The effect of cultivar, nutrient solution concentration and season on the yield and quality of NFT produced lettuce (*Lactuca sativa* L.)

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University

Sunlarp Sanguandeekul
March, 1999
Abstract

Two series of experiments were carried out to examine the effect of nutrient solution concentration on nutrient uptake, growth and quality of Nutrient Film Technique grown lettuce at the Plant Growth Unit, Massey University. In the first study, the influence of nutrient solution concentration, ranging from 0.5 to 3.5 mS cm\(^{-1}\) and growing season, on plant nutrient uptake, growth, yield, market quality and nutritional quality of three lettuce cultivars was examined. The second study researched approaches to controlling tipburn incidence of lettuce by investigating the effect of day/night nutrient solution concentration combinations and extra calcium at 100 mg Ca l\(^{-1}\) at night with the butterhead lettuce cultivar Cortina. Here the plants were exposed to a tipburn inducing treatment of 30 \(^\circ\)C for 4 days.

The results from these studies revealed that generally there were not large variations in nitrogen and phosphorus concentrations of the leaves across nutrient solution concentrations. Leaf potassium concentration increased with increasing nutrient solution concentration up to 2.5 mS cm\(^{-1}\). As leaf potassium increased in concentration with increasing nutrient solution concentration, this increase mediated decreases in calcium and magnesium concentrations of the leaves. Leaf nitrogen and potassium concentrations were greater than in the root, the reverse was true for phosphorus, while calcium and magnesium levels did not differ greatly. Nitrogen and phosphorus concentrations increased from the outer to inner leaves, while potassium, calcium and magnesium decreased.

Shoot fresh weight and dry weight increased up to 1.5 mS cm\(^{-1}\) with increases in nutrient solution concentration. At higher nutrient solution concentrations dry weight levelled off, while fresh weight levelled off or decreased slowly depending on the level of stress imposed by the season. Thus fresh weight was more sensitive to stress at high nutrient solution concentrations than dry weight. With both seasons and cultivars, the order of the initial RGR was the same order as for final shoot dry weights, with the initial NAR being the important component of the initial RGR. Apart from the autumn crop, where no tipburn occurred, tipburn incidence increased with increasing nutrient solution concentration with the level of incidence increasing as environment stress
increased. Shelf life increased with increasing nutrient solution concentration, but the level of increase was not great enough to be of commercial significant.

Season, nutrient solution concentration and cultivar all affected the nutritive value. The affect depended on the nutritive quality attribute under consideration. The nutritive values obtained in this study were in the ranges reported by other workers. The summer crop had the highest ascorbic acid concentration. Where ascorbic acid concentrations were high, such as in summer or with the cultivar Impuls, then ascorbic acid concentrations decreased with increases in nutrient solution concentration. The only difference in dietary fibre occurred with the butterhead cultivar Cortina, which had the lowest dietary fibre concentration of the three cultivars. Nitrate concentration increased with nutrient solution concentration, was highest in autumn and winter, while differences between cultivars depended on the season. The nitrate concentration of lettuce produced at nutrient solution concentrations up to 1.5 mS cm\(^{-1}\) were within the permissible levels reported overseas. There were no treatment effects on protein concentration despite some reports in the literature of the effects of nitrogen level on protein content. At the lower nutrient solution concentrations, the spring and summer crops tended to have the highest soluble sugar concentrations. Generally soluble sugar concentrations decreased within increasing nutrient solution concentration up to 2.5 mS cm\(^{-1}\) and then levelled off.

