea 2009), despite commercial arrow squid landings in New Zealand waters varying 

between 15,053 – 72,418 tonnes during the same time interval  (Fisheries New Zealand 2022).  
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6.4.2. Implications of changing ocean conditions 

Commercial vessels targeting arrow squid operate close to known LFPW stranding hotspots such as 

Stewart Island (Betty et al. 2020), and therefore, close to potential LFPW foraging locations. 

Accordingly, competition for resources in the changing marine climate are important management 

considerations. Negative anomalies of chlorophyll-a (CHL-a) were recoded off the West Coast of 

New Zealand’s South Island during the study period of this thesis, indicating lower than usual 

productivity in the area (Pinkerton et al. 2019). One of two areas reporting the greatest decreasing 

trends in CHL-a was within Tasman Bay, Nelson, west coast of New Zealand (Pinkerton et al. 2019), 

where Farewell Spit is located. Increasingly, New Zealand is also experiencing ocean warming 

events such as that of 2017 (Salinger et al. 2019; Chiswell and Sutton 2020). The two LFPW prey 

species with the largest commercial catch, arrow squid and hoki, are both reported to decrease in 

size in response to warming waters (Lavin et al. 2022). The increased competition between these 

commercial fisheries and LFPWs as prey size reduces with a warming ocean is a management 

concern for LFPWs going forward. Any changes to density of prey species such as arrow squid 

should be viewed with caution as this could increase competition for marine resources (Corrales et 

al. 2018) which in turn could lead to an increase in interactions between LFPWs and commercial 

vessels. Indeed, potential effects of resource competition and foraging overlap between the 

commercial arrow squid fishery and the declining New Zealand sea lion population have been 

heavily discussed (Wilkinson et al. 2003; Robertson and Chilvers 2011; Bowen 2012; Chilvers 2012; 

Large et al. 2019). 

Ocean warming is also projected to cause changes in squid distribution as current habitats become 

unsuitable (Rodhouse 2013; Alabia et al. 2015; Yu and Chen 2018). The consequences of this for 

LFPWs in New Zealand waters are unclear, but studies in the Northeast Atlantic have suggested 
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that range shifts caused by ocean warming could potentially cause LFPWs to become separated from 

their prey (Thorne and Nye 2021). Indeed, a recent report into the effects of climate on marine 

mammals suggested LFPWs may be displaced around New Zealand by the more typically tropical 

short-finned pilot whale (Roberts and Hendriks 2022). The discovery of several new species to the 

diet of LFPWs in New Zealand waters, including both fish and benthic species (Chapter 2), could 

point to some degree of climate related dietary diversification already occurring, although no links 

have been made to ocean warming thus far.  

6.4.3. Implications for strandings 

Stomach content analysis of LFPWs (Chapter 2) demonstrated evidence of short-term sexual 

segregation in target prey species, which was not fully evident from the longer-term methodologies 

of carbon and nitrogen stable isotope or fatty acid analyses (Chapters 3, 4). This could indicate that 

the more diverse diet observed in mature males (Chapter 2, Chapter 3) could be a function of 

stranding events, with males more able to forage for demersal octopus or carpet shark whilst in 

shallower waters. Alternatively, it is possible that this shallower coastal foraging could be a risk 

factor for single and/or mass stranding events, since LFPWs normally occupy more offshore waters. 

Indeed, the possible relationship between stranding and foraging in shallow environments was 

explored in bottlenose dolphins (McGovern et al. 2020), though no conclusive link was made. Cause 

and effect analysis between foraging and strandings lay outside the scope of this PhD but would be 

an interesting route to explore in the future.  

Body condition measurements of stranded LFPWs indicated that girth measurements may correlate 

with both polyunsaturated and saturated fatty acids in LFPWs, and therefore may have a link to 

fatty acid deposition (see Chapter 5). Accurate body condition measurements could add value to 

health assessments of both free swimming and stranded cetaceans (Derous et al. 2020). Particularly, 
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any morphometric measurements that can be used to aid assessments of welfare and health could 

also potentially aid management decisions on re-flotation during live-stranding events.  

6.5. Future research directions  

6.5.1. Foraging ecology and distribution 

A valuable next step for this research area would be to explore the diet of bycaught LFPWs, for 

comparison and validation of this dataset against wild swimming LFPWs. Furthermore, samples 

collected during the austral winter would elucidate whether arrow squid are seasonally important 

to LFPW diet, or if year-round dietary reliance on arrow squid is apparent. To further explore the 

role of arrow squid to LFPW diet, it is recommended that both stable isotope and fatty acid analyses 

be conducted on a wider range of potential LFPWs prey species, such as has been conducted on 

potential prey of other marine mammals (Kiszka et al. 2014b; Guerrero et al. 2016; Teixeira et al. 

2021). DNA analysis of stomach contents could also help to reveal further prey species that may 

have been missed through hard parts identification, as was helpful in the case of both carpet shark 

and conger eel in this study. Combining these techniques may also help to discern which, if any, 

prey species were missed from the current analysis.  

Furthermore, analysis of the macronutrient composition of prey, such as that performed on prey of 

the Franciscana dolphin Pontoporia blainvillei (Denuncio et al. 2017) and common dolphin (Stockin et 

al. 2022a) would assist the understanding of any potential consequences of prey shifts on the LFPW 

population, as well as drivers behind ontogenetic dietary variation presented in Chapter 2 and 3. 

The ontogenetic variation noted should also be validated by fatty acid analysis within a  larger LFPW 

sample, to explore whether ontogenetic differences recorded in short-term diet and isotopic niche, 

are replicated over a longer temporal period. This would offer insights as to whether ontogenetic 

dietary differences occur longer term, or whether they are a function of stranding events themselves.  
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6.5.2. Body condition 

The effects of ontogeny on blubber, body condition, and body composition have been noted in other 

cetacea (Dunkin et al. 2005; Mallette et al. 2016). Although no effects of reproductive group were 

observed on lipid content of blubber from LFPWs in the Faroe Islands and North-eastern Atlantic 

(Lockyer 1993), similar studies would be of use in New Zealand LFPWs, to detect physiological 

drivers and variation in LFPW body condition. Particularly, a larger sample size than was used in 

this thesis would be required to identify accurate relationships between body condition 

measurements, ontogeny, metabolism, diet, and health in LFPWs. Accurate body condition 

measurements would be particularly helpful when attempting to quantify the impacts of potential 

changes in LFPW diet and have been suggested as a possible monitoring tool for climate related 

effects on cetacea in New Zealand (Roberts and Hendriks 2022).  

The assessment of morphometric body condition may hold promise in relation to LFPW stranding 

events. Accurate, non-lethal measurements of energy reserves may potentially serve as a useful 

predictor of health and survivorship after refloating stranded animals (Wiley et al. 2001). 

Particularly, research into aerial photogrammetry and morphometric measures including girth and 

BCI should be explored, alongside tagging of re-floated LFPWs at strandings (e.g., Gales et al. 2012; 

Wells et al. 2013), to help understand any links between LFPW body condition measurements and 

their post-stranding survival rate. 

6.5.3. The New Zealand Pilot Whale Database and Tissues Archive 

The continuation of the New Zealand Pilot Whale Database and Tissue Archive based at Massey 

University is invaluable to our understanding of the G. m. edwardii sub-species of LFPW in the 

Southern Hemisphere. Parameters such as sex, age, total body length, maturity status and 

reproductive status available for many of the LFPWs stranded have been central to this study and 
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allowed ontogenetic and spatiotemporal comparisons to occur. Future research involving this 

dataset is recommended to address knowledge gaps of G. m. edwardii in the Southern Hemisphere, 

including abundance and distribution data lacking in this sub-species (Kraft et al. 2020).  

To better explain drivers behind the data presented in this thesis, three specific recommendations 

are made: 1) the sampling of LFPW stomachs should be continued to check for changes in target 

prey species, prioritising the sampling of LFPW stomachs from bycaught individuals, those 

stranded outside the austral summer and those stranded in areas not well  represented in the 

literature (e.g., Chatham Islands, North Island New Zealand); 2) satellite tagging of LFPWs should 

be carried out (as also recommended by Betty 2019 and Stockin et al. 2022b) to understand foraging 

areas/depths and quantify level of overlap with commercial fisheries and 3) body condition 

measurements should be further explored, including the addition of adipocyte index (e.g., Castrillon 

et al. 2017) and aerial photogrammetry (Booth et al. 2020; Christiansen et al. 2020b; Aoki et al. 2021) 

to assess a) any changes in LFPW body condition in relation to potential prey species and b) links to 

stranding/re-floatation survivorship.  

Finally, the addition of freeze-dried skin samples to the LFPW archive at Massey University has 

created the opportunity for investigations into the effects of long-term storage on LFPW skin. 

Samples from the same LFPWs are also stored in ethanol and/or frozen, to use for comparison of 

stable isotope values to assess effects of storage in stable isotope studies. Whilst the effects of storage  

have been investigated on some tissues from cetacea and their potential prey species over short time 

scales (e.g., Kelly et al. 2006; Burrows et al. 2014; Kiszka et al. 2014a; Olin et al. 2014; Javornik et al. 

2019; Planas et al. 2020), data on the effects of longer-term sample storage on biochemical tracers 

(e.g., Newsome et al. 2018) are less common. Further research on species and tissue specific storage 
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implications is recommended (Carabel et al. 2009), which would benefit foraging ecology research 

more widely.  

6.6. Conclusion 

Prior to this study, the knowledge of the diet of LFPWs in New Zealand waters was limited to a  

snapshot of 37 LFPW stomachs from 2005, 2006 and 2008. This thesis provides novel data on dietary 

variation of the LFPW population from multiple locations across New Zealand, over an eight-year 

period. This research further explored, for the first time in New Zealand, insights into the 

relationship between diet and individual body condition. Thus, this thesis has provided 

comprehensive information on dietary composition and body condition measurements of LFPWs 

across both ontogenetic and spatiotemporal scales. The exploration of multiple dietary markers 

reduced biases from individual methodologies alone which allowed for greater insight to foraging 

ecology of LFPWs. It is hoped that research presented in this thesis will improve understanding of 

the interactions between LFPWs and the wider ecosystem, critical to ensuring effective ecosystem-

based management actions. It is highly recommended that long-term datasets, such as the one used 

in this study receive continued support to identify change on individual species and wide-scale 

ecosystem health. Successful future management of LFPWs will require data on their distribution to 

be prioritised. It is hoped that the research presented here will assist in effective management of 

LFPW populations, through the use of largescale baseline foraging and body condition data to 

illuminate impacts of oceanic change. 



