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A statistical model, based on a renewal cluster point process, is proposed and used to infer the
distributional properties of dry periods in a continuous-time record.  The model incorporates a mixed
probability distribution in which inter-arrival times are classified into two distinct types, representing
cyclonic and anticyclonic weather.  This results in rainfall events being clustered in time, and enables
objective probabilistic statements to be made about storm properties, e.g. the expected number of events
in a storm cluster.  The model is fitted to data taken from a gauge near Wellington, New Zealand, by
maximising the likelihood function with respect to the parameters.  The Akaike Information Criteria is
used to select the best fitting distributions from a range of candidates.  The log-Normal distribution is
found to provide the best fit to the times between successive storm clusters, whilst the Weibull
distribution is found to provide the best fit to the times between successive events in the same storm
cluster.  Harmonic curves are used to provide a parsimonious parameterisation, allowing for the seasonal
variation in precipitation.  Under the fitted model, the interval series is transformed into a residual series,
which is assessed to determine overall goodness-of-fit.

1. Introduction

Various types of automatic rain gauges are available for recording data in continuous-time.  For
example, a digitised tipping-bucket gauge will automatically record the tipping times of a 0.2mm bucket.
Some of these gauges record changes in rainfall intensity using a pluviograph trace on a rotating drum,
where zero rain is recorded with horizontal lines and high intensity rain as steep gradients (Samson,
1992).  Data from automatic gauges are usually digitised into hourly or daily series, which can be fitted
using discrete-time stochastic models, or using derived moments of continuous-time stochastic models
(Cowpertwait, 1994, 1998).  In this paper, we analyse a digitised pluviograph record, which contains the
starting and finishing times of rainfall events over a 41-year continuous-time record.  

Previous studies have provided empirical evidence that rainfall events cluster in time (e.g.
Cowpertwait 1994, 1998).  However, most of these studies use stochastic models that are fitted to
discrete-time data; models which are usually unsuitable for modelling the continuous-time process.
Thus, it seems appropriate to postulate a model for the analysis of continuous-time data, which also
incorporates clustering.  This is achieved here by using a mixed probability density function in which
inter-arrival times are classified into two distinct types, representing cyclonic and anti-cyclonic weather.
The methodology has the advantage in that it enables formal statistical inferential methods to be used in
model fitting and selection.  

The model represents a point process of inter-arrival times, i.e. event depths and durations are
not explicitly modelled in this paper.  There are many examples of depth-duration analyses of rainfall
data that could be combined with the fitted model for use in hydrologic simulation studies.  For
example, see Samson and Thomson 1992 for a continuous-time analysis of pluviograph data.  For a
general review of stochastic rainfall modelling see Foufoula-Georgiou and Krajewski (1995), or, for
applications in hydrology, refer to O’Connell and Todini (1996).

The paper is organised as follows.  In Section 2, the renewal cluster model is formulated and
mathematical properties are given.  The fitting procedure and inferential methodology are discussed in
Section 3.  In Section 4, the model is fitted to data from Wellington, New Zealand.  The adequacy of fit
is discussed in Section 5, using residual errors for the fitted model.  Finally, some overall conclusions
are given in Section 6.  

2. Model Formulation

                                                
* Due to appear in the International Journal of Climatology, a journal of the Royal Meteorological
Society
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Let Y(u) ≥ 0 be a random variable representing rainfall intensity at time u (-∞ < u < ∞) so that

the rainfall depth over an arbitrary time interval [a, b] is given by: Y v dv
a

b
( )

 

 

∫ .  A rainfall event consists

of non-zero values of Y(u) immediately preceded and followed by a zero intensity, so that any event has a

starting time t, a lifetime l, and a mean intensity z, where z l Y v dv
t

t l
= − +

∫1 ( )
 

 
.  Thus, if an event starts at

time t and finishes at time t+l, then Y(u) > 0 for all u in [t, t+l], and Y(t-ε) = Y(t+l+ε) = 0 for some
arbitrarily small ε > 0.