When 0.5 mS cm\(^{-1}\) nutrient solution concentration was used alternately with 1.5 mS cm\(^{-1}\) during day and night, the nitrogen and potassium concentration of the leaves increased and the increases in potassium mediated decreases in calcium and magnesium concentrations of the leaves. These effects were more marked when 1.5 mS cm\(^{-1}\) was maintained during the day and 0.5 mS cm\(^{-1}\) during the night. Nutrient concentration of the innermost leaves was not affected by different nutrient solution concentration at night. Lowering the nutrient solution concentration at night to 0.5 mS cm\(^{-1}\), when the nutrient solution during the day was maintained at 1.5 mS cm\(^{-1}\), tended to give higher shoot fresh and dry weights, and reduced tipburn percentage. However, under extremely stressful conditions, tipburn affected almost every plant. Under these conditions 0.5 mS cm\(^{-1}\) at night still had an effect, as the number of tipburn leaves per plant and the tipburn index was reduced. Root pressure was considered to provide the benefits from the 0.5 mS cm\(^{-1}\) nutrient solution concentration at night.
Extra calcium either alone or in combination with other nutrients enhanced nitrogen and phosphorus concentration of the outer leaves and reduced potassium, calcium and magnesium concentration of the innermost leaves after tipburn induction. Thus extra calcium at night increased fresh and dry weight after tipburn induction and so increased tipburn incidence.

The important commercial outcomes of this research are as follows. The optimum nutrient solution concentration at which to grow a range of lettuce cultivars across all seasons is 1.5 mS cm^{-1}. At this nutrient solution concentration yield will be satisfactory and the level of tipburn will be minimised. At this nutrient solution concentration the nitrate concentrations were within the permissible levels reported overseas. The growers can also benefit from lowering the nutrient solution concentration at night to 0.5 mS cm^{-1}, as this treatment will increase fresh weight and reduce tipburn.
Acknowledgement

I would like to express my sincere gratitude to my chef supervisor, Dr. Keith J. Fisher of the Institute of Natural Resources, who not only consistently provided invaluable advice, guidance and support but also patiently read, corrected my English and made editorial comments throughout the final year of my study. Appreciation and thanks are extended to my co-supervisors, Dr. Michael A Nichols and Dr. David J. Woolley of the Institute of Natural Resources for their advice, encouragement and guidance throughout the project.

Sincere thanks are extended to the staff of Plant Growth Unit, Ray Johnston, Lyndsay Sylva and Lesley Taylor who helped me in the greenhouse experiments. Thanks also go to Chris Rawlingson, Lance Currie and Hugh Neilson in providing laboratory facilities and assistance. I also wish to thank Dr. Bruce Mackay for his valuable advice in statistical analysis. My special thanks give to all my friends and colleagues, especially Wirut Ampun and Bussakorn Mpelasoka, for their support and they made my stay in New Zealand a more pleasant one.

Grateful acknowledgement is made to the New Zealand Ministry of Foreign Affairs and Trade for providing generous funding of my entire study. The Massey University Research Fund and the New Zealand Vegetable and Potato Grower Federation are to be thanked for providing partial funding of my research. Further gratitude is conveyed to the Rajamangala Institute of Technology of Thailand for granting me leave of absence to study in New Zealand.

Above all, this thesis would not have been completed without moral support of my family, especially my parents, sister and brother, who encouraged me to pursue higher studies and provided endless support and encouragement. My wife Anchan and my sons, Dherapat and Nuttakarn who not only understood, tolerated and assisted in a number of ways but whose love, affection and inspiration sustained me through the years of study. To them all, this work is dedicated.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xxi</td>
</tr>
</tbody>
</table>

