Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Development of Methods allowing Correlation of *Dothistroma* and Dothistromin *In Planta*

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Biochemistry

at Massey University, Manawatu,
New Zealand

Timothy J. Owen
2010
Abstract

Dothistroma septosporum is a fungal pathogen of pines with a worldwide distribution. It is responsible for the disease red band needle blight, in which necrotic lesions appear on infected needles. The red colour of the disease is due to the presence of the mycotoxin dothistromin. This toxin is structurally related to the better characterised mycotoxins aflatoxin and sterigmatocystin. The function of these toxins is unknown, but dothistromin is hypothesised to act as a competition factor. While much work has been done on *D. septosporum* and dothistromin in broth culture, *in planta* work has been limited by the methods available.

This work focused first on the development of a method for the reliable and high yield extraction of DNA from infected lesions, as previously used methods were found to be inadequate. It was found that the addition of an enzyme lysis step to the Qiagen DNeasy protocol and the replacement of its column purification with chloroform purification gave a greatly increased yield of DNA with an acceptable loss of purity.

To allow quantification of dothistromin from the same lesion samples, previously used assay systems were optimised and compared in their accuracy and sensitivity. An HPLC-fluorescence method was found most effective, and was able to accurately quantify dothistromin at single lesion quantities.

The developed methods were used to give a correlation between *Dothistroma* biomass and dothistromin in lesions at various stages of development. While this correlation was not found to be statistically significant, continuation of this work should allow valid conclusions to be drawn.

To give insight into the evolution of dothistromin biosynthesis, the genomes of other dothideomycetes were examined for the presence of dothistromin biosynthesis gene homologs. While no homologs were conclusively identified, a number of genes were shown to have similarity to known toxin biosynthesis genes.

In summary, while not all research hypotheses were able to be proven or disproven, this work sets a firm basis for future investigation in these areas using the methods developed, and strongly suggests the direction continued study should take.
Acknowledgements

First and foremost, my sincere thanks to my supervisor, Rosie Bradshaw, not only for giving so much guidance and support in my work, but also for putting up with my constant misuse of the word ‘significantly’.

Thank you to Rose Motion, for giving up so much of your time to help me with the chemistry side of things, of which I still know far too little about.

Thank you to the past and present members of the Fungal Jungle who have been so helpful; Carole, for always knowing where everything is, especially if it’s right in front of me; Arne, for pointing me in the right direction; Rebecca, for running the real time PCR and always having such good advice; Shuguang, for showing me through the methods; Melissa, for showing that there is light at the end of the tunnel; Kabir, for all his help with the pine seedling work; and to Adam, Shuiying, Yanfei, and Pranav for answering my mostly inane questions.

Thank you to everyone from IMBS for being so friendly and so willing to give up your time to help someone else. Unfortunately there is no way I can name all of you!

Thanks to Robert and Rex for giving me excellent advice on working with dothistromin. It was a privilege to have benefit of such experience. Thanks to Karl and Scott of AgResearch for the MS work.

More personally, thanks Kerry for being amazing, and thanks Mum and Dad for all the support.
Table of Contents

CHAPTER 1: INTRODUCTION .. 1
1.1 HISTORY, HOSTS, AND GEOGRAPHIC RANGE 1
1.2 IDENTIFICATION, DIFFERENTIATION, AND DNA EXTRACTION 2
1.3 THE CHEMISTRY AND BIOSYNTHESIS OF DOTHISTROMIN 3
1.4 DOTHISTROMIN AS A MYCOTOXIN .. 5
1.5 THE BIOLOGICAL ROLE OF DOTHISTROMIN 6
1.6 PURIFICATION AND QUANTIFICATION OF DOTHISTROMIN 8
1.7 RESEARCH HYPOTHESES .. 12
1.8 AIMS AND OBJECTIVES ... 12

