Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CAUDAL CERVICAL VERTEBRAL MALFORMATION

IN THE

DOBERMANN PINSCHER

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University

Hilary Margaret Burbidge
1999
Abstract

The objective of this research was to further the knowledge and understanding of caudal cervical vertebral malformation, a feature of caudal cervical spondylomyelopathy in the Dobermann pinscher.

The first study involved surveying 170 Dobermanns to determine the prevalence of caudal cervical vertebral malformation and neurological signs associated with caudal cervical spondylomyelopathy within this sample population. In addition, the relationship between the presence of cervical vertebral malformation, body conformation and neurological findings was investigated. It was found that 48.8% of adult Dobermanns and 28% of puppies had some feature of caudal cervical vertebral malformation. Dogs with radiological signs of caudal cervical vertebral malformation were 5.56 times more likely to have neurological deficits. In both instances the severity of these changes increased with age. Although the radiological signs of caudal cervical vertebral malformation were present throughout a wide age range (3 to 156 months), the associated neurological signs tended to appear at a later age (six years and over). There was no statistically significant association between body conformation and the radiological signs of caudal cervical vertebral malformation.

The fact that caudal cervical vertebral malformation was found in young Dobermann puppies led to a morphological study of the post-natal ossification of the canine caudal cervical vertebrae. The caudal cervical spines of 51 puppies (aged from 0 to 12 weeks) were examined grossly, histologically and radiographically. This revealed that at birth, three centres of ossification were present: one in the vertebral body and one in the base of the pedicle of each neural arch. By one month of age, secondary centres of ossification were present in the cranial and caudal epiphyses of the vertebral body, and bony fusion of the laminae had occurred at the dorsal aspect of the neural arches. It was deduced that after one month of age and during normal development, the shape of the neural canal could be influenced only by changes within the physes between the vertebral body and the neural arch, or by remodelling of bone formed by intramembranous ossification.
A prospective study investigating the presence of caudal cervical vertebral malformation in 15 Doberman puppies (from 0 to 16 weeks of age) found that two of these puppies had radiological signs of the condition by six weeks, and another three by between 12 to 16 weeks of age. The diets of these puppies were either balanced or only transiently deficient or excessive in protein, calcium, phosphorus and/or magnesium. There was no significant association between the growth rate of the puppies, in terms of body weight gain or increase in ulna length, and the presence of caudal cervical vertebral malformation.

The cervical spines from 27 neonatal Dobelman (Group D) were examined grossly, radiographically and using computerized tomography for the presence of any caudal cervical vertebral malformation changes. The findings were compared to those of six, similarly examined cervical spines from other large breed canine neonates (Group O). A significant difference was found between the two breed groups with the Dobelmann spines having evidence of relative stenosis of the cranial neural canal opening (p = 0.0001) and some features of vertebral body asymmetry (p = 0.04). In addition, the seventh cervical vertebra was found to have the most marked morphological changes when compared to the fifth and sixth. It was concluded that cervical vertebral malformation is a congenital malformation in the Doberman breed.

In addition to the above studies, the growth characteristics of three breeds of dogs, Dobermanns, Labrador retrievers and Heading Dogs were investigated. It was found that each individual breed grew at a different rate to the other (with the largest breed growing faster than smaller) and that males grew faster than females. It was also realized that both measurement of body weight and increase in bone length was required to characterize canine growth, since there was a poor predictive relationship between these two parameters as the puppies aged.

It was concluded from the studies that caudal cervical vertebral malformation is a congenital malformation and that growth rate, dietary imbalances and body conformation were not significant factors in its initial development. Possible implications of these findings and recommendations for future research are discussed.
I wish to acknowledge and thank my supervisors Professor E.C. Firth, Professor B.R. Jones, Professor H.T. Blair and Associate Professor K.G. Thompson for their advice, support and patience during this study.

Numerous people have helped in some way in this project. In particular I wish to thank Nicky Moffat and Su Jenkins for their help in radiography, Leanne Fecser, Lee-Anne Lynch and Gayle McKenna for their typing expertise, Tony Watt and Angus Fordham for the photography, Alan Nutman for his expertise in preparation of specimens, Pam Slack and Pat Davey for the preparation of tissues for light microscopy, the veterinary practitioners, Dobermann breeders (in particular Shirley King, Carolyn Sandbrook, Diane Baker, Kit Jamieson, Lisa and Martin Slade) and the Animal Health Services Centre, Massey University who provided case material, Pauline Gordon, Mary-Jane Taylor and Jill Hogan for their assistance with looking after and handling many of the puppies and my colleagues who provided much encouragement through out the many years. A special thanks goes to Dr Dirk Pfeiffer for his patient and informative input into the statistical analyses contained within this thesis.