Chapter 1 General Introduction

Chapter 2 Literature Review

2.1 Introduction ... 3

2.2 Factors affecting growth and productivity of lettuce 4

2.2.1 Seedling ... 4

2.2.2 Temperature ... 5

2.2.3 Light ... 6

2.2.4 The interaction of temperature and radiation 8

2.2.5 Carbon dioxide ... 8

2.2.6 Effect of salinity on lettuce growth ... 9

2.3 Nutrient Film Technique (NFT) of lettuce 10

2.3.1 Introduction .. 10

2.3.2 Source of nitrogen .. 12

2.3.3 pH .. 13

2.3.4 Nutrient solution concentration .. 14

2.3.5 Cation ratio ... 16

2.3.6 Dissolved oxygen level in the nutrient solution 18

2.4 Growth analysis .. 19

2.5 Mineral nutrient ... 21

2.5.1 Introduction .. 21

2.5.2 Nitrogen ... 24
2.5.3 Phosphorus ...26
2.5.4 Potassium ...27
2.5.5 Calcium ...29
 2.5.5.1 Introduction ..29
 2.5.5.2 Physiology ...29
 2.5.5.3 Calcium uptake and transport within plant32
 2.5.5.4 Calcium remobilisation and transport in phloem34
 2.5.5.5 Factors affecting calcium uptake and transport34
 2.5.5.5.1 Genetic factor ...34
 2.5.5.5.2 Hormonal factor ..35
 2.5.5.5.3 Salinity ...35
 2.5.5.5.4 Nitrogen ...36
 2.5.5.5.5 Phosphorus ..36
 2.5.5.5.6 Cations ..37
 2.5.5.5.7 Relative humidity (RH)37
 2.5.5.5.8 Temperature ...38
 2.5.5.5.9 Root pressure ...38
2.5.6 Magnesium ...39
2.6 Tipburn - a physiological disorder40
 2.6.1 Importance and symptoms40
 2.6.2 Causes of tipburn ..41
 2.6.3 Factors affecting tipburn development and severity43
 2.6.3.1 Introduction ..43
 2.6.3.2 Genetic factor ...43
 2.6.3.3 Salinity ..43
 2.6.3.4 Nitrogen ..44
 2.6.3.5 Calcium in the solution44
 2.6.3.6 Cations ..45
 2.6.3.7 Above ground factors of the environment45
 2.6.3.7.1 Introduction ...45
 2.6.3.7.2 Relative humidity46
Chapter 3 Effect Of Nutrient Solution Concentration On Growth, Nutrient Uptake, Yield And Quality Of Lettuce Grown Over Four Seasons

3.1 Introduction .. 60

3.2 Materials and methods ... 63
 3.2.1 Propagation and greenhouse environment ... 63
 3.2.2 Treatments, experimental design and glasshouse layout ... 63
 3.2.3 Nutrient solution ... 70
 3.2.4 Data collection and analysis ... 71
 3.2.4.1 Growth analysis .. 71
 3.2.4.2 Plant nutrient determination ... 73
 3.2.4.3 Head fresh weight .. 74
 3.2.4.4 Shoot and total plant dry weight ... 74
 3.2.4.5 Shoot dry matter percentage .. 75
 3.2.4.6 Incidence of tipburn ... 75
 3.2.4.7 Shelf life .. 75
 3.2.4.8 Statistical procedure and analysis .. 76

2.6.3.7.3 Temperature .. 47
2.6.3.7.4 Light .. 47
2.6.3.7.5 Carbon dioxide concentration .. 48
2.6.3.8 Hormonal factors .. 48
2.6.4 Effect of calcium spray .. 48
2.6.5 Approaches to tipburn control .. 50
2.7 Nutritional value of lettuce ... 50
 2.7.1 Introduction .. 50
 2.7.2 Ascorbic acid (vitamin C) ... 53
 2.7.3 Dietary fibre ... 54
 2.7.4 Nitrate ... 55
 2.7.5 Sugar .. 56
 2.7.6 Protein ... 57
2.8 Nitrate accumulation in vegetables .. 57
3.3 Results .. 76
 3.3.1 Growth analysis ... 76
 3.3.2 Nutrient uptake of the whole plant during cropping 96
 3.3.3 Leaf and root nutrient concentrations at final harvest 103
 3.3.3.1 Results of analysis ... 103
 3.3.3.2 Nitrogen .. 106
 3.3.3.3 Phosphorus ... 106
 3.3.3.4 Potassium ... 107
 3.3.3.5 Calcium ... 108
 3.3.3.6 Magnesium ... 108
 3.3.4 Shoot fresh weight ... 109
 3.3.5 Shoot dry weight ... 111
 3.3.6 Total plant dry weight .. 111
 3.3.7 Shoot dry matter percentage .. 114
 3.3.8 Incidence of tipburn ... 115
 3.3.9 Shelf life .. 118

