Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Contribution of Wild Mammals to the Epidemiology of Tuberculosis (*Mycobacterium bovis*) in New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University

Ian William Lugton

1997
AMENDMENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Paragraph</th>
<th>Line</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii</td>
<td>1</td>
<td>4</td>
<td>insert study after Castlepoint longitudinal</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>5</td>
<td>change hypneumoniae to hyopneumoniae</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2</td>
<td>replace suggests with suggest</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>4</td>
<td>replace varies with vary</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>6</td>
<td>insert oral before inoculation</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>7</td>
<td>omit that following reported</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>replace patch with patches</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>3</td>
<td>insert M. bovis after where</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>10</td>
<td>omit the second that</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>4</td>
<td>replace size range from with diameter range of</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>3</td>
<td>insert of after favour</td>
</tr>
<tr>
<td>44</td>
<td>2</td>
<td>1</td>
<td>omit first have</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>6</td>
<td>omit that</td>
</tr>
<tr>
<td>69</td>
<td>2</td>
<td>7</td>
<td>omit in</td>
</tr>
<tr>
<td>74</td>
<td>1</td>
<td>3</td>
<td>replace second as by than</td>
</tr>
<tr>
<td>77</td>
<td>3</td>
<td>1</td>
<td>insert the after in</td>
</tr>
<tr>
<td>83</td>
<td>2</td>
<td>last</td>
<td>replace yet by while</td>
</tr>
<tr>
<td>101</td>
<td>3</td>
<td>last</td>
<td>delete that</td>
</tr>
<tr>
<td>102</td>
<td>1</td>
<td>5</td>
<td>replace curious with inquisitive</td>
</tr>
<tr>
<td>112</td>
<td>3</td>
<td>2</td>
<td>omit are after always</td>
</tr>
<tr>
<td>113</td>
<td>3</td>
<td>8</td>
<td>replace enlargement with enlargements</td>
</tr>
<tr>
<td>119</td>
<td>2</td>
<td>1</td>
<td>insert Prior to this study (Chapter 7) the hedgehog had at the start of sentence</td>
</tr>
<tr>
<td>121</td>
<td>3</td>
<td>5</td>
<td>replace reports with instances</td>
</tr>
<tr>
<td>126</td>
<td>2</td>
<td>3</td>
<td>insert locations after several</td>
</tr>
<tr>
<td>127</td>
<td>1</td>
<td>2</td>
<td>replace mycobacteria with mycobacterial diseases</td>
</tr>
<tr>
<td>139</td>
<td>1</td>
<td>8</td>
<td>replace have with had</td>
</tr>
<tr>
<td>158</td>
<td>2</td>
<td>5</td>
<td>insert grossly after have</td>
</tr>
<tr>
<td>178</td>
<td>1</td>
<td>1</td>
<td>insert own offspring, after to</td>
</tr>
<tr>
<td>185</td>
<td>1</td>
<td>13</td>
<td>insert LTA positive after five</td>
</tr>
<tr>
<td>212</td>
<td>2</td>
<td>5</td>
<td>replace mature with older</td>
</tr>
</tbody>
</table>

221 the tonsillar lesions depicted in Figures 6-1 and 6-2 represent normal crypt pathology found in both cattle and deer. Infection with M. bovis may be the cause of such lesions in some animals, but this cannot be determined grossly.

301 3 2 detailed necropsies, consisting of post mortem examination, followed by isolation of M. bovis and/or the finding acid-fast organisms during histopathological examination, were considered to be the ‘gold standard’ by which the other diagnostic methods were evaluated.

346 1 6 insert subsequently before died

352 5 4 replace this with these

352 5 6 replace This data was with These data were

408 1 2 insert within a radius of after within

414 3 11 replace A latter two with Two later

425 2 1 replace challenges with challenge

469 10 1 insert in feral pigs after Mycobacterium bovis

Note: Infected is used in the text to refer to an animal or tissue which contains viable pathogenic microorganisms, whereas diseased, is used to denote a situation where organs or tissues have pathologic changes as a result of such infection. The adjective 'tuberculous' specifically refers to pathologic conditions caused by tubercle bacilli.
“To question all things - never to turn away from any difficulties, to accept no doctrine either from ourselves or from other people without rigid scrutiny by negative criticism; letting no fallacy, or incoherence, or confusion of thought, step by unperceived; above all to insist upon having the meaning of a word clearly understood before using it, and the meaning of a proposition before assenting to it, these are the lessons we learn from the ancient dialecticians.” - John Stuart Mill
Abstract
The objective of these studies was twofold. The primary aim was to gain a better understanding of the role of free-living mammalian species, other than possums, in the epidemiology of wildlife tuberculosis in New Zealand. The other objective was to continue the operation of the Castlepoint longitudinal so that hypotheses regarding the epidemiology of *M. bovis* infection in possums could be further refined and clarified.

Of the wild carnivores found in New Zealand, the disease persists at high prevalence only in ferrets, and is probably maintained principally by ingestion of tuberculous carrion. Although a moderate number of ferrets excrete *M. bovis* orally, there appears to be only minor intraspecific transmission by bite wounding. Although cats and stoats can also become infected through scavenging, they appear to be less susceptible to oral infection than ferrets. There is no substantial evidence to suggest that any of New Zealand’s free-living carnivores are likely to be reservoir hosts of *M. bovis*.