188 

 

Bibliography 
Abecassis M, Polovina J, Baird RW, Copeland A, Drazen JC, Domokos R, Oleson E, Jia Y, Schorr 

GS, Webster DL (2015) Characterizing a foraging hotspot for short-finned pilot whales and 

Blainville’s beaked whales located off the west side of Hawai ‘i Island by using tagging and 

oceanographic data. PLoS One 10: e0142628  

Abend AG, Smith TD (1995) Differences in ratios of stable isotopes of nitrogen in long-finned pilot 

whales (Globicephala melas) in the western and eastern North Atlantic. ICES Journal of 

Marine Science 52: 837-841 doi https://doi.org/10.1006/jmsc.1995.0080 

Abend AG, Smith TD (1997) Differences in stable isotope ratios of carbon and nitrogen between 

long-finned pilot whales (Globicephala melas) and their primary prey in the western north 

Atlantic. ICES Journal of Marine Science 54: 500-503 doi 

https://doi.org/10.1006/jmsc.1996.0192 

Abend AG, Smith TD (1999) Review of distribution of the long-finned pilot whale (Globicephala 

melas) in the North Atlantic and Mediterranean  

Abraham ER, Neubauer P, Berkenbusch K, Richard Y (2017) Assessment of the risk to New 

Zealand marine mammals from commercial fisheries. Ministry for Primary Industries, 

Manatū Ahu Matua 

Abraham ER, Y; Berkenbusch, K; Thompson, F. (2016) Summary of the capture of seabirds, marine 

mammals, and turtles in New Zealand commercial fisheries, 2002–03 to 2012–13., pp 205 

Abrams PA (2019) Foraging Behavior as a Cornerstone of Population and Community Ecology. In: 

Choe JC (ed) Encyclopedia of Animal Behavior (Second Edition). Academic Press, Oxford, 

pp 201-208 

Abrantes KG, Barnett A (2011) Intrapopulation variations in diet and habitat use in a marine apex 

predator, the broadnose sevengill shark Notorynchus cepedianus. Marine Ecology Progress 

Series 442: 133-148  

Ackman RG, Hingley JH, Eaton CA, Sipos JC, Mitchell ED (1975) Blubber fat deposition in 

mysticeti whales. Canadian Journal of Zoology 53: 1332-1339 doi 

https://doi.org/10.1139/z75-158 %M 1203816 

Adamczak SK, Holser RR, Costa DP, Berens McCabe EJ, Wells RS (2021) Body Composition of 

Common Bottlenose Dolphins in Sarasota Bay, Florida. Frontiers in Marine Science 8 doi 

10.3389/fmars.2021.615773 

Aguiar dos Santos R, Haimovici M (2001) Cephalopods in the diet of marine mammals stranded or 

incidentally caught along Southeastern and Southern Brazil (21-34°s). Fisheries Research 52: 

99-112 doi https://doi.org/10.1016/S0165-7836(01)00234-X 

Aguiar dos Santos R, Haimovici M (2002) Cephalopods in the trophic relations off southern Brazil. 

Bulletin of Marine Science 71: 753-770  

https://doi.org/10.1006/jmsc.1995.0080
https://doi.org/10.1006/jmsc.1996.0192
https://doi.org/10.1139/z75-158%20%25M%201203816
https://doi.org/10.1016/S0165-7836(01)00234-X


189 

 

 

Aguilar A, Borrell A (1990) Patterns of lipid content and stratification in the blubber of fin whales 

(Balaenoptera physalus). Journal of Mammalogy 71: 544-554  

Aguilar R, Ogburn MB, Driskell AC, Weigt LA, Groves MC, Hines AH (2017) Gutsy genetics: 

identification of digested piscine prey items in the stomach contents of sympatric native 

and introduced warmwater catfishes via DNA barcoding. Environmental Biology of Fishes 

100: 325-336  

Agusti C, Carbajal A, Olvera-Maneu S, Domingo M, Lopez-Bejar M (2022) Blubber and serum 

cortisol concentrations as indicators of the stress response and overall health status in 

striped dolphins. Comparative Biochemistry and Physiology Part A: Molecular & 

Integrative Physiology 272: 111268 doi https://doi.org/10.1016/j.cbpa.2022.111268 

Alabia ID, Saitoh S-I, Igarashi H, Ishikawa Y, Usui N, Kamachi M, Awaji T, Seito M (2015) Future 

projected impacts of ocean warming to potential squid habitat in western and central North 

Pacific. ICES Journal of Marine Science 73: 1343-1356 doi 

https://doi.org/10.1093/icesjms/fsv203 

Alapati A, Kapa SR, Jeepalyam S, Rangappa SMP, Yemireddy KR (2010) Development of the body 

condition score system in Murrah buffaloes: validation through ultrasonic assessment of 

body fat reserves. Journal of veterinary science 11: 1-8  

Alfaro AC, Thomas F, Sergent L, Duxbury M (2006) Identification of trophic interactions within an 

estuarine food web (northern New Zealand) using fatty acid biomarkers and stable 

isotopes. Estuarine, Coastal and Shelf Science 70: 271-286 doi 

https://doi.org/10.1016/j.ecss.2006.06.017 

Alkanani T, Parrish C, Thompson R, McKenzie C (2007) Role of fatty acids in cultured mussels, 

Mytilus edulis, grown in Notre Dame Bay, Newfoundland. Journal of Experimental Marine 

Biology and Ecology 348: 33-45  

Allan BM, Arnould JPY, Martin JK, Ritchie EG (2013) A cost-effective and informative method of 

GPS tracking wildlife. Wildlife Research 40: 345-348 doi https://doi.org/10.1071/WR13069 

Allan EL, Ambrose ST, Richoux NB, Froneman PW (2010) Determining spatial changes in the diet 

of nearshore suspension-feeders along the South African coastline: Stable isotope and fatty 

acid signatures. Estuarine, Coastal and Shelf Science 87: 463-471 doi 

https://doi.org/10.1016/j.ecss.2010.02.004 

Allen AS, Read AJ, Shorter KA, Gabaldon J, Blawas AM, Rocho-Levine J, Fahlman A (2022) 

Dynamic body acceleration as a proxy to predict the cost of locomotion in bottlenose 

dolphins. Journal of Experimental Biology 225 doi https://doi.org.10.1242/jeb.243121 

Allen SJ, Tyne JA, Kobryn HT, Bejder L, Pollock KH, Loneragan NR (2014) Patterns of Dolphin 

Bycatch in a North-Western Australian Trawl Fishery. PLoS One 9: e93178 doi 

https://doi.org.10.1371/journal.pone.0093178 

https://doi.org/10.1016/j.cbpa.2022.111268
https://doi.org/10.1093/icesjms/fsv203
https://doi.org/10.1016/j.ecss.2006.06.017
https://doi.org/10.1071/WR13069
https://doi.org/10.1016/j.ecss.2010.02.004
https://doi.org.10.1242/jeb.243121
https://doi.org.10.1371/journal.pone.0093178


190 

 

Alonso MK, Pedraza SN, Schiavini ACM, Goodall RNP, Crespo EA (1999) Stomach contents of 

false killer whales (Pseudorca crassidens) stranded on the coasts of the Strait of Magellan, 

Tierra del Fuego. Marine Mammal Science 15: 712-724 doi https://doi.or/10.1111/j.1748-

7692.1999.tb00838.x 

Alstrup AKO, Sonne C, Brauckhoff M, Hansen JH, Thøstesen CB (2022) Skull and Neck Lesions in 

a Long-Finned Pilot Whale (Globicephala melas): A Result of Ship Collision? Animals 12: 

2362  

Amos B, Schlötterer C, Tautz D (1993) Social Structure of Pilot Whales Revealed by Analytical 

DNA Profiling. Science 260: 670-672 doi https://doi.org/:10.1126/science.8480176 

Amundsen P-A, Sánchez-Hernández J (2019) Feeding studies take guts – critical review and 

recommendations of methods for stomach contents analysis in fish. Journal of Fish Biology 

95: 1364-1373 doi https://doi.org/10.1111/jfb.14151 

Amundsen PA, Gabler HM, Staldvik FJ (1996) A new approach to graphical analysis of feeding 

strategy from stomach contents data—modification of the Costello (1990) method. Journal 

of Fish Biology 48: 607-614 doi https://doi.org/10.1111/j.1095-8649.1996.tb01455.x 

Anderson ME (2005) Food habits of some deep-sea fish off South Africa's west coast. 2. Eels and 

spiny eels (Anguilliformes and Notacanthiformes). African Journal of Marine Science 27: 557-

566 doi https://doi.org/10.2989/18142320509504116 

Anderson MJ (2014) Permutational multivariate analysis of variance (PERMANOVA). Wiley 

statsref: statistics reference online: 1-15  

Anderson OF, Edwards CT (2018) Fish and Invertebrate Bycatch and Discards in New Zealand 

Arrow Squid and Scampi Trawl Fisheries from 2002-03 Until 2015-16. Ministry for Primary 

Industries, Manatū Ahu Matua 

Antón-Tello M, Britto VO, Gil-Delgado JA, Rico E, Dies JI, Monrós JS, Vera P (2021) Unravelling 

diet composition and niche segregation of colonial waterbirds in a Mediterranean wetland 

using stable isotopes. Ibis 163: 913-927 doi https://doi.org/10.1111/ibi.12928 

Aoki K, Isojunno S, Bellot C, Iwata T, Kershaw J, Akiyama Y, Martín López LM, Ramp C, Biuw M, 

Swift R, Wensveen PJ, Pomeroy P, Narazaki T, Hall A, Sato K, Miller PJO (2021) Aerial 

photogrammetry and tag-derived tissue density reveal patterns of lipid-store body 

condition of humpback whales on their feeding grounds. Proceedings of the Royal Society 

B: Biological Sciences 288: 20202307 doi https://doi.org/10.1098/rspb.2020.2307 

Aoki K, Sakai M, Miller PJO, Visser F, Sato K (2013) Body contact and synchronous diving in long-

finned pilot whales. Behavioural Processes 99: 12-20 doi 

https://doi.org/10.1016/j.beproc.2013.06.002 

Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. 

Ecology letters 14: 948-958  

https://doi.or/10.1111/j.1748-7692.1999.tb00838.x
https://doi.or/10.1111/j.1748-7692.1999.tb00838.x
https://doi.org/:10.1126/science.8480176
https://doi.org/10.1111/jfb.14151
https://doi.org/10.1111/j.1095-8649.1996.tb01455.x
https://doi.org/10.2989/18142320509504116
https://doi.org/10.1111/ibi.12928
https://doi.org/10.1098/rspb.2020.2307
https://doi.org/10.1016/j.beproc.2013.06.002


191 

 

Armiger H, Hartill B, Rush N, Bian R, Buckthought D, Smith M, Spong K (2019) Length and age 

compositions of recreational landings of kahawai in KAH 1 from January to April in 2015–

16, 2016–17 and 2017–18. New Zealand Fisheries Assessment Report: 35  

Arostegui MC, Schindler DE, Holtgrieve GW (2019) Does lipid-correction introduce biases into 

isotopic mixing models? Implications for diet reconstruction studies. Oecologia 191: 745-

755 doi https://doi.org/10.1007/s00442-019-04525-7 

Arranz P, Benoit-Bird KJ, Friedlaender AS, Hazen EL, Goldbogen JA, Stimpert AK, DeRuiter SL, 

Calambokidis J, Southall BL, Fahlman A (2019) Diving behavior and fine-scale kinematics 

of free-ranging Risso's dolphins foraging in shallow and deep-water habitats. Frontiers in 

Ecology and Evolution 7: 53  

Arregui M, Josa M, Aguilar A, Borrell A (2017) Isotopic homogeneity throughout the skin in small 

cetaceans. Rapid Communications in Mass Spectrometry 31: 1551-1557 doi 

https://doi.org/10.1002/rcm.7936 

Arriola A, Biuw M, Walton M, Moss S, Pomeroy P (2013) Selective blubber fatty acid mobilization 

in lactating gray seals (Halichoerus grypus). Physiological and Biochemical Zoology 86: 441-

450  

Audige L, Wilson PR, Morris RS (1998) A body condition score system and its use for farmed red 

deer hinds. New Zealand Journal of Agricultural Research 41: 545-553 doi 

https://doi.org/10.1080/00288233.1998.9513337 

Auel H, Harjes M, Da Rocha R, Stübing D, Hagen W (2002) Lipid biomarkers indicate different 

ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto 

abyssorum and T. libellula. Polar Biology 25: 374-383  

Augusto JF, Frasier TR, Whitehead H (2017) Social structure of long-finned pilot whales 

(Globicephala melas) off northern Cape Breton Island, Nova Scotia. Behaviour 154: 509-540 

doi https://doi.org/10.1163/1568539X-00003432 

Aurioles D, Koch PL, Le Boeuf BJ (2006) Differences in foraging location of Mexican and California 

elephant seals: evidence from stable isotopes in pups. Marine Mammal Science 22: 326-338 

doi https://doi.org/10.1111/j.1748-7692.2006.00023.x 

Awruch CA, Frusher SD, Stevens JD, Barnett A (2012) Movement patterns of the draughtboard 

shark Cephaloscyllium laticeps (Scyliorhinidae) determined by passive tracking and 

conventional tagging. Journal of Fish Biology 80: 1417-1435 doi 

https://doi.org/10.1111/j.1095-8649.2012.03249.x 

Azzellino A, Gaspari S, Airoldi S, Nani B (2008) Habitat use and preferences of cetaceans along the 

continental slope and the adjacent pelagic waters in the western Ligurian Sea. Deep Sea 