Consider a stochastic point process {ti} representing the starting times of rainfall events in a
time interval [0, T], where each event has a lifetime li, i = 1, …, N.  Let Xi = ti - ti-1 - li-1 be a random
variable representing the ith dry period or inter-arrival time between two successive events (taking t0 = l0

= 0; i = 1, …, N), and suppose each Xi is independently marked as ‘type 1’ or ‘type 2’, where type 1
inter-arrivals represent atmospheric conditions suitable for precipitation (cyclone or frontal weather),
whilst type 2 inter-arrivals represent conditions unsuitable for rain (high pressure or anticyclone).  Let

Xi  denote the mark associated with the ith interval Xi, and let p be the probability that a dry interval

chosen at random is of type 2, i.e. p P X P Xi i= =( ) = − =( )2 1 1 , i = 1, …, N.  

The marks Xi  form a stochastic process, for example {2112122111} is a possible realisation

when N = 10.  Using the associated marks, an inter-arrival process {Xi} can be broken down into
sequences of clusters, where a cluster of size C is defined to be a sequence of inter-arrival times beginning
with a type 2 inter-arrival time followed by C-1 type 1 inter-arrivals. The random variable C follows a

Geometric distribution with mean µC = p-1, and probability function: P C j p p
j=( ) = −( ) −1 1

, for j =
1, 2, 3, … .  Therefore, provided µC > 1, the inter-arrival process {Xi} forms a cluster point process.  In
the example above, the realisation {2112122111} contains four clusters represented by: {211}, {21}, {2}
and {2111}, with C taking the values 3, 2, 1 and 4 respectively.  In this example, the clusters of inter-
arrival times are: {X1, X2, X3}, {X4, X5}, {X6}, and {X7, X8, X9, X10}.  

We may also define a ‘storm’ to be a cluster of C rainfall events, where each event in the storm
has a starting time determined by a cluster of inter-arrival times {Xi: i = k, …, k–1+C} and the duration
process {li: i = k, …, k–1+C }, so that starting times in the storm are given by:  ti = Xi + ti-1 + li-1, i = k,
…, k–1+C, where tk-1 and lk-1 are the starting time and lifetime of the last event in the preceding storm.
In the previous example, the cluster of inter-arrival times {X7, X8, X9, X10}, where k = 7 and C = 4, gives
a storm of four rainfall events with arrival times: t7 = X7 + t6 + l6, t8 = X8 + t7 + l7, t9 = X9 + t8 + l8 , t10

= X10 + t9 + l9 .
Let f1 be the probability density function (PDF) for a type 1 inter-arrival time and f2 be the PDF

for a type 2 inter-arrival time.  Then, the probability density function (PDF) for Xi (i = 1, …, N) is given
by:

g x f x f xc c( ) ( ) ( ) ( )= − +− −1 1
1

1
2µ µ  (1)

Thus, the {Xi} form a series of independent identically distributed random variables with PDF (1).
Hence, the series {Xi} is essentially a renewal process using the mixed density (1) to give clusters of
rainfall events, i.e. {Xi} is a ‘Renewal Cluster Process’.

3. Fitting Procedure and Inference
Let {xi; i = 1, …, N} be a series of observed inter-arrival times.  From (1), the log-likelihood

function is given by:

LL g x f x f xi
i

N

c i c i
i

N

= = − +{ }
=

− −

=
∑ ∑ln ( ) ln ( ) ( ) ( )

1

1
1

1
2

1

1 µ µ    (2)

To fit the model, some distributions need to be postulated for f1 and f2.  The following were
considered as they represent a wide range of positive-valued random variables:

A. Exponential: f x e x( ) //= − α α 
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B. Gamma: f x x e x( ) / ( )/= { }− −β α ββ α1 Γ

C. Weibull: f x x e x( ) //= − −β αβ α ββ β1  

D. Log-Normal: f x x x( ) exp ln /= − −( ){ } ( )1
2

2
2 2

β
α β π

The model parameters to be estimated include the mean cluster size (µc), and the scale and shape
parameters (αj, βj; j = 1, 2) for each type of inter-arrival time.  For each combination of f1 and f2 (A-D
above), the PDF (1) can be fitted by maximising the log-likelihood (2) with respect to the parameters.
The Akaike Information Criteria (AIC = -2×LL + 2×number of parameters, Akaike 1974) can be used to
choose the best distributions for f1 and f2 from A-D above, i.e. a distribution for (1) that gives the best fit
to the data.