Observational studies involving twelve domestic red deer suggested that cervids probably become infected through close inspection and investigation of moribund tuberculous possums, and that the likelihood of exposure to *M. bovis* was related to the curiosity and social ranking of the deer. Necropsies conducted principally on wild red deer and involving 152 animals provided evidence to suggest that significant bacillary excretion from infected deer was uncommon, and that only the few with advanced disease had the potential to be highly infectious. However, behavioural phenomena and disease characteristics preclude the ready transmission of disease amongst cohorts. There is now strong evidence to suggest that a high prevalence of tuberculosis infection in wild deer can only be maintained through contact with infected possums. However, deer may still be able to maintain the disease amongst themselves, albeit at a low prevalence, in the absence of infection in possums. This study also confirmed the importance of lymphoepithelial tissues, such as the oropharyngeal and nasopharyngeal tonsils, as primary sites for the establishment of *M. bovis* infection, and the subsequent excretion of organisms in deer.

The gross and histopathological appearance of the lesions found in six infected hedgehogs are described. It is likely that infection arose from the scavenging
behaviour of hedgehogs. The moderate prevalence (3.9%) of tuberculosis in these animals, combined with their small home ranges may allow them to be used successfully in wildlife surveys to pinpoint the locality in which tuberculous possums have died.

To gain an understanding of the potential role of wild pigs, goats, sheep, rabbits, hares, rats and mice in the dynamics of *Mycobacterium bovis* infection in free-ranging animals, numbers of these species were examined for evidence of infection. Of these, only the pig appears to have sufficient potential for intraspecific transmission to be of concern in tuberculosis control programmes. Sheep and goats appear to be simply spillover hosts, which may have a limited role in disease amplification following possible, but limited, intraspecific transmission. Rodents and lagomorphs are most unlikely to play any substantial role in the epidemiology of tuberculosis in New Zealand, under current circumstances.

A longitudinal study was established in 1989 to examine the disease behaviour in an infected possum population on a farm in the southern North Island of New Zealand, by trapping, using a fixed set of 295 traps for at least 3 days per month. Animals captured were examined at 2 monthly intervals for evidence of tuberculosis. During the first 5.5 years of this project over 900 individual possums were captured and tagged. Blood was collected from each possum examined, and the sera retained were stored frozen. Using these stored sera, three indirect ELISAs were evaluated as diagnostic tests for tuberculosis in possums. All ELISAs had low sensitivity when a cutoff selected to maximise the specificity was chosen. None of the ELISAs reliably detected possums infected with tuberculosis and they therefore have limited value for epidemiological studies. The lymphocyte transformation assays performed on blood taken from possums was estimated to have a sensitivity for detection of tuberculosis of approximately 80%, when the specificity was set at 99%. The lymphocyte transformation assay was the best of the *in vivo* tests evaluated, with the moderate sensitivity allowing it to be used with a degree of confidence to retrospectively diagnose disease, and aid the development of hypotheses regarding the epidemiology of tuberculosis in possums. The evaluated tests were applied retrospectively to sera and blood samples from possums from the Castlepoint longitudinal study. The additional data arising from these assays suggested that perhaps as few as one fifth of study site possums which had contact with *M. bovis*
had been previously detected as infected by clinical examination. A proportion of these test positive/examination negative animals may have been exhibiting resistance to \textit{M. bovis} infection, and/or had resolved lesions or cryptic infection. Such animals may have formed a pool of possums in which future reactivation of tuberculosis was possible. The time from earliest evidence of infection till death, in those possums which showed clinical disease, varied from months to several years.

Cortisol assays performed on stored sera, and monitoring of trends in body weight, were used to investigate the role of stressful environmental phenomena in the epidemiology of tuberculosis in possums. Major stressful periods involving inadequate nutrition, heat, cold and moisture stress appear to precipitate severe tuberculosis outbreaks, which are believed to have their origins in the reactivation of subclinical/latent infection in the population. As the period of pre-clinical disease varies substantially, and can be as long as several years, this epidemic of tuberculosis takes several years to subside. Thereafter a small number of clinically diseased possums are likely to be restricted to “hot spots” conducive to transmission of \textit{M. bovis}.

Isolates of \textit{M. bovis} recovered from a variety of species, both wild and domestic, in the Castlepoint environs, and in particular the Castlepoint study site, were subjected to restriction endonuclease analysis to DNA fingerprint the strains present, and hence gain a better understanding of the inter- and intraspecific epidemiology of tuberculosis. The results do not challenge the accepted view of possums being the major reservoir hosts of tuberculosis in the Wairarapa. There was also no evidence to suggest that host adaptation of \textit{M. bovis} has occurred, except in the case of possums, where they appear to be able to maintain clusters of individuals infected with particular restriction types, in microhabitats for at least 5 year periods. The occurrence of newly introduced restriction types has made possible new observations on the epidemiology of infection, including the documentation of the occurrence of latent infections, duration of primary progressive disease in newly infected possums (7-8 months), and the likely occurrence of post-primary reactivation of tuberculosis.
Acknowledgments

I was indeed fortunate to be offered, and able to take up the position of research officer in Professor Roger Morris’s epidemiology group, as this step catapulted me headlong into a tough, but worthwhile struggle to enlarge my professional horizons, expand my interests in wildlife, and I hope, to make a significant contribution to solving the problem of bovine tuberculosis in New Zealand. I must first thank NSW Agriculture, for allowing me the opportunity to undertake these studies. To Roger Morris I am also truly grateful for this rare chance to conduct PhD studies under such fortunate circumstances. Under Roger’s tutelage I have learned a great deal, and am wiser for the experience. To him I owe my thanks.