Research Part I: Oceanographic Research Papers 55: 296-323  

Bagge LE, Koopman HN, Rommel SA, McLellan WA, Pabst DA (2012) Lipid class and depth-

specific thermal properties in the blubber of the short-finned pilot whale and the pygmy 

https://doi.org/10.1007/s00442-019-04525-7
https://doi.org/10.1002/rcm.7936
https://doi.org/10.1080/00288233.1998.9513337
https://doi.org/10.1163/1568539X-00003432
https://doi.org/10.1111/j.1748-7692.2006.00023.x
https://doi.org/10.1111/j.1095-8649.2012.03249.x


192 

 

sperm whale. The Journal of Experimental Biology 215: 4330-4339 doi 

https://doi.org/0.1242/jeb.071530 

Baird RW, Borsani JF, Hanson MB, Tyack PL (2002) Diving and night-time behavior of long-finned 

pilot whales in the Ligurian Sea. Marine Ecology Progress Series 237: 301-305  

Baker CS, Boren L, Childerhouse S, Constantine R, Van Helden A, Lundquist D, Raymont W, Rolfe 

JR (2019) Conservation status of New Zealand marine mammals, 2019. Publishing Team, 

Department of Conservation, Wellington, New Zealand 

Balasse M, Tresset A, Dobney K, Ambrose SH (2005) The use of isotope ratios to test for seaweed 

eating in sheep. Journal of Zoology 266: 283-291 doi 

https://doi.org/10.1017/S0952836905006916 

Ball H, Londraville R, Prokop J, George JC, Suydam R, Vinyard C, Thewissen J, Duff R (2017) 

Beyond thermoregulation: metabolic function of cetacean blubber in migrating bowhead 

and beluga whales. Journal of Comparative Physiology B 187: 235-252  

Ball HC, Stavarz M, Oldaker J, Usip S, Londraville RL, George JC, Thewissen JGM, Duff RJ (2015) 

Seasonal and Ontogenetic Variation in Subcutaneous Adipose Of the Bowhead Whale 

(Balaena mysticetus). The Anatomical Record 298: 1416-1423 doi 

https://doi.org/10.1002/ar.23125 

Barlow J, Cheeseman T, Trickey JS (2021) Acoustic detections of beaked whales, narrow-band high-

frequency pulses and other odontocete cetaceans in the Southern Ocean using an 

autonomous towed hydrophone recorder. Deep Sea Research Part II: Topical Studies in 

Oceanography 193: 104973  

Barros NB, Ostrom PH, Stricker CA, Wells RS (2010) Stable isotopes differentiate bottlenose 

dolphins off west-central Florida. Marine Mammal Science 26: 324-336 doi 

https://doi.org/10.1111/j.1748-7692.2009.00315.x 

Barrow L,  Bjorndal K,, Reich K, (2008) Effects of Preservation Method on Stable Carbon and 

Nitrogen Isotope Values. Physiological and Biochemical Zoology: Ecological and 

Evolutionary Approaches 81: 688-693 doi https://doi.org/10.1086/588172 

Barton K, Barton MK (2015) Package ‘mumin’. Version 1: 439  

Bassett D, Jeffs A, Montgomery J (2008) Identification of predators using a novel photographic 

tethering device. Marine and Freshwater Research 59: 1079-1083  

Bassoi M, Secchi E (2000) Temporal variation in the diet of Franciscana Pontoporia blainvillei 

(Cetacea, Pontoporiidae) as a consequence of fish stocks depletion off southern Brazil 

Technical Paper WP9 presented to IV Workshop para a Coordenação da Pesquisa e 

Conservação da Franciscana, Pontoporia blainvillei, no Atlântico Sul Ocidental, pp 05-09 

Bassoi M, Secchi ER, Danilewicz D, Moreno IB, Santos RA, Shepherd JG (2021) Intrapopulation 

variation in the diet of franciscana dolphin (Pontoporia blainvillei) off southern Brazil. 

https://doi.org/0.1242/jeb.071530
https://doi.org/10.1017/S0952836905006916
https://doi.org/10.1002/ar.23125
https://doi.org/10.1111/j.1748-7692.2009.00315.x
https://doi.org/10.1086/588172


193 

 

Journal of the Marine Biological Association of the United Kingdom 101: 621-637 doi 

https://doi.org/10.1017/S0025315421000436 

Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H (2004a) Determining trophic niche 

width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007-

1012 doi https://doi.org/10.1111/j.0021-8790.2004.00861.x 

Bearhop S, Hilton GM, Votier SC, Waldron S (2004b) Stable isotope ratios indicate that body 

condition in migrating passerines is influenced by winter habitat. Proceedings of the Royal 

Society of London Series B: Biological Sciences 271: S215-S218 doi 

https://doi.org/10.1098/rsbl.2003.0129 

Beasley I, Cherel Y, Robinson S, Betty E, Hagihara R, Gales R (2019) Stomach contents of long-

finned pilot whales, Globicephala melas mass-stranded in Tasmania. PLoS One 14 doi 

https://doi.org/10.1371/journal.pone.0206747 

Beatson E (2007) The diet of pygmy sperm whales, Kogia breviceps, stranded in New Zealand: 

implications for conservation. Reviews in Fish Biology and Fisheries 17: 295-303  

Beatson E, O'Shea S, Ogle M (2007a) First report on the stomach contents of long‐finned pilot 

whales, Globicephala melas, stranded in New Zealand. New Zealand Journal of Zoology 34: 

51-56 doi https://doi.org/10.1080/03014220709510063 

Beatson E, O'Shea S, Stone C, Shortland T (2007b) Notes on New Zealand mammals 6. Second 

report on the stomach contents of long‐finned pilot whales, Globicephala melas. New 

Zealand Journal of Zoology 34: 359-362 doi https://doi.org/10.1080/03014220709510095 

Beatson EL, O’Shea S (2009) Stomach contents of long‐finned pilot whales, Globicephala melas, mass‐

stranded on Farewell Spit, Golden Bay in 2005 and 2008. New Zealand Journal of Zoology 

36: 47-58 doi https://doi.org/10.1080/03014220909510139 

Beausoleil NJ, Mellor DJ, Baker L, Baker SE, Bellio M, Clarke AS, Dale A, Garlick S, Jones B, 

Harvey A, Pitcher BJ, Sherwen S, Stockin KA, Zito S (2018) “Feelings and Fitness” Not 

“Feelings or Fitness”–The Raison d'être of Conservation Welfare, Which Aligns 

Conservation and Animal Welfare Objectives. Frontiers in Veterinary Science 5 doi 

https://doi.org/10.3389/fvets.2018.00296 

Beck CA, Iverson SJ, Bowen WD, Blanchard W (2007) Sex differences in grey seal diet reflect 

seasonal variation in foraging behaviour and reproductive expenditure: evidence from 

quantitative fatty acid signature analysis. Journal of Animal Ecology 76: 490-502 doi 

https://doi.org/10.1111/j.1365-2656.2007.01215.x 

Becker YA, Fioramonti NE, Dellabianca NA, Riccialdelli L (2021) Feeding ecology of the long- 

finned pilot whale, Globicephala melas edwardii, in the southwestern Atlantic Ocean, 

determined by stable isotopes analysis. Polar Biology 44: 1655-1667 doi 

https://doi.org/10.1007/s00300-021-02908-2 

https://doi.org/10.1017/S0025315421000436
https://doi.org/10.1111/j.0021-8790.2004.00861.x
https://doi.org/10.1098/rsbl.2003.0129
https://doi.org/10.1371/journal.pone.0206747
https://doi.org/10.1080/03014220709510063
https://doi.org/10.1080/03014220709510095
https://doi.org/10.1080/03014220909510139
https://doi.org/10.3389/fvets.2018.00296
https://doi.org/10.1111/j.1365-2656.2007.01215.x
https://doi.org/10.1007/s00300-021-02908-2


194 

 

Beltran RS, Kilpatrick AM, Breed GA, Adachi T, Takahashi A, Naito Y, Robinson PW, Smith Jr 

WO, Kirkham AL, Burns JM (2021) Seasonal resource pulses and the foraging depth of a 

Southern Ocean top predator. Proceedings of the Royal Society B 288: 20202817  

Bengoumi M, Faulconnier Y, Tabarani A, Sghiri A, Faye B, Chilliard Y (2005) Effects of feeding 

level on body weight, hump size, lipid content and adipocyte volume in the dromedary 

camel. Animal Research 54: 383-393  

Benoit-Bird KJ (2004) Prey caloric value and predator energy needs: foraging predictions for wild 

spinner dolphins. Marine Biology 145: 435-444 doi https://doi.org/10.1007/s00227-004-1339-

1 

Benoit-Bird KJ, Southall BL, Moline MA (2019) Dynamic foraging by Risso’s dolphins revealed in 

four dimensions. Marine Ecology Progress Series 632: 221-234  

Bentaleb I, Martin C, Vrac M, Mate B, Mayzaud P, Siret D, De Stephanis R, Guinet C (2011) 

Foraging ecology of Mediterranean fin whales in a changing environment elucidated by 

satellite tracking and baleen plate stable isotopes. Marine Ecology Progress Series 438: 285-

302  

Bernard HJ, Hohn AA (1989) Differences in Feeding Habits between Pregnant and Lactating 

Spotted Dolphins (Stenella attenuata). Journal of Mammalogy 70: 211-215 doi 

https://doi.org/10.2307/1381693 

Bernier-Graveline A, Lesage V, Cabrol J, Lair S, Michaud R, Rosabal M, Verreault J (2021) Lipid 

metabolites as indicators of body condition in highly contaminant-exposed belugas from 

the endangered St. Lawrence Estuary population (Canada). Environmental Research 192: 

110272  

Bestley S, Andrews-Goff V, van Wijk E, Rintoul SR, Double MC, How J (2019) New insights into 

prime Southern Ocean forage grounds for thriving Western Australian humpback whales. 

Scientific reports 9: 1-12  

Betty E (2019) Life history of the long-finned pilot whale (Globicephala melas edwardii); insights from 

strandings on the New Zealand coast. Doctoral thesis, Auckland University of Technology. 

