Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
GEOGRAPHICAL INFORMATION SYSTEMS AND
NATURAL RESOURCE MANAGEMENT IN ZAMBIA

Ackim Mwape

2010
GEOGRAPHICAL INFORMATION SYSTEMS AND
NATURAL RESOURCE MANAGEMENT IN ZAMBIA

A dissertation presented in partial fulfilment of the requirements for a
Masters Degree in Environmental Management
at Massey University, Palmerston North, New Zealand

MASSEY UNIVERSITY

Ackim Mwape

2010
DEDICATION

To my mother *Mary Tembo*
To the memory of my father *Robin M. Mwape*
ABSTRACT

Natural resources play a critical role in the welfare of developing countries. In Zambia, even though its vast natural resources have been important to its economy as well as its people, their exploitation has resulted in severe land and environmental degradation in most parts of the country. Reliable information as to the exact extent and degree of natural resources problems is critically lacking. For effective control and management of these natural resources problems, timely, up-to-date, accurate and complete spatial data are needed.

The integrated application of Geographical Information Systems (GIS) and remote sensing to model natural resources management data, especially at regional level, is presented in this dissertation. Three case studies in Zambia are presented and free, internet-based, datasets are used to demonstrate the application of GIS to support natural resource management decisions in Zambia.

The results of the case studies show that while data-gathering obstacles remain in the use of GIS in Zambia, the systems can be used successfully to fill gaps in decision-making in natural resources management. The results of the case studies have been used to make recommendations as a way forward for the use of GIS and remote sensing data in natural resource management in Zambia. Finally, selected technical issues associated with data access, data incompatibility and data accuracy are identified as important areas of future research.
ACKNOWLEDGEMENT

First and foremost, I would like to thank my Chief supervisor Mr. Mike Tuohy for instilling in me the GIS knowledge required to undertake this project.

My deep gratitude is extended to my second supervisor Doctor Terry Kelly for his comments and insights.

Grateful acknowledgement is made to Professor John Holland for his guidance, interest and support throughout my study at Massey University. Mattie Irwin for his infinite GIS wisdom from which I profoundly benefited and Bruce Hill for answering my questions and commenting on my report.

I am grateful to NZAID for awarding me a scholarship that enabled me to pursue studies in New Zealand. I also thank the Institute of Natural Resources, Massey University for the education and training that I received through them.

This project could not have been possible without the help and advice of my fellow postgraduate students Bandeth Ros, Naomi McBride, Christie Creed, Camila Reyes, Jerry Teng, Wirya Khim and Emerson Tattao. You guys rock and it has been a privilege working with you.

Thanks and hugs go to my dear wife Brenda and elegant son Robin for their love, support and understanding.

Finally, I thank my God. It is He who works in me both to will and to do.
TABLE OF CONTENTS

ABSTRACT .. i
ACKNOWLEDGEMENT .. ii
TABLE OF CONTENTS ... iii
LIST OF FIGURES ... vii
LIST OF TABLES .. viii
INTRODUCTION .. 1
 1.1 Background ... 1
 1.2 Problem Statement ... 3
 1.3 Aim and Objectives ... 4
 1.4 Research Value ... 4
 1.5 Research Approach and Structure .. 5
LITERATURE REVIEW .. 8
 2.1 Natural Resource Management ... 8
 2.2 Geographical Information Systems ... 9
 2.3 Major GIS Applications in Natural Resource Management 11
 2.3.1 Natural Resource Inventory ... 11
 2.3.2 Hazard and Risk Assessment ... 11
 2.3.3 Change Detection ... 12
 2.3.4 Suitability Analysis ... 13
 2.3.5 Environmental Monitoring ... 13
 2.3.6 Environmental Impact Assessment ... 14
 2.4 GIS in Developing Countries .. 15
 2.5 GIS in Zambia ... 18
 2.6 Natural Resource Issues in Zambia ... 20
 2.6.1 Deforestation ... 20
 2.6.2 Soil Degradation .. 21
 2.6.3 Water and Air Pollution .. 22
 2.6.4 Wildlife Depletion (Game and Fish) .. 23
METHODS AND DATA