Using the mixed distribution (1) enables objective inferences to be made about the statistical
properties of events within and between storms, for example the mean cluster size µc can be estimated
without having to subjectively separate storms in the data.  The fitted model can also be used to estimate
a conditional probability that two successive events are within the same storm given the observed time
between the events.  This is the probability that the inter-arrival time is of type 1 given an observed inter-
arrival time x, and is given by:                                                

( )1 1
1− ( ) ( )−µc f x g x (3)

4. Analysis of Data
A continuous-time record of rainfall data (Kelburn, near Wellington; 41.283°S, 174.767°E;

1955-95) was provided by the New Zealand National Institute of Water and Atmospheric Research
(NIWA) for use in this study.  This record was the longest complete data set available containing starting
and finishing times of events in continuous-time.  To describe the various fitting procedures, and data
analysis, it is helpful to adopt the following notation.  

Let Ni be the number of event starting times that occur in the ith year and Nij be the number of
event starting times that occur in the jth month of the ith year respectively, so N Nijj i∑ =  (i = 1, …,

41; j = 1, …, 12).  Furthermore, let the starting time and lifetime (in hours) of the kth event starting in
the  jth month of the ith year be tijk and lijk respectively (measured relative to the starting time of the
record) and let xijk = tijk - tij,k-1 - l ij,k-1 (i = 1, 2, …, 41; j = 1, 2, …, 12; k = 1, …, Nij).  Note that whilst
tijk must be in the jth month, it is possible for tijk +lijk to be in the (j+1)th month for events that overlap
two adjacent months.  The total number of events N in the 41-year record was 24560, i.e. N =

Nijji ∑∑ = Nii∑  = 24560.  

To ensure that long dry intervals would be included when fitting the model, some care was
needed when choosing values for ti,j,0 and li,j,0. When i = j = 1 (January of the first year), these were taken
to be zero, i.e. t1,1,0 = l1,1,0 = 0.  Otherwise they were taken to be t ti j i j Ni j, , , , ,0 1 1

= − −
 (j > 1) or

t ti i Ni, , , , ,1 0 1 12 1 12
= − −

 (j = 1), corresponding to the starting time of the last event in the previous month,

and l li j i j Ni j, , , , ,0 1 1
= − −

 (j > 1) or l li i Ni, , , , ,1 0 1 12 1 12
= − −

 (i > 1, j = 1), the lifetime of the last event with

starting time in the previous month. For months in which the last event did not overlap the next month
(but excluding December of the last year), a total of Nij + 1 inter-arrival times were considered, where the
last interval was taken to be x t t li j N i j i j N i j Nij ij ij, , , , , , , ,+ += − −1 1 1  (i = 1, 2, …, 41; j = 1, 2, …, 11,

excluding i = 41 and  j = 12, with the obvious adaptation for j = 12 and i < 41) .   Thus, inter-arrival
times spanning two adjacent months are included in the fitting for both months.  

The parameter estimates for each calendar month j were thus obtained by maximising the
following:

LL g xj i j k
k

N

i

ij

=
=

+

=
∑∑ ln ( ), ,

1

1

1

41

(4)

where each combinations of A-D for f1 and f2 was used in (4), j = 1, …, 12.   To ensure a unique
solution exists for each combination of f1 and f2, the minimisation is subject to: µ2 > µ1, where µ1 and µ2

are the mean type 1 and type 2 inter-arrival times respectively.  The maximisation of (4) was carried out
numerically using the Simplex method (Nelder and Mead 1965), implemented on a micro-computer
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using the algorithm by O’Neil (1985).  This produced 12 estimates of each parameter for each fitted
distribution (1).