To Dirk Pfeiffer, my friend, mentor and co-supervisor, I am deeply indebted. He ably assisted the transition from raw novice with figures to one now competent to take on many statistical challenges. Dirk was often brimming with great ideas, enthusiasm and good cheer, when these were at low ebb in myself. He was prepared to listen to ideas in an impartial manner, despite them often being contrary to the “accepted wisdom” on tuberculosis. I miss his company and the daily debriefing chats we had on our bicycle rides home from the university.

My other supervisor, Associate Professor Peter Wilson, was instrumental in teaching me something of the husbandry and diseases of deer, topics of which I possessed complete ignorance before enrolling in the PhD studies. I thank Peter for his tuition, encouragement, friendship and prompt attention to my needs throughout my stay at Massey university.

To my colleagues, particularly Carola Sauter, and support staff, and especially those involved in the study of tuberculosis, I am indebted for their help and company on many occasions. There were many who contributed substantially in various ways, and these folk are acknowledged at the end of each chapter.

The management of the Castlepoint study site presented its share of difficulties, none insurmountable, but challenging none the less. Without the friendly cooperation of Ron Goile, manager of Waio station, and his partner, Donna Lewis, these problems may have been difficult to overcome. Their help was sincerely appreciated, as was their outstanding contribution to the longitudinal study.
To my family I am deeply indebted and sincerely appreciative of their support. They were separated from their father and husband for the first six months of the studies, dragged unwillingly across the Tasman to settle in a foreign urban environment and then uprooted again to return to Australia. Whilst in New Zealand they endured my prolonged absences, disappearances on weekends and late nights working on the thesis, with little complaint. I sincerely apologise for the neglect of family matters, and the time for which the PhD studies precluded me spending with my loved ones. I hope in the fullness of time that the completion of the studies will bring rewards which have a tangible benefit to my family.

Ian Lugton
Department of Veterinary Clinical Sciences
Massey University
New Zealand

12/6/1997
Table of Contents

ABSTRACT

ACKNOWLEDGMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

TABLE OF ABBREVIATIONS AND UNITS

CHAPTER 1 INTRODUCTION

CHAPTER 2 REVIEW OF THE LITERATURE

Aspects of disease pathogenesis

- Portals of mycobacterial entry into the body
 - Mucosa-associated lymphoid tissues (MALT)
 - Oropharyngeal Tonsils (palatine tonsils)
 - Nasopharyngeal tonsil (pharyngeal tonsil, adenoid)
 - Peyer's patches
 - Bronchus-associated lymphoid tissue (BALT)
 - Conjunctiva-associated lymphoid tissue (CALT)
 - MALT and mycobacteria
- Other mucosal surfaces
- Skin
- Lungs
 - Generation of airborne particles
 - Uptake of airborne particles
 - Conclusion on routes of infection
- Haematogenous dissemination of *M. bovis* within the body
- Compartmentalisation of the immune response
- Lesion resolution and bacillary dormancy

Stress and tuberculosis

- Stress and immunosuppression
 - Control of glucocorticoid release
 - Chronic stress
 - Actions of glucocorticoids
 - Effects of selected stressors
 - Glucocorticoids and inflammatory responses
- Stress and infectious disease
- Glucocorticoids and the pathogenesis of tuberculosis
- Glucocorticoids and tuberculosis
- Action on macrophages
Species

Red Deer (Cervus elaphus)
- Introduction
- Ecology
- Signs of Tuberculosis
- Pathology
- Lesion distribution
- Pathogenesis and transmission
- Routes of infection
- Genetic susceptibility
- Stress and glucocorticoids
- Age effects
- Routes of excretion
- International situation
- North America
- Hawaii
- Britain
- Ireland
- Continental Europe
- New Zealand situation
- Prevalence of tuberculosis
- Relationships with other infected wildlife
- Transmission of tuberculosis from deer to wildlife
- Deer to cattle transmission
- Conclusion

Possums (Trichosurus vulpecula)
- Prevalence
- Clustering
- Sex and age effects
- Seasonal effects
- Pathology
- Routes of transmission

Pigs (Sus scrofa)
- Ecology
- Disease in pigs
- Tuberculosis in wild pigs internationally
- Tuberculosis in wild pigs of New Zealand
- Conclusions

Sheep (Ovis aries)

Goats (Capra hircus)

Rabbits (Oryctolagus cuniculus)

Hares (Lepus europaeus occidentalis)

Ferrets (Mustela putorius furo)
- History
- Ecology
- Diet
- Chronicle of M. bovis infection in ferrets of New Zealand
- Association with tuberculosis in livestock
- Interactions with livestock
- Prevalence of tuberculosis
- Pathology of M. bovis infection
- Routes of M. bovis excretion
- Immunology of M. bovis infection
- Conclusions

Stoats (Mustela erminea)
- Ecology
- Disease in stoats

Weasels (Mustela nivalis)

Cats (Felis catus)
Ecology
Disease in cats
Tuberculous cats in New Zealand
Conclusions
Hedgehogs (Erinaceus europaeus)
Ecology
Tuberculous hedgehogs internationally
Tuberculous hedgehogs in New Zealand
Conclusions
Rats (Rattus spp.)
Mice (Mus musculus)