I am indebted to the Auckland Veterinary Society and Companion Animal Society, New Zealand for their grant support for much of this work and to Massey University for the use of their facilities.

Lastly I wish to thank my partner, Ross Whitlock for his understanding and continued support through both the good and the bad times.
Dedication

I dedicate this thesis to four men in my life who, in their own way, graciously lifted me upon their shoulders so that I might see new horizons. They are my father, Ralph Burbidge, and my mentors Jim Hardy, Sandy Lyons and Brian Goulden.

Burbidge H.M., Pfeiffer D.U., Guilford W.G. Presence of cervical vertebral malformation in Dobermann puppies and the effects of diet and growth rate. (Accepted for publication).

Burbidge H.M., Pfeiffer D.U., Jopson N., Broome C. Cervical vertebral malformation in Dobermanns - Are abnormalities present at birth? (Submitted for publication).
Table of Contents

Abstract ... i
Acknowledgements ... iii
Publications .. v
Table of Contents ... vi
List of Figures ... x
List of Tables .. xiv

Chapter One - Introduction ... 1
 Methodology of research work presented in this thesis 3

Chapter Two - A review of the literature 5
 Abstract ... 5
 Introduction .. 5
 Nomenclature .. 6
 Species comparison of cervical spondylomyelopathy (wobbler syndrome) 6
 Aetiology ... 8
 Clinical Signs .. 10
 Diagnosis ... 12
 Pathology ... 16
 Pathogenesis .. 20
 Treatment ... 23
 Conclusion ... 30

Chapter Three - Caudal cervical vertebral malformation:
 A survey of the Dobermann pinscher in New Zealand 31
 Abstract ... 31
 Introduction .. 32
Materials and Methods 34
 Radiographic examination 36
 Neurological examination 37
 Investigation of puppies 37
 Genetic study .. 37
 Statistical analysis 38
Results ... 39
 Characteristics of the study population 39
 Univariate analysis 41
 Multivariate Analysis 46
 Serial Survey of Puppies 47
 Genetic Study 47
Discussion ... 48

Chapter Four - Post-natal development of canine caudal cervical vertebrae 52
 Abstract ... 52
 Introduction .. 52
 Materials and Methods 53
 Results .. 55
 Ossification Centres 55
 Intervertebral Discs 62
 Sagittal Diameters of the Neural Canal 63
 Discussion .. 65

Chapter Five - The accuracy and reliability of linear measurements of the ulna
 for anthropometrical studies in dogs 68
 Abstract ... 68
 Introduction .. 68
 Materials and Methods 69
 Study 1 - Assessment of the accuracy of the chosen surface
 landmarks as an estimate of ulna length 69
Chapter Eight - Cervical vertebral malformation in Dobermanns -

Are abnormalities present at birth? .. 121

Abstract ... 121

Introduction ... 122

Materials and Methods .. 122

CT cervical spine ... 123

Gross anatomy ... 124

Radiography ... 124

CT of individual vertebra .. 124

Results ... 128

CT cervical spine ... 129

Gross anatomy ... 129

Radiography ... 129

CT of individual vertebra .. 129

Discussion .. 134

Chapter Nine - General Discussion 136

Caudal cervical vertebral malformation in puppies 136

Causative factors for cervical vertebral malformation 139

Caudal cervical vertebral malformation as a predisposing factor for wobbler syndrome .. 143

Conclusions .. 145

Recommendations for future research 145

Appendices .. 147

Appendix A. Dorsal spinous process angulation in
Dobermanns with caudal cervical spondylomyelopathy as
compared with other breeds .. 147

Bibliography ... 155
List of Figures

Figure 2-1: (A) Healthy Dobermann. (B) Dobermann with clinical signs of wobbler syndrome. Note arched neck and wide based hindlimb stance ... 11

Figure 2-2: Lateral radiograph of caudal cervical region of a ‘wobbler’ Dobermann. Note the abnormal shape and orientation of the sixth and seventh cervical vertebrae .. 13

Figure 2-3: Radiograph of lateral cervical spine after myelography. The body of the seventh cervical vertebrae is deformed and the intervertebral disc space between this and the sixth cervical vertebral body is narrowed. The myelogram shows an extradural ventral mass which is causing spinal cord compression .. 14

Figure 2-4: Radiograph of the same section of spine of Figure 2-3 showing how traction on the neck has relieved the compression 15

Figure 2-5: The seventh cervical vertebra from a normal dog (left) and from a Dobermann affected with caudal cervical spondylomyelopathy (right). Note the stenotic neural canal and deformed dorsal spinous process in the abnormal vertebra ... 16