3.4 Discussion .. 119
 3.4.1 Growth analysis ... 119
 3.4.2 Nutrient concentration of the whole plant during cropping 123
 3.4.3 Leaf and root nutrient concentrations at final harvest 125
 3.4.3.1 Nitrogen .. 125
 3.4.3.2 Phosphorus ... 126
 3.4.3.3 Potassium ... 127
 3.4.3.4 Calcium .. 128
 3.4.3.5 Magnesium ... 129
 3.4.3.6 Summary on nutrient concentrations ... 130
 3.4.4 Shoot fresh weight ... 132
 3.4.5 Shoot dry weight ... 135
 3.4.6 Total plant dry weight .. 136
 3.4.7 Shoot dry matter percentage .. 136
 3.4.8 Incidence of tipburn ... 137
3.4.9 Shelf life ... 138
3.4.10 Summary of treatment effects on growth, tipburn incidence
and shelf life ... 140

Chapter 4 Effect Of Nutrient Solution Concentration On Nutritional Quality
Of Lettuce Grown Over Four Seasons

4.1 Introduction ... 141
4.2 Materials and methods .. 143
 4.2.1 Ascorbic acid determination .. 144
 4.2.2 Dietary fibre determination .. 144
 4.2.3 Nitrate determination ... 145
 4.2.4 Protein determination .. 145
 4.2.5 Soluble sugar determination 146
 4.2.6 Statistical procedure and analysis 146
4.3 Results .. 146
 4.3.1 Ascorbic acid ... 146
 4.3.2 Dietary fibre ... 147
 4.3.3 Nitrate ... 149
 4.3.4 Protein .. 151
 4.3.5 Soluble sugar .. 151
4.4 Discussion ... 153
 4.4.1 Ascorbic acid ... 153
 4.4.2 Dietary fibre ... 154
 4.4.3 Nitrate ... 154
 4.4.4 Protein .. 155
 4.4.5 Soluble sugar .. 156
 4.4.6 Nutritive value comparisons 156
 4.4.7 Summary ... 157
Chapter 5 The Effect Of Day/Night Nutrient Solution Concentration Combinations And Extra Calcium At Night On Nutrient Uptake, Yield And Tipburn Incidence

5.1 Introduction ... 158

5.2 Materials and Methods ... 162

5.2.1 Propagation and greenhouse environment.................................. 162

5.2.2 Experiment 2.1: The effect of different day/night nutrient solution concentration combinations on nutrient uptake, yield and tipburn incidence .. 162

5.2.2.1 Treatments and experimental design..................................... 162

5.2.2.2 Data collection and analysis ... 163

5.2.3 Experiment 2.2: Approaches to charging the inner leaves with calcium ... 164

5.2.3.1 Treatments and experimental design..................................... 164

5.2.3.2 Data collection and analysis ... 167

5.3 Results .. 168

5.3.1 Experiment 2.1 ... 168

5.3.1.1 Tissue nutrient concentrations .. 168

5.3.1.1.1 Leaf nutrient concentrations ... 168

5.3.1.1.2 Root nutrient concentrations .. 169

5.3.1.2 Head fresh weight ... 172

5.3.1.3 Head dry weight ... 172

5.3.1.4 Total plant dry weight .. 172

5.3.1.5 Tipburn incidence ... 174

5.3.2 Experiment 2.2 ... 175

5.3.2.1 Nutrient concentration of different groups of leaves 175

5.3.2.1.1 Nitrogen concentration .. 175

5.3.2.1.2 Phosphorus concentration ... 175

5.3.2.1.3 Potassium concentration ... 176

5.3.2.1.4 Calcium concentration .. 177

5.3.2.1.5 Magnesium concentration .. 177
5.3.2.2 Head fresh weight .. 193
5.3.2.3 Total leaf dry weight .. 193
5.3.2.4 Tipburn incidence .. 195
5.3.2.5 Dry weight and relative growth rate of different leaf
groups .. 197