CHAPTER 3 EPIDEMIOLOGY OF MYCOBACTERIUM BOVIS INFECTION IN FERAL FERRETS (MUSTELA FURO) IN NEW ZEALAND: I. PATHOLOGY AND DIAGNOSIS

Abstract

Introduction

Materials and Methods

Necropsy and data recording procedures
Mycobacteriology
Histopathological examination and data recording procedures
Liver ‘biopsy’ examination
Statistical analysis
Investigating associations with the stage and severity of disease

Results

Necropsy
Histopathological findings
Lymph nodes
Liver
Lung lesions
Other sites
Regional relationships

Discussion

Acknowledgments

CHAPTER 4 EPIDEMIOLOGY OF MYCOBACTERIUM BOVIS INFECTION IN FERAL FERRETS (MUSTELA FURO) IN NEW ZEALAND: II. ROUTES OF INFECTION AND EXCRETION

Abstract

Introduction

Materials and Methods

Results

Prevalence of tuberculosis
Histopathological findings
Portals of disease entry
Routes of excretion
CHAPTER 5 NATURAL INFECTION OF RED DEER WITH BOVINE TUBERCULOSIS

Abstract

Introduction

Materials and Methods

- Site
- Animals
- Observations
 - Group 1
 - Group 2
- Possums
- Specimen handling

Results

- Association with tuberculous possums
- Blood and intradermal tests
- Cultures and histopathology
- Social rank and sequence of infection
 - Group 2
- Domestic cattle

Discussion

Acknowledgments

CHAPTER 6 BOVINE TUBERCULOSIS IN WILD RED DEER

Abstract

Introduction

Materials and Methods

- Origin of deer
- Data collection
- Ageing
- Sample collection
- Sample examination
- Statistical analyses

Results

- Description of the deer
- Infection status and relationships
 - Age associations
- Sites of infection
 - Oropharyngeal tonsils
 - Nasopharyngeal tonsil
 - Medial retropharyngeal lymph nodes
- Thoracic infection
- Mesenteric lymph nodes
- Peripheral lymph nodes
CHAPTER 9 THE DIAGNOSIS OF BOVINE TUBERCULOSIS IN POSSUMS: TESTS AND THEIR APPLICATION

Abstract 293

Introduction 295

Materials and Methods 298

Necropsies and determination of infection status 298
Samples for serology 298
Serological tests 300
Samples for lymphocyte transformation assay 300
Test evaluation 301
Survival analysis 304
Other 305

Results 306

Logistic regression 306
ROC analysis 308
Relationship to disease status 312
Longitudinal study possums 315
Case histories 321
Infected possums without gross lesions 321
Possums showing evidence of lesion resolution or regression 323

Discussion 329

Acknowledgments 341

CHAPTER 10 ENVIRONMENTAL STRESSORS AND TUBERCULOSIS IN POSSUMS 343

Abstract 345

Introduction 348

Materials and Methods 351

Study site geography 351
Climatic data 352
Body weight and length 353
Serum collection 354
Delta Con A 355
Cholinesterase 355
Thyroxine 356
Cortisol 357
Statistical Analysis 358
General linear modelling 358
Cortisol levels and tuberculosis status 360
Directions for future research 438

BIBLIOGRAPHY 441

APPENDICES 489

Appendix I.: Critical necropsy technique for deer used during these studies 489

Requirements: 489
- Necropsy site 489
- Equipment 489
- Necropsy procedure 489
- General comments 489
- Head 491
- Thorax 491
- Abdomen 493
- Body 493
Examples of lymph node work sheets 493

Appendix II. Population estimate of possums on the Castlepoint study site 497

Appendix III. Estimation of possum condition index of the Castlepoint possums 498

- Length measurements 498
- Regression analysis results 498

Appendix IV. Estimating the age of possums examined in the Castlepoint study 500
List of Figures

Figure 2-1. Schematic representation of a section of Peyer’s patch lymphoepithelium. Mycobacteria free in the intestinal lumen adhere to microfolds and are endocytosed by the M-cells (M), which present bacilli to underlying dendritic cells (D) and macrophages (Mac). These, and accompanying lymphocytes (L), lie in the dome area above the lymphoid follicles. Macrophage traffic may carry the bacilli to other sites in the body, or back through the lymphoepithelium to the mucosal surface. Normal epithelial cells (E) appear to take no part in the processing of particulate antigens.

Figure 3-1. Transected tuberculous retropharyngeal lymph node showing oedema, and haemorrhagic congestion subsequent to a lethal blow on the head, and extensive peripheral necrotic granulomatous foci (arrowheads).

Figure 3-2. Infected jejunal lymph node with slight enlargement, showing characteristic pale subcapsular foci (arrowheads) associated with necrosis of granulomas.

Figure 3-3. Large pale subpleural "lipid plaques" on the caudo-dorsal lung surface. Note the darker centre of the largest plaque (arrowhead).

Figure 3-4. Lung showing extensive small focal adiaspiromycotic granulomas caused by Chrysosporium spp.

Figure 3-5. Small granuloma without evidence of necrosis, in the internal iliac lymph node. H&E. Bar = 25 μm

Figure 3-6. Relatively small granulomas within a mandibular lymph node of a ferret with widely disseminated tuberculosis. A small focus of necrosis is visible in the centre of one granuloma (arrowhead). H&E. Bar = 100 μm

Figure 3-7. Focal granuloma within the liver of a ferret with tuberculous lesions in several lymph nodes. The reaction consists predominantly of macrophages with a few lymphocytes. H&E. Bar = 25 μm.