Table 1 summarises the log-likelihood and AIC values for each fitted distribution of f1 and f2,

where the log-likelihoods LL are summed over the months, i.e. LL LLjj
=

=∑ 1

12
.  The overall best

fitting distributions are the Log-Normal distribution (D) for f1 and the Weibull distribution (C) for f2

(Table1).

TABLE 1  :  Log-likelihood and AIC values
for  f1 and f2  (given to 4 significant figures)

f1 F2 -LL AIC

A A 65090 130300

A B 64870 129800

A C 64780 129600

A D 64730 129600

B A 65080 130200

B B 64790 129700

B C 64630 129400

B D 64310 128700

C A 65060 130200

C B 64860 129800

C C 64740 129600

C D 64450 129000

D A 63790 127700

D B 63720 127600

D C 63710 127500

D D 63850 127800

 The monthly parameter estimates for the best fitting models are plotted in Figures 1-5, where it
can be seen that the estimates reflect some well-known observed seasonal changes in precipitation.  For
example, over (Southern Hemisphere) winter months there are more storms on average, corresponding to
a decrease in the scale parameter in Figure 4.  In addition, the mean cluster size increases during Winter
months which represents an increase in frontal weather systems (Figure 1).  Also, note that the mean
cluster size is always greater than one, which provides statistical evidence that rainfall events are clustered
in time.
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Figure        1 :   Estimates of µc; fitted values (×)
for each month and the fitted harmonic equation 5
(dotted curve).
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Figure       2   : Estimates of α1; fitted values (×)
for each month and the fitted harmonic equation 6
(dotted curve).
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Figure        3    : Estimates of β1; fitted values (×)
for each month and the fitted harmonic equation 7
(dotted curve).   
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Figure      4    : Estimates of α2; fitted values (×)
for each month and the fitted harmonic equation 8
(dotted curve).
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Figure        5    : Estimates of β2; fitted values (×)
for each month and the fitted harmonic equation 9
(dotted line).

The seasonal variation in the parameter estimates suggested it might be reasonable to use
harmonic curves for the best fitting distributions.  This reduces the number of estimates and provides a
smooth transition over a year, avoiding discontinuities between adjacent months.  The adequacy of this
approach can be tested using AIC.

A single harmonic wave seemed appropriate for the monthly estimates in Figures 1, 3, and 4,
whilst the more complex seasonal pattern in Figure 2 suggested a second-order harmonic was needed.  In
Figure 5, the monthly estimates appear to follow no seasonal pattern, which suggested no harmonic wave
was needed and the parameter estimates can be treated as constant throughout the year.  We thus
considered the following equations for the model parameters:

µ π π θ
c c ct m A t T e c( ) exp sin / /( )= + + +( ){ }2 2 1 (5)

α π π π πα α
θ

α
φα α

1 1 1

1

1

12 2 1 2 2 1( ) sin / /( ) sin / /( )t m A t T e B t T e= + + +( ) + + +( ) (6)

β π πβ β

θ β

1 1 1

12 2 1( ) exp sin / /( )t m A t T e= + + +( ){ } (7)

α π πα α
θα

2 2 2

22 2 1( ) exp sin / /( )t m A t T e= + + +( ){ } (8)

β β2 2
( ) expt m= { } (9)

where t is time of year (in hours), T is the total number of hours in the year (T = 8784 for leap years;
otherwise T = 8760).  The exponential functions exp{.} are used to ensure the estimates take positive
values, which is essential for the distribution parameters in (5), (7)-(9).  The logistic functions, which
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take the form )1/(2 θπ e+ , are used to ensure all angles lie between 0 and 2π radians.  Under this re-
parameterisation, the density function of the (i+1)th interval between the ith and (i+1)th event depends on
the finishing time ti + li of the ith event, so that the log-likelihood function takes the form:

LL t +l f t +l x t +l f t +l xc i- i- i- i- i c i- i- i- i- i
i

N

= −( ) +{ }− −

=
∑ ln ( , ) ( , )1 1

1 1 1 1 1
1

1 1 2 1 1
1

µ µ( )  ( )         (10)

where t0 = l0 = 0 and N is the number of events in the 41-year record (analogous to the monthly intervals,
the first interval in all years after 1955 was obtained by measuring from the last event in the preceding
year).  

