Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Advanced Second Order Functional Differential Equations

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University

Hee-Kyung Kim

August 1998
To Hyoung-Kuen
Abstract

Hall and Wake [1989] showed that an advanced first order equation arising in a cell growth model has a Dirichlet series solution. If the effects of dispersion are included, the cell growth model leads to a second order equation. We show that this equation also has a Dirichlet series solution, which is unique and positive and that it has one maximum. We then investigate the general second order equation with constant coefficients, and show that these equations also have Dirichlet series solutions and that certain qualitative properties such as uniqueness and positivity are preserved for a range of coefficients. Although the solution to the equation arising in a cell growth model with dispersion is a probability density function of the cell size, \(y(0) = 1 \). There are however parameter choices such that \(y(0) = 0 \) and this motivates our study of the eigenvalue problem. Our final chapter concerns general equations with variable coefficients. We can express a first order equation as a Fredholm integral equation of the second kind and the existence of a solution thus follows using results for Fredholm equations. In addition, we study some classes of second order equations, and show that certain equations have a series solution involving Bessel or Airy functions.
Acknowledgements

Thank God. I am happy to see this thesis coming out in the world! I believe that this was not possible without people who support me in different ways during this course; particularly, I would like to thank Dr. Bruce van-Brunt for his supervision, guidance, encouragement through this work. I especially appreciate his efforts and time he put for reading a great deal of this thesis and giving me suggestions for corrections and improvements. I would also like to thank Prof. Graeme C. Wake for his willingness to take time to discuss my mathematical problems and arranging facilities in Tamaki Campus for me so that I could concentrate on writing the thesis in Auckland with little inconvenience for the last six months. My special thanks are due to my parents for their persistent support, encouragement and love. I also wish to thank Dr. Shaun Cooper for cooperating on writing an article which is contained in Chapter 2, and Dr. Robert McLachlan for suggesting the numerical approach for equations. The financial support from the Doctoral Scholarship Committee is gratefully acknowledged.
Contents

1 Introduction .. 1
 1.1 Retarded Functional Differential Equations 2
 1.1.1 Asymptotic Behaviour of Solutions 3
 1.1.2 Systems of Functional Differential Equations 7
 1.2 Advanced Functional Differential Equations 9
 1.2.1 The Equation Arising in the Cell Growth Model without Dis-
 persion .. 9
 1.2.2 Dirichlet Series Solutions 13
 1.2.3 Equations with variable coefficients 15
 1.2.4 Asymptotic Behaviour of Solutions 22
 1.2.5 Systems of Functional Differential Equations 23
 1.3 Equations with Advanced and Retarded Terms 25

2 The Equation Arising in the Cell Growth Model with Dispersion 26
 2.1 The Cell Growth Model .. 26
 2.2 Positivity and Uniqueness of Solutions 28
 2.3 The Dirichlet Series Solution 32
 2.4 Qualitative Properties and the Limiting Cases 35
 2.4.1 Shape of the Solution ... 35
 2.4.2 Bounds on the Maximum Critical Point 38
 2.4.3 The Limiting Cases ... 39
 Uniform Convergence of the Series w.r.t. b or d 39
 The Limiting Case as $d \to 0^+$ or $d \to \infty$ 41
3 The General Equations with Constant Coefficients

3.1 Existence of Solutions ... 45
3.2 Uniqueness of Solutions ... 48
3.3 Positive Solutions ... 50
 3.3.1 Existence of Solutions ... 50
 3.3.2 Qualitative Properties of Solutions 51
 Shape of Solutions ... 51
 Bounds for Solutions ... 52
3.4 The Limiting Cases and Holomorphicity of Solutions 54
 3.4.1 Uniform Convergence of the Series 54
 Uniform Convergence of the Series w.r.t. a 56
 Uniform Convergence of the Series w.r.t. b 57
 3.4.2 The Limiting Cases and Holomorphicity of Solutions 59
 The Limiting Case as \(a \to 0 \) 59
 The Limiting Case as \(b \to 0 \) 59
 The Limiting Case as \(c \to 0 \) 60
 The Limiting Case as \(a \to \infty \) 61
 The Limiting Case as \(a \to -\infty \) 62
 The Limiting Case as \(b \to -\infty \) 62
3.5 Oscillating Solutions ... 63
 3.5.1 The Case \(a = 0 \) and \(b > 0 \) 63
 3.5.2 The Case \(a > 0 \) and \(b > \frac{a^2}{4} \) 66

4 The Eigenvalue Problems .. 69
 4.1 The First Order Problem ... 69
 4.2 The Eigenvalue Problem I .. 71
 4.2.1 Solutions to Problem 4.2.1 72
 Uniqueness of Solutions ... 73
Conclusion 122

A Inhomogeneous Functional Differential Equations 124

B Second Order Functional Differential Equations with Two Functional Terms 130

C Equations with Variable Coefficients 132
 C.1 The General Equation from Problem 5.1 132
 C.2 The General Equation from Problem 5.2 136

Bibliography 139