Figure 3-8. Small discrete pulmonary granuloma consisting predominantly of foamy lipid laden macrophages, small numbers of AFB are present. Linear gaps in the granuloma are artefactual. H&E. Bar = 25 μm

Figure 3-9. Granuloma within the lung comprised of foamy macrophages (small arrowheads), macrophages with more dense cytoplasm, occasional multinucleate giant cells (large arrowheads), lymphocytes and plasma cells. Numerous cholesterol clefs are present. H&E. Bar = 25 μm

Figure 3-10. Pulmonary granuloma containing a large thick walled spore of Chrysosporium spp. The macrophages surrounding the spore have a uniform pale eosinophilic cytoplasm. H&E. Bar = 50 μm

Figure 3-11. Granuloma (arrowheads) overlying lymphoid follicle in the oropharyngeal tonsil of a ferret with disseminated tuberculosis. Small numbers of AFB were present. H&E. Bar = 50 μm

Figure 3-12. Discrete aggregations of lymphocytes (small arrowheads), and macrophages (large arrowhead), in the submucosa of the duodenum of a ferret with disseminated tuberculosis. A few AFB were present within macrophages. H&E. Bar = 50 μm

Figure 4-1. Draining sinus from a tuberculous inguinal lymph node. These are an uncommon finding, but are likely to produce environmental contamination and increased risk of intraspecific transmission.

Figure 4-2. Grossly enlarged jejunal lymph node containing a large volume of "milky" necrotic contents. Severe lesions such as this are associated with advanced disease and possible bacillary excretion by several routes.
Figure 5-1. Sequence of events and observations involving tuberculous possums and deer at the study site.

Figure 5-2. Bovine serological ELISA and LTA responses to bovine PPD for hinds in Group 1. The open data points represent negative test interpretation, the shaded points equivocal results, and the solid points positive results, when each is interpreted in isolation. The arrows show the timing of the tuberculin injections.

Figure 6-1. Longitudinal section of the oropharyngeal tonsil from a red deer. A small, elongated and soft caseous crypt lesion is present (arrowhead). Scale markers are in mm.

Figure 6-2. Sectioned oropharyngeal tonsil from a bovine showing multiple crypts containing firm caseous deposits similar to those of deer. These often shell out of the crypts following incision.

Figure 6-3. Typical small subpleural pulmonary tubercle on the intermediate lung lobe of a red deer. Small lesions without central caseation are difficult to distinguish grossly from lymphoid hyperplastic nodules.

Figure 6-4. Suppurating sinus on the ventral neck of Deer 2730. This was draining a large tuberculous medial retropharyngeal lymph node, and was associated with a terminal disease state.

Figure 7-1. Lung of case 5 with confluent areas of consolidation (small arrows) caused by *M. bovis* infection. Pulmonary blood vessels are dilated (large arrow) due to thrombosis.

Figure 7-2. Tuberculosis in the prostate gland of case 5. There is diffuse fibrosis of the right lobe (large arrow) with multiple caseous foci (small arrows) throughout. The left lobe of the prostate gland (P) and the seminal vesicle (SV) are normal.

Figure 7-3. Ventral neck region of case 6 with grossly enlarged right retropharyngeal lymph node (large arrow) and the normal left counterpart (small arrow).

Figure 7-4. Lung of case 6 with a large granuloma protruding from the lung surface (large arrow) and areas of pleural cicatrisation (small arrows).

Figure 8-1. Grossly enlarged tuberculous gastric lymph nodes (arrow head) in the lesser curvature of a wild pig's stomach.

Figure 8-2. Excised soft palate of a tuberculous wild pig showing ulcerated surface (small arrow heads) and caseous tonsillar tissue underlying the incised mucosa (large arrow head).

Figure 8-3. Head of wild pig showing two tuberculous mandibular abscesses, one of which is draining its caseous contents.

Figure 8-4. Enlarged mandibular lymph nodes of a wild pig, incised to show extensive fibrous and caseous reaction to infection with *M. bovis*.

Figure 8-5. Lungs and parietal pleura of a young wild pig showing multiple large cream-coloured tubercles (arrow heads).

Figure 8-6. Head of a wild cat showing enlarged tuberculous mandibular lymph node containing foci of necrosis.

Figure 8-7. Right caudal cervical lymph node (8 by 5 cm) from the aged ewe. The lesion characterised by extensive fibrosis, calcification and necrotic foci.

Figure 8-8. Left caudal cervical lymph node from the same sheep. The node is slightly enlarged and the tubercle (arrow head) is restricted to one pole only.