The mean type 1 and type 2 inter-arrival times (µ1 and µ2) come directly from the expressions
for the Log-Normal and Weibull random variables, and are given by:

µ α β1 1
1
2 1

2t t t( ) = +{ }exp ( ) ( )            (11)

µ α β2 2 2
11t t t( ) = +( )−( ) ( )Γ              (12)

where Γ denotes the Gamma function.  
The harmonic parameters on the right hand side of equations 5-9 were estimated by maximising

the likelihood function and are given in Table 2 and shown as dotted lines in Figures 1 to 5.    For the
harmonic parameterisation, the AIC was 127100, which is less than the AIC for all the models in Table
1.  Thus, the reduction in the number of parameters is well justified, and the harmonic estimates can be
used in preference to the monthly values.

TABLE 2    :  Harmonic Parameter Estimates
and their Standard Errors (in parenthesis)

The estimated harmonic coefficients were used in equations 5-12 to determine how the mean cluster size
µC, and the mean inter-arrival times (µ1 and µ2) varied over the year (Figures 6, 7, and 8).  Again, the
figures reflect some well-known seasonal properties of rainfall.  For example, on average, storms are more
frequent and contain larger clusters during the winter months, which is characteristic of frontal weather
(Figures 6 and 8).  Due to equation 6, a more complex seasonal pattern is evident in Figure 7 for the
expected time between successive events in the same storm system, with a tendency for winter events to
be clustered closer together.  

In Figure 9, the approximate probability that two successive events come from the same storm
system, as a function of their temporal separation, is plotted, using expression (3).  For any temporal
separation, summer events have a slightly higher probability of coming from the same system compared

Parameter Estimate

mc
1.33 (0.061)

Ac
-0.151 (0.036)

θc
0.744 (0.24)

mα1
-0.167 (0.062)

Aα1
0.0354 (0.0077)

θα1
2.79 (0.36)

Bα1
0.0739 (0.016)

φα1
2.14 (0.85)

mβ1
0.149 (0.016)

Aβ1
0.0498 (0.0051)

θβ1
2.39 (0.40)

mα 2
3.70 (0.041)

Aα 2
0.387 (0.047)

θα 2
1.61 (0.39)

mβ2
-0.271 (0.018)
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with winter events, which is due to summer storms being less frequent (Figure 9).  In the absence of
other meteorological information, the model predicts that two consecutive events, which are separated by
less than about 8 hours, are more likely to belong to the same storm cluster (probability > 0.5).
Conversely, events separated by more than about 8 hours are more likely to belong to a different storm
cluster (Figure 9).
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Figure        6    : The mean cluster size µC (± 1 SE) against time of
year.
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Figure        7    : The mean inter-arrival time µ1 (± 1 SE; in hours)
between successive events in the same storm cluster plotted
against time.
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Figure        8    : The mean inter-arrival time µ2 (± 1 SE; in hours)
between successive storm clusters plotted against time.
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Figure        9    : The approximate probability (y-axis) that two successive
events come from the same storm cluster plotted against their temporal
separation (x-axis).  The dotted line is for winter events (taken as the

midpoint in the year, i.e. with t = 4380 = 
1
2 × 365×24 in equations 5-

9), whilst the solid line is for summer events (taken as t = 0 in
equations 5-9).

5.  Residual Analysis
Having obtained the best fitting model out of those considered, we now move on to the problem

of assessing goodness-of-fit and determining whether a better fitting model is likely to exist.  This is
achieved via a general analysis of residuals (e.g. see Cox and Snell, 1968), where the ‘residuals’ in the
present context are defined as follows.  