Figure 2-6: a) Longitudinal midline section of caudal cervical vertebrae of a “wobbler” dog. The seventh cervical vertebrae is tilted and the cranial border of the body impinges on the spinal cord. b) The nucleus pulposus is within the intervertebral disc space. Extension of the neck increases the compression on the spinal cord, both ventrally and dorsally. c) Flexion of the neck relieves the compression as evidenced by the space dorsally .. 18

Figure 2-7: Intervertebral disc extrusion between the sixth and seventh cervical vertebrae in an 11 year old female Dobermann causing spinal cord compression and haemorrhage ... 19

Figure 2-8: Ventral aspect of cervical vertebrae showing access to the neural canal by ventral slot technique ... 26

Figure 2-9: Post-operative radiograph of ventral body lag screw fixation 27
Figure 2-10: Post-operative radiograph of distraction-fusion technique at the sixth and seventh intervertebral disc space using screws and methyl methacrylate ... 28

Figure 3-1: Topographical diagrams of body measurement points taken in each adult dog. Head length (A), head circumference (B), neck length (C), base width (D), wither height (E), rump length (F) 35

Figure 3-2: Diagrammatic representation of a caudal cervical vertebra, showing points for the measurement of sagittal diameters. Cranial sagittal diameter is the distance AB, caudal sagittal diameter is the distance CD and the sagittal diameter difference is (CD) - (AB) 36

Figure 3-3: The relationship between age of examination for 12 puppies which were examined repeatedly (the number indicates the radiological group at the time of examination for an individual puppy) 38

Figure 3-4: The relationship between neurological signs and radiological findings 41

Figure 3-5: Prevalence of dogs with radiological changes by age (II = prevalence of dogs with radiological Group II findings in the sample (Group II / Group (I + II + III); III = prevalence of dogs with radiological group III findings in the sample (Group III / Group (I + II + III)) 43

Figure 3-6: Prevalence of dogs with neurological signs by age (B = prevalence of dogs with neurological Group B signs in the sample (Group B / (Group (A + B + C); C = prevalence of dogs with neurological Group C signs in the sample (Group C / Group (A + B + C)) 45

Figure 4-1: Longitudinal midline section through the caudal cervical vertebrae of a newborn puppy. Stained by PAS/Alcian blue method. Bar = 0.22 cm. Note the bony cuff dorsally and ventrally (black arrows) and the cartilage canals (white arrow) .. 56

Figure 4-2: Transverse section of A) sixth and B) seventh cervical vertebra of a newborn puppy. Note the sites of endochondral ossification of the neural arches and vertebral body. The arrows indicate the vessel of drainage into longitudinal ventral vertebral sinuses. Stained by the PAS/Alcian blue method. Bar = 0.15cm 56

Figure 4-3: Longitudinal section of cervical vertebral body of a three to four week old puppy showing the growth plate between primary centre of ossification and the caudal secondary centre. The arrow shows a transphyseal vessel. Stained by the PAS/Alcian blue method. Bar = 0.006 cm 58
Figure 4-4: Longitudinal section of cervical vertebral body in a seven to eight week old puppy showing parallel orientation of the bony trabeculae on the epiphyseal side of the growth plate (arrows). Stained by the PAS/Alcian blue method. Bar = 0.006 cm 59

Figure 4-5: Gross specimens of the sixth vertebral a) newborn, b) three to four weeks, c) seven to eight weeks and d) 10 to 12 weeks of age. A. Viewed cranial to caudal Bar = 0.5cm. B. Viewed caudal to cranial 61

Figure 4-6: An intervertebral disc from a newborn puppy. Stained by the PAS/Alcian blue method. Bar = 0.013 cm 62

Figure 5-1: Diagrammatic representation of the external (E) and radiographical (R) measurement of the distance between the tuber olecrani and the tip of the styloid process 70

Figure 5-2: Scatter diagram of external and radiographic measurements of ulna length 73

Figure 5-3: Scatter diagram of the average of the two ulna length measurements (external and radiographic) against the difference between the two measurements including 95% limits of agreement 74

Figure 5-4: Scatter diagram of average ulna length measurements against the maximum difference between repeated measurements taken by the same person 75

Figure 5-5: Scatter diagram of average ulna length measurements against the maximum difference (range) between measurements as recorded by different observers 77

Figure 6-1: Line chart for average body weight in puppies by week of age and breed (error bars represent 95% confidence limits) 89

Figure 6-2: Line chart for body weight gain between successive measurements in puppies by week of age and breed (error bars represent 95% confidence limits) 92

Figure 6-3: Line chart for average ulna length in puppies by week of age and breed (error bars represent 95% confidence limits) 94

Figure 6-4: Line chart of the change in ulna length between successive ulna length measurements in puppies by week of age and breed (error bars represent 95% confidence limits) 98
Figure 6-5: Scatter plot of relationship between standardised values of the average of both growth parameters and their difference. In the young puppies, the two growth parameters, body weight and ulna length show a consistent bias. However as the puppies age, the predictive relationship between these two parameters becomes less accurate (as demonstrated by the increased scattered arrangement of values). This variability is more marked in the Dobermann and Labrador puppies than in the Heading Dog puppies.