Figure 8-9. Right tracheobronchial lymph node from the aged ewe (arrow head). The node is enlarged and contains a central core of caseo-calcareous debris within a thick fibrous capsule.
Figure 8-10. Small subpleural lung tubercle of a wild goat, incised to show caseous contents held within a thin fibrous capsule

Figure 8-11. Severed head of a wild goat, showing tuberculous parotid lymph node with a caseous core surrounded by fibrous capsule

Figure 8-12. Tuberculous cranial mediastinal lymph node of a wild goat, showing enlargement, fibrosis and pockets of caseation necrosis

Figure 9-1. Plots of unadjusted, and adjusted estimates of point prevalence of tuberculosis in possums at the Castlepoint study site. "W" denotes the mid-winter month of July

Figure 9-2. Receiver operating characteristic curves plotted for three lymphocyte transformation assay based tests. (LT B/A = bovine/avian SI; B/C(LR) = logistic regression model based on bovine/control SI only; B/C + B/A(LR) = logistic regression based model involving the two SIs)

Figure 9-3. ROC curves plotted for the three ELISA based tests which were found to be the most useful (BLOCK = blocking ELISA, and MPB = MPB70 ELISA, and LR denotes that the test was based upon the results of the appropriate regression model)

Figure 9-4. Histograms showing frequencies of test positive and test negative sera from diseased possums, categorised by total number of lesions, gross plus microscopic

Figure 9-5. Kaplan-Meier survivor function for infected (stratified by diagnosis) and non-infected possums (stratified by cause of failure), based upon the age of the possum

Figure 9-6. Lung from possum showing evidence of resistance. Sectioned consolidated lung lobe, showing parenchyma replaced by a solid mass of granulomatous tissue in which pockets of necrosis are visible (arrowheads)

Figure 9-7. Tuberculous superficial axillary lymph node from the same possum, showing a 'pea' of consolidated caseous exudate surrounded by a thick capsule of pyogranulomatous inflammatory tissue

Figure 9-8. Sectioned inguinal lymph node showing the more typical appearance of a grossly affected node. Note the very thin capsule remaining, which surrounds the large mass of glutinous necrotic tissue

Figure 9-9. Enlarged tuberculous deep axillary lymph node, sectioned to show the liquid necrotic content which also commonly replaces the lymphatic tissue

Figure 10-1. Digital terrain map showing the approximate spatial distribution of the four site categories used in analyses. S = southern section, N = northern section, M = middle section and Q = Queen street area

Figure 10-2. Average monthly rainfall data, commencing 27 months before the start of the longitudinal study. The long term monthly average (1972 - 1990) is also shown for comparison (Pfeiffer, 1994). Some points missing as data unavailable

Figure 10-3. Average monthly minimum temperature (°C), divided by the average monthly maximum. Long term average figures are presented for comparative purposes (Pfeiffer, 1994). The value falls as variation increases and average temperature declines

Figure 10-4. Plots of the incidence of new tuberculosis cases and deaths due to tuberculosis in possums at the Castlepoint study site. "W" denotes the mid-winter month of July

Figure 10-5. Standardised incidence of newly diagnosed tuberculosis cases and deaths due to tuberculosis, by month of the year

Figure 10-6. Plot of average body weight of possums throughout the longitudinal study, adjusted for significant parameters shown in Table 10-II

Figure 10-7. Plot of average body weight (males and females) for each month of the year, adjusted for significant parameters shown in Table 10-II
Figure 10-8. Plot of the cortisol2,3 levels predicted by the general linear model shown in Table 10-VI, versus time (quarter). High peaks occurred each summer.

Figure 10-9. Plot of the cortisol2,3 levels predicted by the model shown in Table 10-VI, showing the variation in both sexes over the twelve months of the year.

Figure 11-1. Map of Castlepoint and environs showing roads and property boundaries. REA type, species and number of isolates are overlaid on properties or area of origin. Upper case letter = REA type, lower case letter indicates species infected i.e. b = bovine, c = cat, d = deer, f = ferret, g = goat, h = hedgehog, o = ovine, p = possum, s = swine.

Figure 11-2. Detail of the REA type, species and number of isolates from the map insert shown in Figure 11-1.

Figure 11-3. Temporal distribution of restriction endonuclease types of \(M. \ bovis \) isolates from possums on the study site. Incidence denominator derived from population estimate during the month in which the isolate was obtained.

Figure 11-4. Temporal distribution of restriction endonuclease types of \(M. \ bovis \) isolates obtained from species other than possums (but including domestic deer and cattle) which inhabited the study site or immediately adjacent area.

Figure 12-1. Species currently involved in the epidemiology of \(Mycobacterium \ bovis \) infection in New Zealand. Arrows indicate the magnitude and direction of the principal transmission pathways (diagram adapted from Pfeiffer, 1994).

Figure 12-2. Schematic representation of selected epidemiological events surrounding a new outbreak of tuberculosis in possums.

Figure A-1. Diagram of deer lung showing major lymph nodes and other sites of interest.

Figure A-2. Population estimate of possums on the Castlepoint study site. Black bars show where estimates have been manually extrapolated from later data trends. Hatched bars indicate period in which neighbour trapped and killed a number of study site possums. "W" denotes the mid-winter month of July.
List of Tables

Table 2-I. Prevalence of infection and disease caused by *M. bovis* in free ranging deer populations (adapted from Clifton-Hadley and Wilesmith, 1991) 63

Table 2-II. Prevalence of tuberculosis in ferrets identified by gross lesions at necropsy 102

Table 3-I. Geographical origin of ferrets, their tuberculosis status and number subjected to extensive histopathological examination 129

Table 3-II. Prevalence of gross lesions, distribution of acid-fast bacilli, granulomatous inflammation and necrosis within granulomas of lymph nodes (Inn) and other organs of 54 ferrets with tuberculosis 137

Table 3-III. Final logistic regression model examining the effect of age (months) and disease status on the presence of “lipid plaques” (n = 216) 139