Betty EL, Bollard B, Murphy S, Ogle M, Hendriks H, Orams MB, Stockin KA (2020) Using 

emerging hot spot analysis of stranding records to inform conservation management of a 

data-poor cetacean species. Biodiversity and Conservation 29: 643-665  

Betty EL, Stockin KA, Hinton B, Bollard BA, Smith ANH, Orams MB, Murphy S (2022) Age, 

growth, and sexual dimorphism of the Southern Hemisphere long-finned pilot whale 

(Globicephala melas edwardii). Journal of Mammalogy  doi 

https://doi.org/10.1093/jmammal/gyab165 

Betty EL, Stockin KA, Smith AN, Bollard B, Orams MB, Murphy S (2019) Sexual maturation in 

male long-finned pilot whales (Globicephala melas edwardii): defining indicators of sexual 

maturity. Journal of Mammalogy 100: 1387-1402  

https://doi.org/10.1007/s00227-004-1339-1
https://doi.org/10.1007/s00227-004-1339-1
https://doi.org/10.2307/1381693
https://doi.org/10.1093/jmammal/gyab165


195 

 

Bigg M (1985) Two biases in diet determination of northern fur seal (Callorhinus ursinus). Marine 

mammals and fisheries: 284-291  

Biuw M, McConnell B, Bradshaw CJ, Burton H, Fedak M (2003) Blubber and buoyancy: monitoring 

the body condition of free-ranging seals using simple dive characteristics. Journal of 

Experimental Biology 206: 3405-3423  

Blasina GE, Izzo L, Figueroa D (2018) Sexual dimorphism and length–weight relationship of the 

hairy conger eel Bassanago albescens (Anguilliformes: Congridae). Journal of Ichthyology 58: 

396-400  

Blake WH, Boeckx P, Stock BC, Smith HG, Bodé S, Upadhayay HR, Gaspar L, Goddard R, Lennard 

AT, Lizaga I, Lobb DA, Owens PN, Petticrew EL, Kuzyk ZZA, Gari BD, Munishi L, Mtei K, 

Nebiyu A, Mabit L, Navas A, Semmens BX (2018) A deconvolutional Bayesian mixing 

model approach for river basin sediment source apportionment. Scientific Reports 8: 13073 

doi https://doi.org/10.1038/s41598-018-30905-9 

Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canadian 

journal of biochemistry and physiology 37: 911-917  

Bloch D, Heide-Jørgensen MP, Stefansson E, Mikkelsen B, Ofstad LH, Dietz R, Andersen LW 

(2003) Short-term movements of long-finned pilot whales Globicephala melas around the 

Faroe Islands. Wildlife Biology 9: 47-58, 12  

Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic 

ecology. Annual review of ecology, evolution and systematics 42: 411-440  

Bolstad KS (2007) Systematics and distribution of the New Zealand onychoteuthid fauna 

(Cephalopoda: Oegopsida), including a new species, Notonykia nesisi sp. nov. Reviews in Fish 

Biology and Fisheries 17: 305-335 doi https://doi.org/10.1007/s11160-007-9041-2 

Bolstad KS (2008) Systematics of the Onychoteuthidae Gray, 1847 (Cephalopoda: Oegopsida). Doctoral 

thesis, Auckland University of Technology.  

Bond AL, Diamond AW (2011) Recent Bayesian stable isotope mixing models are highly sensitive 

to variation in discrimination factors. Ecological Applications 21: 1017-1023 doi 

https://doi.org/10.1890/09-2409.1 

Bond AL, Jones IL (2009) A practical introduction to stable-isotope analysis for seabird biologists: 

approaches, cautions and caveats. Marine Ornithology 37: 183-188  

Bontempo L, Camin F, Ziller L, Biondi L, D'Urso MG, Vasta V, Luciano G (2016) Variations in 

stable isotope ratios in lamb blood fractions following dietary changes: a preliminary study. 

Rapid Communications in Mass Spectrometry 30: 170-174 doi 

https://doi.org/10.1002/rcm.7428 

Booth CG, Sinclair RR, Harwood J (2020) Methods for Monitoring for the Population 

Consequences of Disturbance in Marine Mammals: A Review. Frontiers in Marine Science 7 

doi https://doi.org/10.3389/fmars.2020.00115 

https://doi.org/10.1038/s41598-018-30905-9
https://doi.org/10.1007/s11160-007-9041-2
https://doi.org/10.1890/09-2409.1
https://doi.org/10.1002/rcm.7428
https://doi.org/10.3389/fmars.2020.00115


196 

 

Boran J, Heimlich S (2019) Pilot whales: delphinid matriarchies in deep seas. Ethology and 

Behavioral Ecology of Odontocetes. Springer, pp 281-304 

Borobia M, Gearing PJ, Simard Y, Gearing JN, Béland P (1995) Blubber fatty acids of finback and 

humpback whales from the Gulf of St. Lawrence. Marine Biology 122: 341-353  

Borrell A, Abad‐Oliva N, Gómez‐Campos E, Giménez J, Aguilar A (2012) Discrimination of stable 

isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid 

Communications in Mass Spectrometry 26: 1596-1602 doi https://doi.org/10.1002/rcm.6267 

Borrell A, Bloch D, Desportes G (1995) Age trends and reproductive transfer of organochlorine 

compounds in long-finned pilot whales from the Faroe Islands. Environmental Pollution 

88: 283-292 doi https://doi.org/10.1016/0269-7491(95)93441-2 

Borrell A, Gazo M, Aguilar A, Raga JA, Degollada E, Gozalbes P, García-Vernet R (2021) Niche 

partitioning amongst northwestern Mediterranean cetaceans using stable isotopes. Progress 

in Oceanography 193: 102559 doi https://doi.org/10.1016/j.pocean.2021.102559 

Borrell A, Sant P, Víkingsson G, Aguilar A, García-Vernet R (2018) An evaluation of whale skin 

differences and its suitability as a tissue for stable isotope analysis. Journal of Sea Research 

140: 59-62 doi https://doi.org/10.1016/j.seares.2018.07.011 

Bouslah Y, Zaidi R, Mesaoudi M, Maamar K, Belmahi A-E, Bouderbala M (2022) New occurrence 

of cetacean stranded on the Algerian West Coast and Associated Threats:(2016-2020). South 

Asian Journal of Experimental Biology 12: 357-365  

Bowden DA, Anderson OF, Rowden AA, Stephenson F, Clark MR (2021) Assessing Habitat 

Suitability Models for the Deep Sea: Is Our Ability to Predict the Distributions of Seafloor 

Fauna Improving? Frontiers in Marine Science 8 doi 

https://doi.org/10.3389/fmars.2021.632389 

Bowen W (1997) Role of marine mammals in aquatic ecosystems. Marine Ecology Progress Series 

158: 267-274  

Bowen W (2012) A review of evidence for indirect effects of commercial fishing on New Zealand 

sea lions (Phocarctos hookeri) breeding on the Auckland Islands. Department of 

Conservation, Wellington, New Zealand 41  

Bowen WD, Iverson SJ (2013) Methods of estimating marine mammal diets: a review of validation 

experiments and sources of bias and uncertainty. Marine Mammal Science 29: 719-754  

Boys RM, Beausoleil NJ, Pawley MD, Betty EL, Stockin KA (2022) Evaluating Potential Cetacean 

Welfare Indicators from Video of Live Stranded Long-Finned Pilot Whales (Globicephala 

melas edwardii). Animals 12: 1861  

Brabyn M, Frew RV (1994) New Zealand herd stranding sites do not relate to geomagnetic 

topography. Marine Mammal Science 10: 195-207  

https://doi.org/10.1002/rcm.6267
https://doi.org/10.1016/0269-7491(95)93441-2
https://doi.org/10.1016/j.pocean.2021.102559
https://doi.org/10.1016/j.seares.2018.07.011
https://doi.org/10.3389/fmars.2021.632389


197 

 

Brabyn MW (1990) An analysis of New Zealand whale strandings. Masters dissertation, University 

of Canterbury.  

Brabyn MW (1991) An analysis of the New Zealand whale stranding record. Head Office, 

Department of Conservation 

Brabyn MW, McLean IG (1992) Oceanography and coastal topography of herd-stranding sites for 

whales in New Zealand. Journal of Mammalogy 73: 469-476  

Bradford E (1999) Size distribution of kahawai in commercial and recreational catches. NIWA 

Technical Report no. 61, 56 p. 

Bradshaw CJA, Hindell MA, Best NJ, Phillips KL, Wilson G, Nichols PD (2003) You are what you 

eat: describing the foraging ecology of southern elephant seals (Mirounga leonina) using 

blubber fatty acids. Proceedings of the Royal Society of London Series B: Biological Sciences 

270: 1283-1292  

Braga R, Bornatowski H, Vitule J (2012) Feeding ecology of fishes: An overview of worldwide 

publications. Reviews in Fish Biology and Fisheries 22 doi https://doi.org/10.1007/s11160-

012-9273-7 

Braid HE, McBride PD, Bolstad KSR (2014) Molecular phylogenetic analysis of the squid family 

Mastigoteuthidae (Mollusca, Cephalopoda) based on three mitochondrial genes. Hydrobiologia 

725: 145-164 doi https://doi.org/10.1007/s10750-013-1775-3 

Braley M, Goldsworthy SD, Page B, Steer M, Austin JJ (2010) Assessing morphological and DNA-

based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. 

Molecular Ecology Resources 10: 466-474 doi https://doi.org/10.1111/j.1755-

0998.2009.02767.x 

Brenna JT, Plourde M, Stark KD, Jones PJ, Lin Y-H (2018) Best practices for the design, laboratory 

analysis, and reporting of trials involving fatty acids. American Journal of Clinical 

Nutrition 108: 211-227 doi https://doi.org/10.1093/ajcn/nqy089 

Britton D, Schmid M, Revill AT, Virtue P, Nichols PD, Hurd CL, Mundy CN (2021) Seasonal and 

site-specific variation in the nutritional quality of temperate seaweed assemblages: 

implications for grazing invertebrates and the commercial exploitation of seaweeds. 

Journal of Applied Phycology 33: 603-616 doi https://doi.org/10.1007/s10811-020-02302-1 

Bromaghin JF, Budge SM, Thiemann GW, Rode KD (2017) Simultaneous estimation of diet 

composition and calibration coefficients with fatty acid signature data. Ecology and 

Evolution 7: 6103-6113  

Brown GE, Foam PE, Cowell HE, Fiore PG, Chivers DP (2004) Production of chemical alarm cues 

in convict cichlids: the effects of diet, body condition and ontogeny. Annales Zoologici 

Fennici 41: 487-499  

https://doi.org/10.1007/s11160-012-9273-7
https://doi.org/10.1007/s11160-012-9273-7
https://doi.org/10.1007/s10750-013-1775-3
https://doi.org/10.1111/j.1755-0998.2009.02767.x
https://doi.org/10.1111/j.1755-0998.2009.02767.x
https://doi.org/10.1093/ajcn/nqy089
https://doi.org/10.1007/s10811-020-02302-1


198 

 

Browning NE, Dold C, I-Fan J, Worthy GAJ (2014a) Isotope turnover rates and diet–tissue 

discrimination in skin of ex situ bottlenose dolphins (Tursiops truncatus). The Journal of 

Experimental Biology 217: 214-221 doi https://doi.org/10.1242/jeb.093963 %J  

Browning NE, McCulloch SD, Bossart GD, Worthy GAJ (2014b) Fine-scale population structure of 

estuarine bottlenose dolphins (Tursiops truncatus) assessed using stable isotope ratios and 

fatty acid signature analyses. Marine Biology 161: 1307-1317 doi 

https://doi.org/10.1007/s00227-014-2420-z 

Brownlow A, Baily J, Dagleish M, Deaville R, Foster G, Jensen S-K, Krupp E, Law R, Penrose R, 

Perkins M (2015) Investigation into the long-finned pilot whale mass stranding event, Kyle 

of Durness, 22nd July 2011. Department for Environment Food & Rural Affairs (DEFRA) 

Scottish Marine Animal Stranding Scheme   

Buckland A, Baker R, Loneragan N, Sheaves M (2017) Standardising fish stomach content analysis: 

The importance of prey condition. Fisheries Research 196: 126-140 doi 

https://doi.org/10.1016/j.fishres.2017.08.003 

Buckland S, Cattanach K, Gunnlausson T, Sigurjonsson J (1993) Abundance and distribution of 

long-finned pilot whales in the North Atlantic, estimated from NASS 1987 and NASS 1989. 