CHAPTER 2: MATERIALS AND METHODS 14
2.1 DNA EXTRACTION AND PURIFICATION ... 14
 2.1.1 DNA extraction; needles and fungal mycelia 14
 2.1.2 Sampling and freeze drying ... 14
 2.1.3 Grinding .. 14
 2.1.4 Qiagen DNeasy DNA extraction ... 15
 2.1.5 Nucleon Phytopure DNA extraction ... 16
 2.1.6 Combined DNA extraction method ... 16
 2.1.7 Glucanex enzyme incubation ... 16
 2.1.8 Fastprep bead beater .. 17
 2.1.9 DNA quantification ... 17
 2.1.10 PCR conditions .. 17
 2.1.11 Surface sterilisation .. 18
 2.1.12 Nested PCR .. 18
 2.1.13 DNA gels .. 19
2.2 DOTHISTROMIN EXTRACTION AND QUANTIFICATION 19
 2.2.1 Broth cultures ... 19
 2.2.2 Solvent extraction ... 19
 2.2.3 Dothistromin ... 20
 2.2.4 ELISA .. 20
 2.2.5 Thin Layer Chromatography ... 21
 2.2.6 HPLC .. 22
 2.2.7 Mass Spectrometry ... 23
2.3 DOTHISTROMA LESION SAMPLING ... 23
 2.3.1 Seedling inoculation .. 23
 2.3.2 Labelling ... 23
 2.3.3 Quantification ... 24
2.4 BIOINFORMATICS: .. 25
 2.4.1 Cluster location: ... 25
 2.4.2 Alignment: .. 25

CHAPTER 3: DEVELOPMENT OF DNA EXTRACTION METHODS 27
3.1 INTRODUCTION .. 27
3.2 RESULTS ... 28
 3.2.1 DNA extraction optimization ... 28
 3.2.2 Extraction from small pine needle samples ... 32
 3.2.3 Extraction from needles infected with D. septosporum ... 32
 3.2.4 Extraction from herbarium specimens ... 33
 3.2.5 Fungal DNA extractions .. 33
3.3 DISCUSSION .. 34

CHAPTER 4: DEVELOPMENT OF DOTHISTROMIN EXTRATION AND QUANTIFICATION METHODS 37
4.1 INTRODUCTION ... 37
4.2 RESULTS ... 38
 4.2.1 Extraction .. 38
 4.2.2 TLC ... 39
 4.2.3 HPLC .. 42
 4.2.4 Internal standard ... 47
 4.2.5 ELISA .. 48
 4.2.6 Summary of tested methods ... 49
4.3 DISCUSSION .. 50

CHAPTER 5: DOTHISTROMIN IN PLANTA .. 54
5.1 INTRODUCTION .. 54
5.2 RESULTS ... 54
 5.2.1 Lesion development and categorization ... 54
 5.2.2 PCR biomass quantification ... 57
 5.2.3 Dothistromin-biomass relationship ... 58
5.3 DISCUSSION .. 61

CHAPTER 6: BIOINFORMATIC INVESTIGATION OF RELATED ORGANISMS ... 65
6.1 INTRODUCTION .. 65
6.2 RESULTS ... 65
 6.2.1 Bioinformatics .. 65
 6.2.2 Toxin assay .. 78
6.3 DISCUSSION .. 79

CHAPTER 7: SUMMARY ... 82

CHAPTER 8: APPENDIX .. 83
8.1 GEL ELECTROPHORESIS ... 83
8.2 ELISA BUFFERS .. 83
8.3 LIST OF COMPARED GENES ... 84
8.4 ALTERNATIVE BUFFERS TESTED ... 89
8.5 TLC BACKGROUND ... 90
8.6 CAFFEIC ACID HPLC .. 91
8.7 LESION COMPONENT VARIATION .. 92
8.8 SAMPLE GROUP DISTRIBUTION .. 93