5.4 Discussion .. 201

5.4.1 Experiment 2.1 .. 201
5.4.1.1 Tissue nutrient concentrations 201
 5.4.1.1.1 Leaf tissue ... 201
 5.4.1.1.2 Root tissue ... 203
5.4.1.2 Fresh weight .. 203
5.4.1.3 Dry weight ... 204
5.4.1.4 Tipburn ... 204

5.4.2 Experiment 2.2 .. 205

5.4.2.1 Leaf nutrient concentrations on a leaf group and
total leaf basis .. 205
 5.4.2.1.1 Nutrient concentration from the outer to the
 inner leaves .. 205
 5.4.2.1.2 Nitrogen .. 205
 5.4.2.1.3 Phosphorus .. 206
 5.4.2.1.4 Potassium ... 207
 5.4.2.1.5 Calcium .. 209
 5.4.2.1.6 Magnesium ... 209
 5.4.2.1.7 Summary: Treatment effects on leaf
 nutrient concentrations – leaf group and
 total leaf basis .. 210

5.4.2.2 Fresh weight .. 212
5.4.2.3 Dry weight ... 214
5.4.2.4 Comments on both fresh and dry weights 215
 5.4.2.4.1 Before induction .. 215
 5.4.2.4.2 After induction ... 216
Chapter 6 General Conclusion

6.1 Nutrient uptake ..218
6.2 Growth ...219
6.3 Tipburn incidence ...220
6.4 Shelf life ...221
6.5 Season ...221
6.6 Cultivars ...222
6.7 Nutritional value ...222
6.8 Practical outcomes ...223
6.9 Comments on future work ...224

References ..226
List Of Tables

Table 2.1 Concentration of nutrient ions (mg l⁻¹) used by various researchers for hydroponic lettuce growing .. 17

Table 2.2 Concentration of nitrogen, phosphorus, potassium, calcium and magnesium in % dry weight of lettuce .. 23

Table 2.3 Calcium related physiological processes in plants .. 30

Table 2.4 Concentration of ascorbic acid, dietary fibre, nitrate, protein and soluble sugar of lettuce on fresh weight and dry weight basis .. 52

Table 3.1 Date of sowing, transplanting, harvesting and number of plants per plot per harvest for growth analysis and plant nutrient determinations and heat unit calculations for each harvest .. 65

Table 3.2 Significance level of RGR, NAR, LAR, SLA and LWR of 3 lettuce cultivars grown in different concentrations over 4 seasons .. 77

Table 3.3 Main conclusions based on the treatment effects on the growth analysis attributes .. 93

Table 3.4 Levels of significance of nitrogen, phosphorus, potassium, calcium and magnesium for the interaction between crop and concentration for each harvest .. 96

Table 3.5 Predicted day to 10 % fresh weight loss as affected by nutrient solution concentration and cultivar within each growing season .. 118

Table 4.1 Dietary fibre concentration (mg g⁻¹ dry weight) (mean of 4 concentrations over 4 seasons) .. 147

Table 5.1 Nitrogen, phosphorus, potassium, calcium and magnesium concentrations (% dry weight) of leaf at final harvest of lettuce cultivar Cortina grown under different day night nutrient solution combinations .. 170
Table 5.2 Nitrogen, phosphorus, potassium, calcium and magnesium concentrations (% dry weight) of root at final harvest of lettuce cultivar Cortina grown under different day night nutrient solution combinations... 171

Table 5.3 Head fresh weight, head dry weight and total plant dry weight of lettuce cultivar Cortina grown under different day night nutrient solution combinations.. 173

Table 5.4 Tipburn percentage (%) of lettuce cultivar Cortina grown under different day night nutrient solution combinations.. 174

Table 5.5 Nitrogen concentration (% dry weight) before tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night... 178