Reports of the International Whaling Commission (Special Issue 14): 33-49  

Buden DW, Bourgoin A (2018) New Distribution Records of Cetaceans from the Federated States 

of Micronesia. Pacific Science 72: 475-483  

Budge SM, Iverson SJ, Koopman HN (2006) Studying Trophic Ecology In Marine Ecosystems 

Using Fatty Acids: A Primer On Analysis And Interpretation. Marine Mammal Science 22: 

759-801 doi https://doi.org/10.1111/j.1748-7692.2006.00079.x 

Burgess KB, Guerrero M, Marshall AD, Richardson AJ, Bennett MB, Couturier LIE (2018) Novel 

signature fatty acid profile of the giant manta ray suggests reliance on an uncharacterised 

mesopelagic food source low in polyunsaturated fatty acids. PLoS One 13: e0186464 doi 

https://doi.org/10.1371/journal.pone.0186464 

Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in 

behavioral ecology: some background, observations, and comparisons. Behavioral Ecology 

and Sociobiology 65: 23-35 doi https://doi.org/10.1007/s00265-010-1029-6 

Burrows DG, Reichert WL, Bradley Hanson M (2014) Effects of decomposition and storage 

conditions on the δ13C and δ15N isotope values of killer whale (Orcinus orca) skin and 

blubber tissues. Marine Mammal Science 30: 747-762 doi https://doi.org/10.1111/mms.12076 

Burton RK, Koch PL (1999) Isotopic tracking of foraging and long-distance migration in 

northeastern Pacific pinnipeds. Oecologia 119: 578-585 doi 

https://doi.org/10.1007/s004420050822 

Buscaglia M, Sielfeld W, Aguayo-Lobo A (2020) Dolphins distributions (Mammalia: delphinidae) in 

an upwellings zone (Chile) Anales del Instituto de la Patagonia, pp 7-28 

https://doi.org/10.1242/jeb.093963%20%25J
https://doi.org/10.1007/s00227-014-2420-z
https://doi.org/10.1016/j.fishres.2017.08.003
https://doi.org/10.1111/j.1748-7692.2006.00079.x
https://doi.org/10.1371/journal.pone.0186464
https://doi.org/10.1007/s00265-010-1029-6
https://doi.org/10.1111/mms.12076
https://doi.org/10.1007/s004420050822


199 

 

Bustamante P, Caurant F, Fowler SW, Miramand P (1998) Cephalopods as a vector for the transfer 

of cadmium to top marine predators in the north-east Atlantic Ocean. Science of The Total 

Environment 220: 71-80 doi https://doi.org/10.1016/S0048-9697(98)00250-2 

Cañadas A, Sagarminaga R (2000) The northeastern Alboran Sea, an important breeding and 

feeding ground for the long‐finned pilot whale (Globicephala melas) in the Mediterranean 

Sea. Marine Mammal Science 16: 513-529  
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Appendix 1.1. Use of samples from a strandings archive 

 

Studies on stranded marine mammals in isolation have inherent biases that must be acknowledged. 

For example, animals that strand may be sick or injured (Praca et al. 2011) and therefore may not be 

displaying typical behaviours or chemical tracers in comparison to wild populations. Furthermore, 

it may be that some types of animals (e.g., immature, or pregnant females) may strand more 

frequently than others due to their relative ability to withstand stressors, therefore creating a biased 

sample. However, when pods strand en-masse (as long-finned pilot whales; LFPWs; Globicephala 

melas edwardii; do in New Zealand) they are less likely to be impacted by such biases (e.g., 

Chalcobsky et al. 2021), as a cross-section of the LFPW society is recorded stranded, often with no 

obvious signs of sickness or injury. In fact, the cause of cetacean strandings in New Zealand has not 

been established, but linkages to periods of low air pressure, moon cycles and local topography have 

all been suggested (Brabyn 1990; Brabyn 1991; Brabyn and McLean 1992; Lad and Brabyn 1993; 

Brabyn and Frew 1994).  These unfortunate events can therefore present unprecedented access to a 

species not otherwise commonly encountered, and therefore may help further understanding of the 

species. Within New Zealand for example, LFPWs strand in greater numbers than any other marine 

mammal — a total of 8571 individuals were recorded stranded between January 1978 and December 

2017 (Betty et al. 2020).   

Archived, skin, blubber, and stomach contents of LFPWs collected from LFPW stranding events 

between 2009 and 2017 were accessed for this study. Tissue samples are accompanied by respective 

metadata including sex, total body length (TBL), girth, and blubber thickness (Betty 2019). Where 

possible, sex, sexual maturity status (immature, mature), reproductive status (pregnant, lactating, 
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resting) and age (assessed from growth layer groups in tooth dentine) were also included in 

assessments (Betty 2019; Betty et al. 2022).  

Tissue samples used in this study, (skin and blubber) were taken on Day 1 of sampling an animal 

and immediately after measurements and photographs were taken. Decomposition state of tissues 

was therefore assumed to be the same as decomposition state as described from photographs.  

Skin samples were taken using standard post-mortem procedure (e.g., Geraci and Lounsbury 2005) 

from as many individuals as possible, with no preference towards sex or size of the individual. This 

allows variability to be assessed within a pod or stranding group (e.g., Abend and Smith 1995; Evans 

and Hindell 2004). Samples of skin were taken for isotopic analysis as soon after death as possible 

and so are considered to have retained isotopic integrity. Skin is thought to be a homogenous (Borrell 

et al. 2018) so sampling location is not thought to effect isotope signatures in delphinids. 

Furthermore, no isotopic differences were found in skin samples of wild striped dolphins Stenella 

coeruleoalba and common dolphins from 11 locations on the carcass (Arregui et al. 2017) or between 

skin samples of tail fluke, dorsal fin, and other areas for captive bottlenose dolphins Tursiops 

truncatus and killer whales Orcinus orca (Williams et al. 2008). Using a scalpel blade, a sample of skin 

3–5cm in length was taken preferentially from the tail flukes, or from the dorsal fin or pectoral 

flippers if tail fluke skin was not accessible. Care was taken to sample skin with all layers still intact, 

which were temporarily stored in plastic bags on ice before being frozen at -20 ℃. Although skin 

was initially stored frozen, samples were transferred to 70–95% ethanol for long-term storage. Whilst 

care was taken in sampling of skin, some samples were more difficult to obtain clean due to position 

of the LFPW carcass, weather etc. In this instance, all samples were removed of any excess tissue 

and washed in distilled water before processing.  
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Blubber samples were collected from stranded individuals in-situ from directly under the dorsal fin, 

with care taken to ensure the full blubber layer from skin to muscle was sampled. Internal tissues 

such as blubber are thought to decompose quickly after death due to high internal temperatures of 

an individual (Burrows et al. 2014). Blubber was therefore taken as quickly as possible and put on 

ice whilst in the field. Blubber was then wrapped in foil and stored frozen at -20 ℃ prior to 

processing (e.g., Monteiro et al. 2015b). Blubber samples were considered viable after long-term 

storage as fatty acid profiles of blubber samples from Baltic grey seals Halichorus gripus were 

considered relatively unchanged after 4-6 years of storage at -25℃  (Lind et al. 2012). 

Stomach contents were examined opportunistically at stranding events using standard procedures 

(e.g., Beasley et al. 2019). Stomachs (all three chambers) were sampled in-situ to extract contents, as 

is common practice with stranded individuals including false killer whales Pseudorca crassidens 

(Alonso et al. 1999) and sperm whales Physeter macrocephalus (Foskolos et al. 2020). Stomach contents 

were carefully removed from stomach chambers and placed into labelled bags. Stomach contents 

were stored frozen at -20 ℃  until ready for analysis.  

Samples from strandings with as much metadata associated with them as possible were chosen for 

analysis. This allowed for assessment of ontogenetic variation of LFPWs as well as spatial and 

temporal variation. All stomach contents samples (n = 283) were analysed, regardless of year or 

location stranded. Skin samples (n = 125) were analysed from strandings in Farewell Spit 2009, 2011, 

2014 and 2017 as well as Stewart Island in 2010 and 2011, allowing for assessment both temporal 

variation at the same stranding location and spatial variation between two stranding hotspots (Betty 

et al. 2020). Blubber samples (n = 15) were analysed from the Farewell Spit 2014 stranding event only.  

A focal stranding event for this PhD thesis was chosen to be Farewell Spit, Golden Bay 2014. This 

event was chosen as it had a wealth of associated metadata available, and individuals were deemed 
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to be in the best body condition. Choosing this focal stranding allowed for stomach content, stable 

isotope, and fatty acid analyses to be performed on the same individuals, allowing data from 

different dietary analyses to be compared with fewer confounding variables to consider during 

interpretation. All analyses were performed using the R programming language (R Core team 2021) 

software.  
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Locations of long-finned pilot whale (Globicephala melas edwardii) strandings on the New Zealand coast from 

which samples were collected for this study, 2009–2017. From North to South in the north island: Raglan, 

Wairoa, Waimārama. From North to South in the South Island: Farewell Spit, Spencer Park Beach, Port Levy, 

Te Oka. From North to South in Stewart Island: West Ruggedy, Mason Bay. Bathymetry is depicted with 

darker shades of blue representing deeper waters (reprinted from National Institute of Water and 

Atmospheric research (NIWA) under a creativecommons by license (CANZ 2008), with permission from 

NIWA original copyright; Chapter 2).   
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Appendix 2.1  Example prey remains photographs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Photographs of example prey remains found in the stomachs of long-finned pilot whales (LFPWS; Globicephala 

melas edwardii) stranded on the New Zealand Coast between 2009 and 2017.   
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Appendix 2.2. Summary statistics of correspondence analysis 

Summary statistics of correspondence analysis from % frequency of occurrence (%FO) data of fish, cephalopods and empty stomachs investigated in long-finned pilot 

whales (G. m. edwardii) stranded on the New Zealand coast 2009 – 2017 presented by reproductive group, year, location, and stranding event. In (a) % = percentage 

variation explained, and cumulative = cumulative percentage variation explained of dimension 1 (Dim1) and dimension 2 (Dim 2). In (b), Iner*100 = relative inertia, 

ctr = contribution to data construction. In (b) and (c) Dim.1 = dimension 1, Dim.2 = dimension 2, cos2 = cosign2 values. 

Reproductive group  

(a) 

 

 

 

 

(b) 

Rows Iner*1000 Dim.1 ctr cos2 Dim.2 ctr cos2 Dim. 3 ctr cos2 

Lactating 38.889 -0.504 17.852 0.949 -0.116 30.852 0.051 0.000 0.000 0.000 

Resting 16.335 -0.273 6.152 0.779 0.138 50.731 0.198 0.047 21.130 0.023 

Pregnant 42.506 -0.505 20.097 0.978 0.32 2.690 0.004 -0.069 43.450 0.018 

Immature 1.738 0.036 0.118 0.140 -0.072 15.576 0.572 0.051 28.226 0.28 

Mature males 115.504 0.590 55.782 0.999 0.005 0.151 0.000 -0.020 7.195 0.001 

 

 

 

Eigenvalues Dim1 Dim2 Dim 3 

Variance 0.207 0.006 0.002 

% 96.208 2.967 0.825 

Cumulative 96.208 99.175 100.000 
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(c) 

 

Iner*1000 Dim.1 ctr Cos2 Dim.2 ctr Cos2 Dim.3 ctr Cos2 

Arrow squid 48.475 -0.279 22.938 0.979 -0.041 16.214 0.021 -0.001 0.012 0.000 

Octopus 29.827 0.543 13.722 0.952 0.035 1.885 0.004 0.117 74.764 0.044 

Other squid      6.954 -0.110 0.913 0.271 0.179 77.830 0.714 -0.026 5.777 0.015 

Fish       129.714 0.958 62.427 0.995 -0.043 4.072 0.002 -0.050 19.448 0.003 

 

Year 

(a) 

Eigenvalues Dim1 Dim2 Dim 3 

Variance 0.139 0.091 0.005 

% 59.017 38.932 2.011 

Cumulative 59.017 97.989 100.000 
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(b) 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

 

Iner*1000 Dim.1 ctr Cos2 Dim.2 ctr Cos2 Dim.3 ctr Cos2 

Arrow squid 35.591 -0.142 9.629 0.375 -0.184 24.316 0.625 -0.004 0.227 0.000 

Octopus 52.735 -0.225 3.753 3.753 0.667 50.120 0.869 -0.128 35.822 0.032 

Other squid      120.105 1.027 86.618 86.618 -0.015 0.029 0.000 -0.029 1.978 0.001 