Table 3-IV. Reduced poisson regression model showing main effects which significantly influenced the total number of lesions (TbLs) 140

Table 3-V. Analysis of deviance testing the validity of inclusion of each term in the reduced poisson regression model (above) 140

Table 3-VI. Model of significant factors which influenced log* body weight in 215 ferrets 143

Table 3-VII. Results of analysis of covariance of the spleen weight (log* transformed) of 138 ferrets 144

Table 3-VIII. Chi* analysis for trend, examining the association between presence of necrosis in lymph node lesions, and the abundance of AFB, in 54 infected ferrets 146

Table 3-IX. Relative risks for significant associations between lesion sites included in the log-linear model 153

Table 4-I. Logistic regression model examining the effect of area of origin, sex and age on the prevalence of tuberculosis (n = 217) 167

Table 4-II. Comparison of the frequency of bilateral lesions in lymph node pairs at selected sites in 54 ferrets 168

Table 5-I. Details of tuberculous possums found in or near the deer enclosures 191

Table 5-II. Summary of social ranking, test and culture results of Group 1 deer 195

Table 6-I. Description of the deer examined and prevalence of *M. bovis* infection, including area of origin and portions examined 208

Table 6-II. Summary of variables used for logistic regression analyses. Highlighted covariates were removed by preliminary univariate screening 210

Table 6-III. Class, age and sex distribution of deer examined 211

Table 6-IV. Summary of gross and bacteriological findings in 58 infected deer 212

Table 6-V. Chi* analysis for trend examining the relationship between age class and infection status in 106 wild red deer 212

Table 6-VI. Final logistic regression model examining the effect of age class on the infection status of 106 wild red deer. Weaner age class is used as the standard 213

Table 6-VII. Final logistic regression model examining the effect of age on the prevalence of typical gross lesions in 58 infected deer 213

Table 6-VIII. Final logistic regression model examining the effect of infection status on the presence of tonsillar crypt lesions (n = 153) 215
Table 6-IX. Final logistic regression model examining the effect of lungworm presence on grey pulmonary nodules (n = 90) 216

Table 8-I. Estimated age and sex distribution of necropsied goats. Number infected with *M. bovis* shown in brackets 273

Table 9-I. Origins of sera used for ELISA evaluation, including category of diagnostic criteria used 299

Table 9-II. Logistic regression model based upon the bovine/control stimulation index only (applied to LTA results of 17 longitudinal study possums for which the B/A value was unavailable) 307

Table 9-III. Logistic regression model based upon both the B/C and B/A ratios. Was applied to 728 LTA results of the longitudinal study possums 307

Table 9-IV. Logistic regression model based upon the Culture Filtrate ELISA evaluation. This model was applied to 310 test results of longitudinal study possums from the second half of 1994 307

Table 9-V. Logistic regression model based on the MPB70 ELISA evaluation. The predictive model was applied to 1281 test results from the longitudinal study possums 307

Table 9-VI. Area under the ROC curves for the various assays, and their subsets based on age and sex, used to diagnose tuberculosis infection in possums (additional details presented in Table 9-VII) 310

Table 9-VII. Summary of ELISA and LTA results, including subsets based on age and sex (ROC generated cutoffs, selected to maximise the likelihood ratio, and maintain specificity above 0.98, have been used except where indicated) 311

Table 9-VIII. Results of tests of agreement between assay results where sufficient samples existed for valid comparisons 312

Table 9-IX. Summary statistics of lesion numbers in tuberculous possums assayed by the three indirect ELISAs 312

Table 9-X. Results of the Mann-Whitney U test comparing the median number of lesions in test positive and test negative tuberculous animals assayed with the three indirect ELISAs 313

Table 9-XI. Summary data on investigation of relationships between the prevalence of grossly identifiable disease and prevalence of infection in possums with no gross lesions (NGL) 320

Table 10-1. List of analyses undertaken using the general linear modelling procedure of SPSS 358

Table 10-II. General linear model examining the effect of sex, site, month, quarter, length and age on the weight of possums. N = 945 (no repeated measures) 365

Table 10-III. Estimated least squares mean body weight by site. Weights with the same superscript symbol are significantly different from each other 366

Table 10-IV. Results of ANOVA investigating the effect of year of birth on the number of days from the 1st of April till the mean birth date of offspring born in the Autumn birth season (F = 4.09, df = 5, p = 0.001) 368

Table 10-V. Summary statistics on serum cortisol levels (mg/dl) from possums subjected to a variety of treatments 370

Table 10-VI. Model of significant factors which influenced the cortisol level (square root transformed) of possums on the Castlepoint study site. This includes 825 observations on 341 possums 371

Table 10-VII. Model showing the effect of sex, season and number of times captured on the cortisol level (square root transformed) of possums on the Castlepoint study site. (n = 340, without repeated measures on any individual) 373
Table 10-VIII. Estimated marginal mean serum cortisol concentrations for the four sections of the study site. Cortisol values with the same superscript symbol are significantly different from each other.

Table 10-IX. Final model examining the effect of lactation, quarter, length, weight, and number of times captured on cortisol levels in female possums. Based upon 383 records from 131 females, of which 96 were lactating.

Table 10-X. Model investigating the effect of tuberculosis status, sex and the number of times captured on blood cortisol level in 158 possums.

Table 10-XI. Summary statistics on serum T₄ levels (mg/dl) from possums subjected to a variety of treatments (no repeated measurements).