Figure 7-1: Diagram illustrating the methodology in the measurement of the angulation of the dorsal spinous process. A = midpoint of the dorsal aspect of the vertebral body; B = midpoint of the dorsal spinous process attachment to neural arch; C = dorsal point of the dorsal spinous process.

Figure 7-2: Lateral radiographs of the caudal cervical spines of Dobermann puppies (C6 = sixth, C7 = seventh cervical vertebra): A) Normal, B) Abnormal shaped vertebral bodies and dorsal spinous process, C) Abnormal shaped vertebral body C7.

Figure 7-3: Line plot of body weight against age for the three litters of puppies.

Figure 7-4: Line plot of ulna lengths against age for the three litters of puppies.

Figure 8-1: Photograph of CT scan of the cervical spine of a newborn Dobermann puppy. The ventral surface of the neural canal is marked by a horizontal line. The vertebral alignment appears normal.

Figure 8-2: The line profile of the CT threshold values for bone and cartilage as traced by a line passing through the mid-point of the dorsal spinous process and through the vertebral body of one of the cervical vertebra.

Figure 8-3: A diagrammatic representation of the measurements made on the vertebral images.

Figure 8-4: CT images of fifth, sixth and seventh cervical vertebrae of a neonatal Dobermann (A) and other large dog breed (B).

Figure 8-5: Box plots of the distribution of the measurements on the vertebral images for the ratios NC, ACB, PCB and VBB for the fifth, sixth and seventh cervical vertebrae for both groups of dogs.

Figure 8-6: A scatter plot of the vertebral measurements, ratios NC, ACB, PCB and VBB for the seventh cervical vertebra from the Dobermann puppies.
List of Tables

Table 3-1:	Descriptive statistics of body dimensions for the adult dogs in the study population	40
Table 3-2:	The distribution of age and body dimensions between different radiological groups I, II and III	42
Table 3-3:	The distribution of age and body dimensions between different neurological groups A, B and C	44
Table 3-4:	Final ordinal regression model for radiological findings	46
Table 3-5:	Final logistic regression model for neurological signs	47
Table 4-1:	Details of processing techniques used on 51 puppies for studying post-natal ossification of the caudal cervical vertebrae	54
Table 4-2:	Measurements of the cranial and caudal sagittal diameters of the fifth (C5), sixth (C6) and seventh (C7) cervical vertebrae	64
Table 5-1:	Results of two-way analysis of variance analysing the effect of dog and measurement method on ulna length in the study assessing the validity of external compared with radiographic measurement	73
Table 5-2:	Results of two-way analysis of variance analysing the effect of dog, leg and repeat measurement on ulna length in the study assessing the reliability of repeat measurements by the same observer	76
Table 5-3:	Results of two-way analysis of variance analysing the effect of dog, leg and observer on ulna length in the study assessing the reliability of measurements by multiple observers	78
Table 5-4:	Effect on deleting one observer on Cronbach's correlation coefficient Alpha in the study assessing the reliability of measurements by different observers	79
Table 6-1:	Percent of recommended daily dry matter intake of nutrients in Labrador diets	87
Table 6-2: Percent of recommended daily dry matter intake of nutrients in Dobermann diets .. 88
Table 6-3: Fixed effects included in mixed model for body weight in puppies 90
Table 6-4: Fixed effects included in mixed model for body weight gain in puppies 93
Table 6-5: Fixed effects included in mixed model for ulna length in puppies 95
Table 6-6: Average (+/ S.D.) ulna length in dams and 16 week old puppies 97
Table 6-7: Fixed effects included in mixed model for increase in ulna length between successive measurements .. 99
Table 7-1: Radiological results of caudal cervical vertebral changes in 15 Dobermann puppies ... 113
Table 7-2: Percent of recommended daily dry matter intake of nutrients in Dobermann diets .. 114
Table 8-1: Descriptive statistics of the puppies .. 128
Table 8-2: The mean and the 95% confidence intervals for the measurement ratios NC, ACB and PCB for the seventh cervical vertebra 131