Fish       26.285 0.000 0.000 0.000 0.432 25.534 0.889 0.153 61.973 0.111 

Rows Iner*1000 Dim.1 ctr cos2 Dim.2 ctr cos2 Dim. 3 ctr cos2 

2009 48.083 -0.267 11.384 0.328 0.375 34.071 0.648 -0.072 24.322 0.024 

2010 77.266 0.565 53.528 0.960 -0.116 3.410 0.040 0.000 0.001 0.000 

2011 10.884 0.180 5.399 0.687 0.121 3.708 0.312 0.008 0.285 0.001 

2014 23.028 -0.342 14.341 0.863 0.025 0.15 0.005 0.134 64.759 0.133 

2017 75.453 -0.382 15.348 0.282 -0.608 58.696 0.712 -0.059 10.633 0.007 
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Location 

(a) 

Eigenvalues Dim1 Dim2 Dim 3 

Variance 0.377 0.082 0.006 

% 81.055 17.719 1.225 

Cumulative 81.055 98.775 100.000 

 

(b) 

Rows Iner*1000 Dim.1 ctr cos2 Dim.2 ctr cos2 Dim. 3 ctr cos2 

Farewell Spit 90.636 0.581 13.047 0.543 0.533 50.294 0.457 -0.008 0.179 0.000 

Stewart Island  24.660 0.344 4.419 0.675 -0.238 9.698 0.324 -0.009 0.195 0.000 

Port Levy 45.707 0.377 4.292 0.354 -0.505 35.235 0.365 0.066 8.678 0.011 

Ralgan 85.213 0.818 22.482 0.992 0.048 0.357 0.003 0.055 6.581 0.004 

Te Oka 36.140 -0.336 8.528 0.890 -0.055 1.056 0.024 -0.105 54.773 0.086 

Wairoa  182.697 -0.970 47.285 0.976 0.121 3.360 0.015 0.094 29.594 0.009 
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(c) 

 

Iner*1000 Dim.1 ctr Cos2 Dim.2 ctr Cos2 Dim.3 ctr Cos2 

Arrow squid 149.537 0.572 37.912 0.956 -0.117 7.276 0.040 -0.038 11.075 0.004 

Octopus 99.715 1.038 13.344 0.504 1.014 58.330 0.482 0.170 23.654 0.014 

Other squid      71.859 -0.448 15.343 0.805 -0.201 14.131 0.162 0.091 41.744 0.033 

Fish       143.942 -0.743 33.401 0.875 0.271 20.263 0.116 -0.077 23.526 0.009 

 

Stranding event  

(a) 

Eigenvalues Dim1 Dim2 Dim 3 

Variance 0.296 0.133 0.020 

% 65.811 29.639 4.550 

Cumulative 65.811 95.450 100.00 
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(b)  

Rows Iner*1000 Dim.1 Ctr cos2 Dim.2 ctr cos2 Dim. 3 ctr cos2 

Farewell Spit 2009 22.209 -0.452 5.296 0.706 0.276 4.384 0.263 0.094 3.276 0.030 

Farewell Spit 2011 40.125 -0.256 2.506 0.185 0.527 23.544 0.783 0.107 6.287 0.032 

Farewell Spit 2014 12.102 -0.238 1.636 0.400 0.286 5.265 0.580 0.052 1.126 0.019 

Farewell Spit 2017 22.018 -0.560 5.845 0.786 -0.129 0.691 0.042 -0.262 18.460 0.172 

Stewart Island 2010 28.762 -0.290 2.349 0.242 0.493 15.027 0.697 -0.146 8.567 0.061 

Stewart Island 2011 49.098 -0.766 9.802 0.591 -0.553 11.355 0.309 -0.315 23.969 0.100 

Port Levy 2010 14.691 0.215 1.489 0.300 -0.299 6.416 0.583 0.134 8.397 0.117 

Raglan 2010 13.581 -0.130 0.388 0.085 -0.422 9.115 0.895 0.063 1.321 0.020 

Te Oka  27.175 -0.037 0.028 0.003 -0.648 18.722 0.919 0.189 10.322 0.078 

Wairoa 24.017 -0.057 6.195 0.764 -0.250 3.082 0.171 0.153 7.578 0.065 

 

(c) 

 

Iner*1000 Dim.1 ctr Cos2 Dim.2 ctr Cos2 Dim.3 ctr Cos2 

Arrow squid 108.737 -0.417 29.443 0.802 -0.202 15.361 0.188 -0.045 4.977 0.009 

Octopus 97.781 -0.568 10.432 0.316 0.789 44.708 0.610 0.275 35.281 0.074 

Other squid      139.955 0.773 39.172 0.829 -0.306 13.660 0.130 0.171 27.750 0.041 

Fish       103.676 0.546 20.953 0.599 0.411 26.271 0.338 -0.178 31.992 0.063 
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Appendix 2.3. Heatmaps and associated cluster dendrograms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heatmaps and associated cluster dendrograms from Bray-Curtis similarity matrices for stomach contents of 

long-finned pilot whales (Globicephala melas edwardii) stranded on the New Zealand coast. Percentage 

frequency of occurrence data (%FO) was used comparing arrow squid (Nototodarus spp.), octopus (Pinnoctopus 

cordiformis), fish or “other squid” consumption. Graphs explore variation in %FO data by year stranded (A), 

reproductive group (B), location stranded (C) and stranding event (D). All graphs are coloured according to 

contribution to data construction, where red is highly different and yellow is very similar. 

 

A 
B 

C

 

D 
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Appendix 2.4. Comparison of empty stomachs vs those with fish and squid remains. 
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The percentage frequency of occurrence (%FO) of long-finned pilot whales (Globicephala melas edwardii) stomachs that contained fish cephalopods, 

fish, or were empty by (A) reproductive group, (B) year, and (C) location.  
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Appendix 2.5. Types of prey remains recovered from stomachs of long-finned pilot whales Globicephala melas edwardii  

 

Number of long-fined pilot whales (Globicephala melas edwardii) stranded on the New Zealand coast between 2009 and 2017. Data are provided by stranding events. 

FWS = Farewell Spit. Strandings are only included in the table if some prey remains were found.  

Stranding  Stomach contents 

recovered  

Identifiable 

cephalopod beaks 

Identifiable fish 

remains 

Unidentifiable 

cephalopod remains  

Unidentifiable 

fish remains 

Other 

unidentifiable 

remains  

FWS2009 42 38 3 3 7 6 

Port Levy 2010 10 8 0 8 0 1 

Stewart Island 2010 14 14 0 13 3 0 

Te Oka 2010 1 1 0 1 1 0 

Raglan 2010 6 6 0 5 0 0 

Wairoa 2011 1 1 1 0 0 0 

FWS2011a 7 7 2 6 3 2 

Stewart Island 2011 66 60 4 62 5 1 

FWS2011b 49 48 13 45 14 8 

FWS2014a 35 31 4 32 4 0 

FWS2014b 6 5 0 5 2 1 

FWS2017 2 2 0 2 0 0 
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Appendix 2.6.  DNA analysis of prey tissue  

 

During identification of stomach contents from long-finned pilot whales (LFPWs), remains of two 

taxa were unable to be identified from visual means alone. Dental and premaxilla jaw bones of eel 

resembled the Congridae family (Leach 1997), though co-occurring cranial and vertebral column 

remains, as well as otoliths, were not able to confirm accurate identification. All remains were 

therefore only able to be classified to “order Anguilliformes, probable Congridae” based on visual 

remains, and were referred to as “eels”.  

Additionally, elasmobranch remains (cranium, vertebral column) were found in stomachs of 11 

LFPWs across three years: 2009, 2011 and 2014. These stomachs also contained shark egg cases of 

carpet shark (Cephoscyllium sp.) but unfortunately, most of the recovered egg cases were too 

degraded to allow an assessment of the stage of embryonic development. However, all fully intact 

egg cases appeared to have been consumed prior to oviparity, as determined by the absence an 

embryo despite yolk. These observations suggest LFPWs most likely consumed gravid female 

sharks (Clinton Duffy, New Zealand Department of Conservation pers. comms). Furthermore, tooth 

plates believed to belong to the New Zealand eagle ray (Myliobatis tenuicaudatus; Leach 1997) were 

also noted in one stomach, alongside both carpet shark eggs and an elasmobranch skeleton. 

However, it is also possible that these tooth plates were ingested as secondary prey. As ray and 

shark skeletons are similar, this resulted in uncertainty as to which elasmobranch taxa were being 

consumed by New Zealand LFPWs. Therefore, all elasmobranch remains were initially classified to 

“Elasmobranchii, probable Cephoscyllium sp.” based on visual identifications alone and referred to 

as “elasmobranch”.   
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Tissue accompanied the remains of four shark and 11 eel species. Tissue attached to skeletal remains 

was limited in both quality and quantity due to decomposition effects. Still, subsamples were taken 

to investigate whether DNA metabarcoding was able to confirm taxa identification of prey remains 

recovered from LFPW stomachs. Methods described in Chapter 2 were followed for DNA 

metabarcoding analysis. Only three of the shark and 10 of the eel tissue samples were suitable for 

DNA identification. The BOLD method of DNA analysis was able to corroborate preliminary prey 

identification from visual means.  

The eels were classified to family level as Congridae sp., though DNA was unable to specify whether 

samples were of the Southern conger eel Conger verreauxi or the Northern conger eel C. wilsoni 

species. Overall, eight samples were more likely to be the Southern conger eel Conger verreauxi, and 

three were more likely to be the Northern conger eel Conger wilsoni. Similarly, BOLD classified the 

elasmobranchs as Cephaloscyllium sp., with all three more likely to be the inshore carpet shark C. 

isabella than deepwater carpet shark C. laticeps.  

Whilst C. wilsoni are thought to inhabit the North Island, C. verrauxi are more commonly thought to 

inhabit waters around New Zealand’s South Island (Castle 1964). However, as neither species is 

commonly studied, their distribution may be inaccurate and therefore may not give much indication 

of probable LFPW feeding areas. Similarly, Cephaloscyllium spp. are not well studied. Whilst C. 

isabella are thought to occur throughout New Zealand waters, to depths of approximately 500 m 

(Horn et al., 2016), C. laticeps are also found in mainly coastal waters to about 60 m (Awruch et al. 

2012). Unfortunately, however, analysis was inconclusive as to which species of Cephaloscyllium was 

recovered from LFPWs stomachs.  

Still, both Congridae spp. and Cephaloscyllium spp. are considered benthic and/or reef associated, 

coastal inhabitants that exhibit a nocturnal lifestyle (Awruch et al. 2012; Hesse et al. 2016; Shoji et al.  
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Results of DNA barcoding of eel and elasmobranch samples found in stomachs of long-finned pilot whales 

Globicephala melas edwardii stranded on the New Zealand coast. The % similarity is given to indicate likelihood 

of a sample being a particular species. 

Sample  BOLD match Species  % Similarity 

Eel Conger verreauxi 100.00  

 
Conger wilsoni 99.83 

Eel Conger wilsoni 100.00 

 
Conger verreauxi 99.84 

Eel Conger verreauxi 99.84 

 
Conger wilsoni 99.67 

Eel Conger verreauxi 100.00 

 
Conger wilsoni 99.84 

Eel Conger verreauxi 99.84 

 
Conger wilsoni 99.67 

Eel Conger verreauxi 99.84 

 
Conger wilsoni 99.67 

Eel Conger verreauxi 100.00 

 
Conger wilsoni 99.84 

Eel Conger verreauxi 100.00 

 
Conger wilsoni 99.67 

Eel Conger wilsoni 100.00 

 
Conger verreauxi 99.83 

Eel Conger verreauxi 100.00 

 
Conger wilsoni 99.83 

Shark Cephaloscyllium isabella 100.00 

 
Cephaloscyllium laticeps 99.19 

Shark Cephaloscyllium isabella 100.00 

 
Cephaloscyllium laticeps 99.19 

Shark Cephaloscyllium isabella 100.00 

 
Cephaloscyllium laticeps 99.16 

 

2017). It is therefore considered that the presence of these families in LFPW stomachs is an indicator 

of both benthic and nocturnal feeding. Whilst the tissue used for DNA barcoding was both limited 

in quantity and quality, analysis was still able to confirm visual identification of prey remains from 
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LFPW stomachs. The addition of DNA barcoding is therefore recommended for future studies to aid 

identification of remains from stomach contents.  
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Appendix 3.1. Summary of long-finned pilot whale skin samples used for stable isotope analysis. 