Table 5.6 Nitrogen concentration (% dry weight) after tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night... 179

Table 5.7 Nitrogen concentration (% dry weight) of total leaf of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night.. 180

Table 5.8 Phosphorus concentration (% dry weight) before tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night... 181

Table 5.9 Phosphorus concentration (% dry weight) after tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night... 182

Table 5.10 Phosphorus concentration (% dry weight) of total leaf of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night.. 183

Table 5.11 Potassium concentration (% dry weight) before tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night... 184
Table 5.12 Potassium concentration (% dry weight) after tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. 185
Table 5.13 Potassium concentration (% dry weight) of total leaf of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. 186
Table 5.14 Calcium concentration (% dry weight) before tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. 187
Table 5.15 Calcium concentration (% dry weight) after tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. 188
Table 5.16 Calcium concentration (% dry weight) of total leaf of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. ... 189
Table 5.17 Magnesium concentration (% dry weight) before tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. 190
Table 5.18 Magnesium concentration (% dry weight) after tipburn induction of different leaf groups of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. 191
Table 5.19 Magnesium concentration (% dry weight) of total leaf of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. ... 192
Table 5.20 Fresh weight before, after tipburn induction and at final harvest of lettuce cultivar Cortina grown under different nutrient solution concentration and calcium level at night. ... 194
Table 5.21 Dry weight of total leaf before and after tipburn induction of lettuce cultivar Cortina grown under different nutrient solution concentrations and calcium levels at night. ... 195
Table 5.22 Tipburn percentage, number of leaves with tipburn per plant, tipburn score and tipburn index of lettuce cultivar Cortina under different nutrient solution concentrations and calcium levels at night.......................... 196
Table 5.23 Dry weight before tipburn induction of different groups of leaves of lettuce cultivar Cortina under different nutrient solution concentrations and calcium levels at night.. 198
Table 5.24 Dry weight after tipburn induction of different groups of leaves of lettuce cultivar Cortina under different nutrient solution concentrations and calcium levels at night.. 199
Table 5.25 Relative growth rate (RGR) during tipburn induction period of different groups of leaves of lettuce cultivar Cortina under different nutrient solution concentrations and calcium levels at night............ 200
List of Figures

Figure 3.1 Effect of crop, nutrient solution concentration and cultivar on relative growth rate of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons................................. 78

Figure 3.2 Interaction between crop and concentration on relative growth rate (mean of 3 cultivars) of lettuce grown in 4 nutrient solution concentrations over 4 seasons... 79

Figure 3.3 Interaction between crop and cultivar on relative growth rate of 3 lettuce cultivars (mean of 4 nutrient solution concentrations) over 4 seasons.. 80

Figure 3.4 Effect of crop, nutrient solution concentration and cultivar on net assimilation rate of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons.. 81

Figure 3.5 Interaction between crop and concentration on net assimilation rate (mean of 3 cultivars) of lettuce grown in 4 nutrient solution concentrations over 4 seasons... 82

Figure 3.6 Interaction between crop and cultivar on net assimilation rate of 3 lettuce cultivars (mean of 4 nutrient solution concentrations) over 4 seasons.. 83

Figure 3.7 Effect of crop, nutrient solution concentration and cultivar on leaf area ratio of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons... 84

Figure 3.8 Interaction between crop and concentration on leaf area ratio (mean of 3 cultivars) of lettuce grown in 4 nutrient solution concentrations over 4 seasons.. 85

Figure 3.9 Interaction between crop and cultivar on leaf area ratio of 3 lettuce cultivars (mean of 4 nutrient solution concentrations) over 4 seasons... 86
Figure 3.10 Effect of crop, nutrient solution concentration and cultivar on specific leaf area of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons .. 87

Figure 3.11 Interaction between crop and concentration on specific leaf area (mean of 3 cultivars) of lettuce grown in 4 nutrient solution concentrations over 4 seasons .. 88