CHAPTER 9: BIBLIOGRAPHY ... 94
List of figures

FIG. 1.1: DOHISTROMIN AND RELATED SECONDARY METABOLITES 3
FIG. 1.2 PRODUCTION OF OXYGEN RADICALS BY DOHISTROMIN 5
FIG. 1.3: EARLY PRODUCTION OF DOHISTROMIN .. 7
FIG. 3.1: YIELDS OBTAINED FROM DIFFERENT DNA EXTRACTION PROTOCOLS 30
FIG 4.1: EFFECT OF INCREASED ACIDIFICATION ON DOHISTROMIN IONISATION 39
FIG 4.2: SEPARATION OF TLC SOLVENT SYSTEMS .. 40
FIG 4.3: TLC DILUTION SERIES .. 41
FIG 4.4: SCANNING UV-VIS ABSORBANCE HPLC ... 43
FIG 4.5: HPLC DETECTION ... 44
FIG 4.6: FLUORESCENCE DETECTION DOHISTROMIN DILUTION SERIES 45
FIG 4.7: MASS SPECTRUM OF DOHISTROMIN PEAK .. 47
FIG 4.8: ELISA DOHISTROMIN DILUTION SERIES .. 48
FIG 5.1: VARIATION IN MICROSCOPIC APPEARANCE OF SAMPLES 56
FIG. 5.2: AMPLIFICATION OF SAMPLE SETS ... 58
FIG. 5.3: DOHISTROMIN CONTENT OF SAMPLES BY GROUP 59
FIG. 5.4: DNA VS DOHISTROMIN .. 60
FIG. 6.1: M. GRAMINICOLA PKS7 CLUSTER ... 68
FIG. 6.2: C. HETEROSTROPHUS PKS19 CLUSTER .. 70
FIG. 6.3: M. FIJIENSIS MYCF11.E_GW1.7.973.1 CLUSTER ... 72
FIG. 6.4: A. BRASSICOLA AB06180.1 GENE CLUSTER ... 74
FIG. 6.5: S. NODORUM JAM_SNOG_06672/ JAM_SNOG_06682 CLUSTER 76
FIG. 6.6: M. GRAMINICOLA DOHISTROMIN HPLC ... 78
FIG. 8.1: CHLOROFORM:METHANOL TLC BACKGROUND .. 90
FIG. 8.2: CAFFEIC ACID HPLC CHROMATOGRAM ... 91
FIG. 8.3: VARIATION IN HPLC FLUORESCENCE PEAKS ... 92
FIG. 8.4: DNA VS DOHISTROMIN, BY SAMPLE GROUP .. 93
List of tables

TABLE 2.1: PCR PRIMERS ... 18
TABLE 2.2: REALTIME PCR PRIMERS AND PROBES ... 25
TABLE 3.1: SUMMARY OF METHOD MODIFICATIONS ... 31
TABLE 3.2: EXTRACTION YIELD FOR SMALL SAMPLES .. 32
TABLE 3.3: EXTRACTION YIELD FOR *DOTHISTROMA LESIONS* 33
TABLE 3.4: EXTRACTION YIELD FROM FUNGAL MYCELIUM 34
TABLE 4.1: TLC DILUTION SERIES .. 42
TABLE 4.2: FLUORESCENCE PEAK AREA OF DOTHISTROMIN HPLC STANDARDS 46
TABLE 4.3: ABSORBANCE OF ELISA STANDARDS ... 48
TABLE 4.4: DOTHISTROMIN QUANTIFICATION METHODS SUMMARY 49
TABLE 6.1: BIOSYNTHESIS GENE MATCHES SURROUNDING POTENTIAL PKS HOMOLOGS ... 66
TABLE 6.2: *M. GRAMINICOLA* PKS7 CLUSTER GENE MODELS 69
TABLE 6.3: *C. HETEROSTROPHUS* PKS19 CLUSTER GENE MODELS 71
TABLE 6.4: *M. FIJIENSIS* MYCF1.E_GW1.7.973.1 CLUSTER GENE MODELS 73
TABLE 6.5: *A. BRASSICOLA* AB06180.1 GENE CLUSTER MODELS 75
TABLE 6.6: *S. NODORUM* JAM_SNOG_06672/JAM_SNOG_06682 CLUSTER GENE MODELS .. 77
TABLE 8.1: *ALTERNARIA BRASSICOLA* GENE COMPARISONS 84
TABLE 8.2: *COCHLIOBOLUS HETEROSTROPHUS* GENE COMPARISONS 85
TABLE 8.3: *MYCOSPHAERELLA FIJIENSIS* GENE COMPARISONS 86
TABLE 8.4: *MYCOSPHAERELLA GRAMINICOLA* GENE COMPARISONS 87
TABLE 8.5: *STAGONOSPORA NODORUM* GENE COMPARISONS 88