 Summary of long-finned pilot whale (Globicephala melas edwardii) skin samples used for carbon and nitrogen 

stable isotope analysis (n = 125), by year and location of stranding event on the New Zealand coast. The number 

of animals stranded at each event (No. stranded), and the total number included in isotope analysis (No. 

sampled) are reported. Sex and reproductive group are taken from the same G. m. edwardii population (Betty 

2019; Betty et al. 2019). Table from Supplementary material of Hinton et al. (2022). 

Date Location  

No. sampled/ No. 

stranded Sex Reproductive Group  n 

December 2009 Farewell Spit  20/105 M Immature 5 

   M Mature 5 

   F Immature 5 

   F Pregnant 2 

   F Lactating 0 

   F Resting 0 

   F Undetermined mature 3 

November 2011 Farewell Spit  20/65 M Immature 5 

   M Mature 5 

   F Immature 4 

   F Pregnant 2 

   F Lactating 2 

   F Resting 2 

   F Undetermined mature 0 

January 2014 Farewell Spit 27/138 M Immature 5 

   M Mature 5 

   F Immature 4 

   F Pregnant 5 

   F Lactating 5 

   F Resting 3 

   F Undetermined mature 0 

January 2017 Farewell Spit  20/>400 M Immature 5 

   M Mature 5 

   F Immature 5 

   F Pregnant 1 

   F Lactating 0 

   F Resting 1 

   F Undetermined mature 3 

February 2010 Stewart Island  19/28 M Immature 7 
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Appendix 3.1. continued 

Date Location  

No. sampled/ No. 

stranded Sex Reproductive Group  n 

   M Mature 2 

   F Immature 2 

   F Pregnant 5 

   F Lactating 0 

   F Resting 0 

   F Undetermined mature 3 

February 2011 Stewart Island  19/107 M Immature 4 

   M Mature 5 

   F Immature 5 

   F Pregnant 2 

   F Lactating 2 

   F Resting 1 

   F Undetermined mature 0 
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Appendix 3.2. Tests of lipid correction equations  

Testing lipid correction equations on δ13C values of long-finned pilot whale (Globicephala melas edwardii) skin, including carbon stable isotope values and MSE (mean 

squared error) values. C_e = lipid extracted carbon value, C = carbon value, equations from Fry (2002), Post (2007), Logan (2008) and Peters (2022) are trailed 

alongside modified versions of Post et al. (2007; Post_this study) and Fry (2002; Fry_this study) using data from lipid extractions in this study.  

C_e C  Fry 2002 MSE Post 2007 MSE Logan 2008 MSE Post_this study  MSE Fry_this study  MSE Peters 2022 MSE 

-17.95 -18.04  -18.84 0.79 -18.13 0.03 -17.28 0.45 -18.80 0.72 -19.51 2.45 -16.89 1.13 

-17.91 -19.82  -19.51 2.55 -19.28 1.87 -19.02 1.23 -19.50 2.51 -19.59 2.83 -17.83 0.01 

-18.37 -19.78  -19.19 0.67 -19.04 0.45 -18.97 0.36 -19.12 0.56 -19.13 0.57 -17.81 0.32 

-17.98 -20.41  -19.55 2.49 -19.46 2.19 -19.58 2.58 -19.39 1.99 -19.35 1.89 -18.14 0.03 

-17.94 -19.57  -19.41 2.14 -19.13 1.40 -18.78 0.69 -19.41 2.16 -19.57 2.64 -17.70 0.06 

-18.62 -18.66  -18.68 0.00 -18.33 0.09 -17.87 0.57 -18.70 0.01 -18.94 0.10 -17.21 1.98 

-17.87 -18.83  -18.98 1.22 -18.57 0.49 -18.04 0.03 -19.00 1.27 -19.31 2.06 -17.30 0.32 

-17.61 -18.55  -18.87 1.59 -18.40 0.61 -17.77 0.03 -18.89 1.63 -19.30 2.83 -17.16 0.21 

-17.99 -20.00  -19.37 1.92 -19.23 1.54 -19.19 1.44 -19.29 1.68 -19.29 1.69 -17.93 0.00 

-17.88 -20.27  -19.22 1.82 -19.15 1.63 -19.44 2.44 -18.96 1.19 -18.92 1.08 -18.07 0.04 

Total   -19.16 1.52 -18.87 1.03 -18.59 0.98 -19.11 1.37 -19.29 1.81 -17.60 0.41 
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Appendix 3.3. Comparing carbon and nitrogen values from long-finned pilot whale Globicephala melas edwardii skin processed at two different facilities. 

Comparison of normalised δ13C and δ15N values of long-finned pilot whales (Globicephala melas edwardii). Lab 1 (Environmental and Ecological Stable Isotope Analytical 

Facility, National Institute of Water and Atmosphere; Taihoro Nukurangi), Lab 2 (IsoTrace Limited). Figure from Supplementary material of Hinton et al. (2022). 
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Appendix 3.4. Summary of isotope values from long-finned pilot whale Globicephala melas edwardii skin  

 

Range of carbon, nitrogen, and sulphur (δ13C, δ15N and δ34S), including lipid-corrected and Suess-corrected δ13C values and C:N mass ratios of long-finned pilot whales 

Globicephala melas edwardii. Where duplicate samples were performed, the mean is given. Lab 1 = Environmental and Ecological Stable Isotope Analytical Facility, 

National Institute of Water and Atmosphere (Taihoro Nukurangi), Lab 2 = IsoTrace Limited. Table from Supplementary material of Hinton et al. (2022). 
 

n Normalised 

δ13C 

Lipid corrected 

δ13C 

Number lipid 

corrected 

Suess corrected 

δ13C 

Normalised 

δ15N  

C:N ratio δ34S 

Full dataset Lab 1 12

5 

-20.47 to -15.72 -18.80 to -15.66 71 -18.80 to -15.53 11.52 to 16.28 3.06 to 4.48  - 

Subset Lab 1  36 -20.47 to -16.28 -18.77 to -15.96 18 -18.57 to -15.82 11.52 to 16.28 3.08 to 4.48  - 

Subset Lab 2 36 -20.62 to -17.19 - - - 11.73 to 15.48 3.05 to 4.48 18.61 to 22.91 
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Appendix 3.5.  Summary of niche model outputs  

 

Isotopic niche total area (TA), standard ellipse area (SEA) and standard ellipse area corrected (SEAc) of carbon and nitrogen (δ13C and δ15N) values for different 

reproductive status of long-finned pilot whales (Globicephala melas edwardii). Data are presented by location of stranding of G. m. edwardii. Table from Supplementary 

material of Hinton et al. (2022). 
 

Farewell Spit Stewart Island 

  Male Female  Male Female 

 Immature Mature  Pregnant  Lactating  Resting  Immature Mature  Pregnant  Resting  

TA 2.98 2.23 3.14 0.74 1.49 1.98 0.30 0.38 0.33 

SEA 0.79 1.21 1.75 0.64 1.34 0.61 0.23 0.23 0.38 

SEAc 0.82 1.33 1.96 0.77 1.67 0.65 0.27 0.27 0.57 
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Appendix 4.1. Index of relative importance of prey found in stomachs of long-finned pilot whales Globicephala meals edwardii stranded at Farewell 

Spit  

 Index of relative importance of prey from long-finned pilot whales (Globicephala melas edwardii) stranded at Farewell Spit, New Zaeland between 2009 and 2017. 

Stomach contents are presented as counts of each item, which have been summed across forestomach, mainstomach and pyloric stomach. % FO = percentage frequency 

of occurrence, IRI = index of relative importance. The top five prey to diet (as estimated by %IRI) are labelled in bold.  

Species  %FO Number Mass (kg) % Number % Mass IRI % IRI 

Congridae sp. 5.04 33.00 53973.70 1.09 5.41 0.33 0.2369 

Cephoscyllium sp. 0.39 7.00 12170.27 0.23 1.22 0.01 0.0041 

Macruronus novaezelandiae 0.78 5.00 2790.81 0.16 0.28 0.00 0.0025 

Lycoteuthis lorigera 0.39 2.00 143.47 0.07 0.01 0.00 0.0002 

Nototodarus spp. 79.46 2714.00 804432.05 89.34 80.64 135.05 97.7202 

Pinnoctopus cordiformis 13.18 275.00 122660.94 9.05 12.30 2.81 2.0355 

Teuthowenia pellucida 0.39 1.00 14.31 0.03 0.00 0.00 0.0001 

Arripis trutta 0.39 1.00 1418.64 0.03 0.14 0.00 0.0005 



  

Appendix 4.2.Example chromatogram  

 

 

 

 

Example chromatogram used to identify fatty acids from blubber of long-finned pilot whales (Globicephala 

melas edwardii) stranded on the New Zealand coast, at Farewell Spit in January 2014. The red star shows the 

internal standard, C19. 
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Appendix 4.3. SIMPER model outputs 

 

Similarity percentages (SIMPER) of fatty acids most contributing to dissimilarity between carpet shark 

(Cephaloscyllium sp.) and  long-finned pilot whales (Globicephala melas edwardii) from New Zealand waters in 

2010/2011 and 2014. The top seven fatty acids are presented as cumulative percentage dissimilarity.  

Fatty acid Cumulative contribution to dissimilarity  

C22.1n11    0.07650689 

C20.1n11     0.16654830 

C18.2n6     0.26187170 

C20.4n6     0.37208834 

C20.1n9    0.48655210 

C22.1n13         0.62695028 

DHA  0.80380643 
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Appendix 4.4. Summary of stable isotope values of long-finned pilot whales Globicephala melas 

edwardii and their prey  

Carbon, nitrogen and sulphur (ẟ13C, ẟ15N and ẟ34S) stable isotope values and C:N mass ratio values of skin 

from  long-finned pilot whales (LFPWs; Globicephala melas edwardii) involved in a mass stranding at Farewell 

Spit, New Zealand in 2014 and muscle from five of their key prey species. Carbon isotope values reported 

were lipid-corrected if mass C:N ratio >3.5 using equations from Peters et al. (2022) and Post et al. (2007). All 

ẟ13C values were corrected for the Suess effect (Quay et al. 2003). Where multiple replicates were performed, 

the mean is given. M. novaezelandiae  = Macruronus novaezelandiae, P. cordiformis = Pinnoctopus cordiformis.  