Figure 3.12 Interaction between crop and cultivar on specific leaf area of 3 lettuce cultivars (mean of 4 nutrient solution concentrations) over 4 seasons .. 89

Figure 3.13 Effect of crop, nutrient solution concentration and cultivar on leaf weight ratio of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons .. 90

Figure 3.14 Interaction between crop and concentration on leaf weight ratio (mean of 3 cultivars) of lettuce grown in 4 nutrient solution concentrations over 4 seasons .. 91

Figure 3.15 Interaction between crop and cultivar on leaf weight ratio of 3 lettuce cultivars (mean of 4 nutrient solution concentrations) over 4 seasons .. 92

Figure 3.16 Nitrogen concentration (% dry weight) of whole lettuce plant during cropping .. 98

Figure 3.17 Phosphorus concentration (% dry weight) of whole lettuce plant during cropping .. 99

Figure 3.18 Potassium concentration (% dry weight) of whole lettuce plant during cropping .. 100

Figure 3.19 Calcium concentration (% dry weight) of whole lettuce plant during cropping .. 101

Figure 3.20 Magnesium concentration (% dry weight) of whole lettuce plant during cropping .. 102

Figure 3.21 Interaction between crop and concentration on nutrient concentration of leaf and root at final harvest of lettuce grown in different nutrient solution concentrations over 4 seasons .. 104
Figure 3.22 Interaction between crop and cultivar on nutrient concentration of leaf and root at final harvest of lettuce grown in different nutrient solution concentrations over 4 seasons .. 105

Figure 3.23 Shoot fresh weight (grams per plant) of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons .. 110

Figure 3.24 Interaction effects between crop × concentration (a) and crop × cultivar (b) on shoot dry weight of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons .. 112

Figure 3.25 Interaction effects between crop × concentration (a) and crop × cultivar (b) on total plant dry weight of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons .. 113

Figure 3.26 Interaction effects between crop × concentration (a) and crop × cultivar (b) on shoot dry matter percentage (%) and its arcsine value of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 3 seasons .. 114

Figure 3.27 Tipburn percentage (%) of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons .. 116

Figure 3.28 Arcsine value of tipburn percentage of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons .. 117

Figure 3.29 Comparison of shoot fresh weight (g) at final harvest and initial RGR (g·g⁻¹ heat unit) of 3 lettuce cultivars grown in 4 nutrient solution concentrations over 4 seasons .. 133

Figure 4.1 Interaction effects between crop × concentration (a), crop × cultivar (b) and concentration × cultivar (c) on ascorbic acid concentration (mg g⁻¹ dry weight) of 3 cultivars of lettuce grown in 4 nutrient solution concentrations over 4 seasons .. 148

Figure 4.2 Interaction effects between crop × concentration (a), crop × cultivar (b) and concentration × cultivar (c) on nitrate concentration (mg g⁻¹ dry weight) of 3 cultivars of lettuce grown in 4 nutrient solution concentrations over 4 seasons .. 150
Figure 4.3 Soluble sugar concentration (mg g-1 dry weight) of 3 cultivars lettuce grown in 4 nutrient solution concentrations over 4 seasons..................... 152

Figure 5.1 Relative growth rate of different leaf groups of lettuce grown in two levels of calcium concentration at night.. 197
List Of Plates

Plate 1 Propagation stage a) peat – Experiment 1 Summer crop b) vermiculite-
all subsequent crops .. 66

Plate 2 Establishment stage – Experiment 1.. 67

Plate 3 a) Cultivars of lettuce in the Experiment: Cortina (1), Lollo Bionda (2)
and Impuls (3) b) Tipburn incidence of cultivar Cortina in Experiment 1
- winter crop ... 68

Plate 4 Experiment 1: General view of winter crop a) at harvest 3 and b) before
final harvest .. 69

Plate 5 Experiment 2.2 a) General view, b) Final harvest (Ca0 series
on left, Ca100 series on right) and c) Ranking system for
tipburn severity ... 166