3.1 Data Collection .. 24
3.2 Assessment of Data Availability .. 25
3.3 Criteria for the Selection of Data .. 28
3.4 Development of Case Studies ... 29
3.5 Data analysis .. 29
3.6 GIS Software .. 30

CASE STUDY 1: DEFORESTATION ASSESSMENT

4.1 Introduction ... 32
4.2 Case Study Area ... 32
4.3 Methodology ... 34
4.4 Data ... 35
 4.4.1 Image Classification .. 35
 4.4.2 Image Enhancement .. 36
4.5 Selection of Factors ... 37
4.6 Creation of Input Factors ... 37
4.7 Results .. 38
 4.7.1 Computation of Area ... 38
 4.7.2 Land Cover Change Assessment ... 39
 4.7.3 Type of Deforestation ... 41
 4.7.4 Deforestation vs. Elevation ... 41
 4.7.5 Deforestation vs. Slope ... 42
 4.7.6 Deforestation vs. Proximity to Roads .. 43
 4.7.7 Deforestation Risk Map .. 43
4.8 Discussion ... 44
4.9 Conclusions .. 46

CASE STUDY 2: SOIL EROSION ASSESSMENT

5.1 Introduction ... 47
5.2 Case Study Area ... 47
5.3 Methodology ... 48
LIST OF FIGURES

Figure 1.1 Structure of dissertation ... 7
Figure 3.1 Logical flow chart of analytical operations within a GIS framework 30
Figure 4.1 Subset of an ASTER image of the study area and its location in the
 Luangwa Valley in Eastern Zambia ... 33
Figure 4.2 Overall case study flow ... 34
Figure 4.3 Land cover classes in the study area for 2000 and 2006 36
Figure 4.4 Land cover area comparison of 2000 and 2006 38
Figure 4.5 Land cover change between 2000 and 2006 40
Figure 4.6 Relation of deforestation and elevation ... 42
Figure 4.7 Relation of deforestation and slope ... 42
Figure 4.8 Relation of deforestation and proximity to roads 43
Figure 4.9 Deforestation risk map ... 44
Figure 5.1 Study area in the Lusitu River catchment in Southern Zambia 48
Figure 5.2 Land cover map of the study area ... 50
Figure 5.3 DEM of the sub-catchment area .. 51
Figure 5.4 Distribution of estimated soil loss in the sub-catchment 54
Figure 5.5 Distribution of soil loss by slope and land cover type 55
Figure 5.6 Distribution of estimated potential soil loss in the sub-catchment 56
Figure 6.1 Study areas in the Congo-Zambezi catchment in the Copperbelt 61
Figure 6.2 Delineated sub-catchment depicting the DEM of the study area 62
Figure 6.3 River network, position of pollution source and flow path 63
Figure 6.4 Sub-catchments within the study area ... 66
Figure 6.5 Simulated flow volumes in the length-section of the river 69
Figure 6.6 Concentration of pollutant as distance increases from the source 69
Figure A.1 False colour composite image of the study area for 2000 105
Figure A.1 False colour composite image of the study area for 2006 106
Figure B.1 Distribution of LS factor in the study area 107
Figure B.2 Distribution of C-factor in the study area 107
LIST OF TABLES

Table 3.1 Available GIS data layers and sources in Zambia.. 25
Table 3.2 Available data layers and sources from outside Zambia................................. 27
Table 4.1 Selection of input factors for the deforestation assessment 37
Table 4.2 Land cover area comparison between 2000 and 2006 38
Table 4.3 Land cover change detection matrix from 2000 to 2006 39
Table 4.4 Land cover change between 2000 and 2006 .. 41
Table 4.5 Types of deforestation and their area ... 41
Table 5.1 C-factor values for different land cover classes.. 52
Table 5.2 K-factor values for different soil types .. 53
Table 5.3 Soil erosion categories, area and corresponding soil loss 55
Table 5.4 Quantities of soil loss and soil conservation capability of the land types 57
Table 6.1 Area and volume generated from each sub-catchment.................................... 66
Table 6.2 Estimated cumulative stream flow and pollutant concentration...................... 68