ID Class Species C:N ratio ẟ13C (‰) ẟ15N (‰) ẟ34S (‰) 

AS1 Prey Nototodarus spp. 3.41 -19.30 12.05 22.03 

AS2 Prey Nototodarus spp. 3.32 -19.65 9.85 22.10 

AS3 Prey Nototodarus spp. 3.46 -18.66 13.71 18.94 

CE1 Prey Congridae sp.  3.75 -17.32 17.28 23.19 

CE2 Prey Congridae sp. 4.06 -17.75 17.04 21.99 

CE3 Prey Congridae sp. 3.76 -17.68 17.62 21.09 

S1 Prey Cephaloscyllium sp. 3.75 -17.68 17.22 20.37 

S2 Prey Cephaloscyllium sp. 3.37 -17.28 14.82 NA 

S3 Prey Cephaloscyllium sp. 3.43 -17.40 14.53 NA 

H1 Prey M. novaezelandiae 3.06 -17.87 14.21 22.30 

H2 Prey M. novaezelandiae 3.06 -18.25 13.84 22.28 

H3 Prey M. novaezelandiae 3.11 -18.14 13.88 22.58 

O1 Prey P. cordiformis 3.35 -17.29 13.31 21.00 

O2 Prey P. cordiformis 3.34 -17.38 13.61 21.19 

O3 Prey P. cordiformis 3.34 -17.25 13.78 21.79 

PW1 Consumer  LFPW  3.52 -17.07 12.34 NA 

PW2 Consumer  LFPW  3.46 -18.21 12.07 NA 

PW3 Consumer  LFPW  3.65 -17.26 12.07 NA 

PW4 Consumer  LFPW  3.67 -17.31 12.63 NA 

PW5 Consumer  LFPW  3.47 -18.50 12.14 NA 

PW6 Consumer  LFPW  3.51 -17.01 12.16 NA 

PW7 Consumer  LFPW  3.57 -17.15 12.28 NA 

PW8 Consumer  LFPW  3.68 -17.29 12.49 NA 

PW9 Consumer  LFPW  3.53 -17.11 11.83 NA 

PW10 Consumer  LFPW  3.69 -17.40 11.85 NA 

PW11 Consumer  LFPW  3.37 -18.23 11.92 NA 

PW12 Consumer  LFPW  3.51 -17.32 11.52 21.75 

PW13 Consumer  LFPW  3.64 -17.24 12.20 NA 

PW14 Consumer  LFPW  3.42 -18.49 11.90 NA 

PW15 Consumer  LFPW 3.44 -18.65 11.72 NA 
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Appendix 4.5. Prey polygon probabilities 

 

Probabilities that long-finned pilot whale (Globicephala melas edwardii) carbon and nitrogen (δ13C and δ15N) 

stable isotope values fell within the of 95% confidence interval of the prey polygon mixing region Model 1: 

uses trophic discrimination factors of LFPW collagen from R package SIDER, Model 2: uses trophic 

discrimination factors of δ13C  from LFPW collagen from R package SIDER (δ15N  3.46 ± 1.60, δ13C 1.57 ± 2.03; 

Healy et al. 2018) and δ15N TDFs (δ15N  1.7 ± 0.24; δ13C 1.57 ± 2.03) from Abend and Smith (1997).  

 

 

 

 

 

 

 

 

 

 

 

  

ID Probability Model 1 Probability Model 2 

PW1 0.015 0.066 

PW2 0.013 0.036 

PW3 0.010 0.045 

PW4 0.020 0.080 

PW5 0.011 0.036 

PW6 0.010 0.055 

PW7 0.011 0.063 

PW8 0.015 0.073 

PW9 0.007 0.039 

PW10 0.007 0.039 

PW11 0.010 0.028 

PW12 0.005 0.030 

PW13 0.011 0.055 

PW14 0.008 0.027 

PW15 0.007 0.021 
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Appendix 4.6. Prey remains found in long-finned pilot whales (Globicephala melas edwardii) assessed 

in Chapter 4 

Stomach contents of  long-finned pilot whales (Globicephala melas edwardii) stranded at Farewell Spit in January 

2014. Stomach contents are presented as counts of each item, which have been summed across forestomach, 

mainstomach and pyloric stomach. Eel remains are all jaw, premaxilla, otolith and head to the right of the 

dotted line.  * denotes that the tissue was unidentified due to small volume.  
     

Eel remains 

  

ID Arrow 

Squid beaks 

Upper 

beaks 

Cephalopod 

eye lenses 

Tissue* Jaw Premaxilla Otolith Head 

PW1 13 12 16 0 0 0 0 0 

PW2 40 21 112 0 0 0 0 0 

PW3 4 4 11 0 0 0 0 0 

PW4 N/A N/A N/A N/A N/A N/A N/A N/A 

PW5 0 1 0 0 0 0 0 0 

PW6 26 18 38 0 0 0 0 0 

PW7 10 6 20 0 0 0 0 0 

PW8 2 1 0 0 0 0 0 0 

PW9 75 67 119 0 0 0 0 0 

PW10 4 2 9 0 1 1 0 1 

PW11 47 52 68 0 0 0 0 0 

PW12 16 10 12 0 3 0 1 1 

PW13 0 2 0 1 0 0 0 0 

PW14 3 4 4 0 0 0 0 0 

PW15 1 0 0 0 0 0 0 0 

 



  

Appendix 4.7. Bayesian modelling 

 

Prey polygons suggested that a proportion of diet was missing from analysis (Chapter 5), and therefore Bayesian analysis was not appropriate for this 

data (Smith et al. 2013).  However, as long-finned pilot whales (LFPWs; Globicephala melas edwardii) may rely heavily on one prey type (arrow squid 

Nototodarus spp., Chapter 2), this could partially explain why prey polygons revealed that data were not appropriate for Bayesian mixing model 

analysis. Bayesian mixing models were run on carbon and nitrogen stable isotope values of five key species to LFPW diet at Farewell Spit: arrow squid 

Nototodarus spp., conger eel Congridae sp, hoki Macruronus novaezelandiae, common octopus Pinnoctopus cordiformis, and carpet shark Cephaloscyllium sp. 

Uninformed priors only were used to see what results would have suggested if mixing models had been deemed appropriate. Results were largely 

consistent with stomach contents data presented in Chapter 2; whereby arrow squid were deemed the most important prey taxa to diet (74.1 – 94.8 % 

of diet) followed by common octopus Pinnoctopus cordiformis (0.1 – 13.5% of diet).  

 

Proportional contribution of each prey species to  LFPW diet calculated using uninformed priors. DIC = deviance information criterion, Proportions reported are the 

2.5 – 97.5% confidence intervals.  

Model 

 

Priors 

 

DIC 

 

Nototodarus spp. 

 

Congridae sp. 

 

Macruronus novaezelandiae  Pinnoctopus cordiformis 

 

Cephaloscyllium sp. 

1 Uninformed 28.40 0.741 – 0.948 0.001 – 0.091 0.001 – 0.135 0.001 – 0.153 0.001 – 0.115 
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Estimated relative contribution to long-finned pilot whale (Globicephala melas edwardii) of five key prey spices 

involved in a mass stranding at Farewell Spit, New Zealand in 2014. The model that best fit the data used 

uniformed priors, so assuming each combination of prey was equally likely, ran using the MixSiar (Blake et 

al. 2018) in R, using 100,000 iterations, and had a burn-in of 50,000 thinning to 50. Shark referes to 

Cephaloscyllium sp. 
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Prior and epsilon distribution of the Bayesian isotope mixing model (uniformed priors) of contribution of prey 

species to long-finned pilot whale (Globicephala melas edwardii) diet. The model used uninformed priors, ran 

100,000 iterations, and had a burn-in of 50,000 thinning to 50.  
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Appendix 5.1. Blubber lipid extraction method development 

 

Two commonly used blubber lipid extraction methodologies (Folch et al. 1957; Bligh and Dyer 1959) 

were tested for appropriate methodology and sample mass prior to lipid extraction. A total of four 

blubber sub-samples were taken from a single long-finned pilot whale. Samples were weighed to 

0.001 mg into a Kimax glass 15 mL test tube. Two mass categories over two different methodologies 

were tested, one of approximately 15 mg and the other of approximately 40 mg of sample. 

For method one (Folch et al. 1957), all samples were transferred to 3 mL of 

chloroform:methanol:water (2:1:1.6, v:v:v) solution and left for approximately 20 hours. After 5 

hours and 20 hours, samples were put on the vortex for 20 seconds each. After the second vortex, 1 

mL of chloroform:water (1:1, v:v) solution was added to each sample for 4 hours. After 4 hours the 

lower chloroform phase was collected and put into a second pre-weighed tube. This phase was put 

under a stream of nitrogen gas whilst being heated to 45 °C for 1 hour. The second tube was weighed, 

with the mass of total lipid extracted from the mass of the starting sample to obtain a %lipid.  

For method two, following  (Bligh and Dyer 1959) 3.75 mL of chlorofrom:methanol (1:2, v:v) solution 

was added to samples, which were then vortexed for 4 minutes. A further 1.25 mL of chloroform 

was added to samples before a second vortex for 2 minutes. Following this, 1.25 mL of 8% NaCl in 

milliQ water was added to the sample followed by a final vortex for 1 minute. The sample and 

solution were put into the centrifuge at 2,000 rpm for 5 minutes. The bottom layer was extracted 

from the solution by first inserting a short plastic pipette, and a long glass pipette inside that in order 

to remove all lipids from the bottom layer. The bottom layer of sample was placed into a pre-

weighed Kimax tube. The bottom layer was dried using a steady stream of nitrogen gas at room 

temperature for 1 hour. As this did not fully dry the solution, samples were heated to 40 °C whilst 



291 

 

under a stream of nitrogen gas for a further hour to remove the final residues of solvent. The Kimax 

tube containing lipid only was then weighed to 0.001 mg. The weight of the Kimax tube with sample 

was subtracted from the weight of tube without solvent in order to obtain the weight of the lipids 

only.  

The smaller sample size had limited success with lipid extraction. Samples were kept under the 

nitrogen stream for three hours and were weighed every hour with no change in lipid weight. Of 

the samples that worked, the modified Bligh and Dyer (1959) method showed a higher lipid content 

than the modified Folch (1959) method, which had also been seen in Grahl Neilsen et al (2010). A 

sample of 40 mg was chosen using  the Bligh and Dyer method for further analysis. 

Methodology (Bligh and Dyer = Bligh and Dyer 1959; Folch = Folch 1957), sample mass, tube mass and lipid 

content (%) of lipid extracted from blubber of long-finned pilot whales Globicephala melas edwardii.  

Method Sample mass (mg) Lipid weight (mg) Lipid content (%) 

Bligh and Dyer  38.272 26.503 69.249 

Folch 36.993 17.794 48.101 

Bligh and Dyer  14.345 14.537 101.338 

Folch 18.543 88.945 479.669 
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Appendix 5.2. Effects of total body length of long-finned pilot whales (LFPWs; Globicephala melas 

edwardii) on body condition measurements  

 

The total body length (TBL) of LFPWs was regressed against each body condition measurement to 

check for the effects of TBL, general linear models (e.g., Raverty et al. 2020) were used to assess 

significant correlation. Girth, lateral and ventral blubber thickness were significantly correlated with 

TBL, whereas dorsal blubber thickness, and lipid content were not.  

 

General linear models with t value (t) and significance of correlation (p-value) of total body length (TBL) of 

long-finned pilot whales stranded in New Zealand 2014 against their body condition measurements. Girth = 

axillary girth, Dorsal = dorsal blubber thickness, Lateral = lateral blubber thickness, Ventral = Ventral blubber 

thickness, Lipid  = % lipid content from inner blubber layer in dorsal region.  

Measurement Variable t p-value 

TBL Girth  4.383 <0.05  

Dorsal 1.235 0.239  

Lateral 3.001 <0.05  

Ventral 3.395 <0.05  

Lipid  -0.041 0.968 
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Appendix 5.3 Effects of total body length of long-finned pilot whales (LFPWs; Globicephala melas 

edwardii; LFPWs) on fatty acid measurements  

 

Girth and ventral blubber thickness were correlated with total body length (TBL; Appendix 5.2) and 

were explanatory variables for fatty acid variation in Generalised Linear Mixed Effects Models in 

Chapter 5. However, TBL had been removed from GLMs due to high correlation with co-variables. 

To further explore these relationships, the correlation between TBL and each fatty acid group was  

assessed via general linear models. Whilst saturated fatty acids significantly varied with TBL, the 

other fatty acid groups did not. Optimal GLM models of monounsaturated fatty acids, 

polyunsaturated fatty acids, C20:1n9, C20:1n11 and DHA should be unaffected by TBL. A larger 

sample size would help to further explore these relationships.  

 

General linear models with t value (t) and significance of correlation (p-value) of total body length (TBL) of 

long-finned pilot whales stranded in New Zealand 2014 against fatty acid groups. SFAs = saturated fatty acids, 

MUFAs = monounsaturated fatty acids, PUFAs = polyunsaturated fatty acids.  

Measurement Variable t p-value 

TBL SFAs 2.884 0.013  

MUFAs -1.934 0.076  

PUFAs -1.141 0.274  

C20:1n9 1.637 0.126  

C20:1n11 -1.307 0.214  

DHA 0.432 0.673 

 

 

 

 

 