As before, let xi = ti - ti-1 - li-1 (i = 1, …, N) be the observed times between successive events,

and let ˆ ( )G x P X x= ≤( ) be the fitted distribution function of the times X between successive events.
We define the ith residual ri to be:

ri = − −{ }ln ˆ ( )  1 G xi (13)

Under the above transformation, the residuals will be a series of independent standard
exponential random variables, provided the model adequately fits the data.  It is sometimes more

convenient to work with u G xi i= ˆ ( ) which forms a series of independent uniform random variables over
the interval (0, 1), again assuming the model adequately fits the data.  Departures from these
distributions indicate lack-of-fit and may suggest another model is more appropriate.  Appropriate tests
include assessing goodness-of-fit to the exponential and uniform distributions and looking for lack of
independence (e.g. serial correlation) in the residuals.  Ogata (1988) gave a similar analysis in the context
of earthquake modelling.
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Plots for the residuals and transformed residuals are given in Figures 10-13.  The cumulative
distribution plot (Figure 10) indicates that the residuals are very close to exponential, because they lie
approximately on a straight line of unit slope, and that an overall good fit has been obtained.  However,
discrepancies in the upper tail are not readily seen in this plot, so quantiles were also plotted and are
shown in Figure 11.  Some discrepancies are evident in the upper 1% tail, which implies the fitted model
will under-predict extreme dry periods (Figure 11).  For applications in which a good fit to the extremes
is important, the model may therefore need to be modified, but this was beyond the scope of the research
presented here.  

Residual serial correlations (i.e. the correlation between ri and ri+k) are plotted against lag (k) in
Figure 12.  A small persistent correlation is present and indicates dependence in the residual series
(Figure 12).  This was investigated further by plotting the (i+1)th uniform residual against the
corresponding ith residual (for all i).  The result is shown in Figure 13, from which it is clear that the
dependence in the residuals is very weak (slightly higher densities of points are evident in the top right
hand and bottom left hand corners of the figure).  Some further research would be needed to find the
cause of this correlation.  It may be due to small underlying trends in the data, caused by climate change
or the El Nino effect, which could be modelled by including lower frequency harmonics in the equations
for the model parameters.  
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Figure 10    :  The cumulative distribution function evaluated for
the residuals (r).  The points, which appear as a slight curve,
are the expected values for a standard exponential
distribution plotted against the empirical cumulative
distribution function.  Departures from the line indicate lack-
of-fit of the residuals to the exponential distribution.
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Figure 11   :  A quantile-plot for the residuals, where a quantile
is a percentile expressed as a decimal.  The points (×) are the
expected quantiles under a standard exponential distribution
plotted against the empirical quantiles. Departures from the
line indicate lack-of-fit of the residuals to the exponential
distribution.
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i.e. the correlation between ri and ri+k (k = 1, …, 50).
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6. Conclusions
A renewal cluster model was proposed for the analysis of inter-arrival times of rainfall events in

continuous-time.  A fitting procedure was given, which used maximum likelihood for parameter
estimation and the AIC to choose the best fitting distributions.  For the Wellington data, the log-Normal
distribution was found to provide the best fit to the times between successive storm clusters, whilst the
Weilbull distribution was found to provide the best fit to the times between successive events in the
same storm cluster.  It was found that the mean cluster size and parameters for the distributions of inter-
arrival times could be represented as harmonic curves, without a significant reduction in the likelihood.
The mean number of events in a storm cluster was always greater than one, providing statistical evidence
that the recorded events were clustered in time.  

The plots of the residual series showed that overall the model fitted the data, although a slight
under-prediction of extreme values was evident.  The residual series were slightly dependent, which may
be due to small underlying trends caused by El Nino or climate change.  Some further research would be
needed to address these problems should they be deemed of practical significance.  

In conclusion, the renewal cluster model is recommended for the statistical analysis of rainfall
data in continuous-time, as it provides an objective basis on which to infer probability distributions for
the inter-arrival process and the expected number of events in a storm cluster.  
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