Table 10-XII. Model examining the effect of weight and season on T₄₀.₅ values in cage trapped possums. N = 161, includes results from 93 possums, some with repeated measures.

Table 10-XIII. Estimated marginal mean serum T₄₀.₅ concentrations for the four seasons, derived from the model presented in Table 10-XII. Those values with the same superscript symbol are significantly different from each other.

Table 10-XIV. Final model examining the effect of weight, length and season on T₄₀.₅ values in cage trapped possums. (N = 93, includes no repeated measurements).

Table 10-XV. Estimated marginal mean serum T₄₀.₅ concentrations for the four seasons, derived from the model presented in Table 10-XIV. Those values with the same superscript symbol are significantly different from each other.

Table 10-XVI. Model examining the effect of site, age and weight on delta Con A. Based upon 745 measurements on 323 possums.

Table 10-XVII. Model examining the effect of site, number of times captured, length and age on delta Con A. (N = 321, without repeated measurements).

Table 10-XVIII. Least squares means of delta Con A from the four sections of the study site, derived from the model in Table 10-XVI. The same superscripts show the sites for which the means were significantly different.

Table 11-I. Restriction type and number of animals infected in the greater Castlepoint area (data arising since 1982).

Table 11-II. Restriction type and number of animals infected in the study site and immediate area (April 1989 - October 1994).

Table A-I. Results of linear regression analysis examining the relationship between possum body weight (kg) and adjusted overall body length (cm), both log, transformed, taken from 4995 examination records.

Table A-II. Results of linear regression analysis examining the relationship between age (days) and pouch young head length (mm) (n = 153).

Table III. Results of linear regression modelling, examining the relationship between logₑ age (days) and body weight² (n = 504).
<table>
<thead>
<tr>
<th>Codes</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees celsius</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotrophic hormone</td>
</tr>
<tr>
<td>AFB</td>
<td>Acid-fast bacillus(i)</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Analysis of covariance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AVP</td>
<td>Arginine vasopressin</td>
</tr>
<tr>
<td>BALT</td>
<td>Bronchus-associated lymphoid tissue</td>
</tr>
<tr>
<td>B/A SI</td>
<td>Bovine to avian stimulation index</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacille Calmette-Guérin</td>
</tr>
<tr>
<td>bcg'</td>
<td>Bacille Calmette-Guérin resistant genotype</td>
</tr>
<tr>
<td>bcg s</td>
<td>Bacille Calmette-Guérin susceptible genotype</td>
</tr>
<tr>
<td>BUN</td>
<td>Blood urea nitrogen</td>
</tr>
<tr>
<td>CALT</td>
<td>Conjunctiva-associated lymphoid tissue</td>
</tr>
<tr>
<td>CBG</td>
<td>Cortisol binding globulin</td>
</tr>
<tr>
<td>cfu</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>CI</td>
<td>Condition index</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CMI</td>
<td>Cell-mediated immunity</td>
</tr>
<tr>
<td>Con A</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>cpm</td>
<td>Counts per minute</td>
</tr>
<tr>
<td>CRH</td>
<td>Corticotrophin releasing hormone</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>Delta Con A</td>
<td>Concanavalin A stimulated, minus control counts in lymphocyte transformation assays</td>
</tr>
<tr>
<td>DF</td>
<td>Degrees of freedom</td>
</tr>
<tr>
<td>dl</td>
<td>Decilitre</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DR</td>
<td>Direct repeat elements</td>
</tr>
<tr>
<td>DSP</td>
<td>Deer slaughter premises</td>
</tr>
<tr>
<td>DTH</td>
<td>Delayed-type hypersensitivity</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>Eta squared</td>
<td>Approximation for the amount of variance explained by a term in a general linear model</td>
</tr>
<tr>
<td>F-value</td>
<td>Value of the F statistic in a general linear model</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GALT</td>
<td>Gut-associated lymphoid tissue</td>
</tr>
<tr>
<td>GC</td>
<td>Glucocorticoid</td>
</tr>
<tr>
<td>GPH</td>
<td>Game packing house</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and Eosin stain</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamo-pituitary-adrenal</td>
</tr>
<tr>
<td>HPF</td>
<td>High power microscope field</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>Codes</td>
<td>Descriptions</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>km²</td>
<td>Square kilometre</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinising hormone</td>
</tr>
<tr>
<td>ln.</td>
<td>Lymph node</td>
</tr>
<tr>
<td>ln.</td>
<td>Lymph nodes</td>
</tr>
<tr>
<td>LPF</td>
<td>Low power microscope field</td>
</tr>
<tr>
<td>LTA</td>
<td>Lymphocyte transformation assay</td>
</tr>
<tr>
<td>MAF</td>
<td>Ministry of Agriculture and Fisheries</td>
</tr>
<tr>
<td>MALT</td>
<td>Mucosa-associated lymphoid tissue</td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>NK cell</td>
<td>Natural killer cell</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NGL</td>
<td>No gross lesions</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>P or p</td>
<td>Probability</td>
</tr>
<tr>
<td>PAM</td>
<td>Pulmonary alveolar macrophage</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PGRS</td>
<td>Polymorphic GC-rich repetitive sequence</td>
</tr>
<tr>
<td>PHA</td>
<td>Phytohaemagglutinin</td>
</tr>
<tr>
<td>PIM</td>
<td>Pulmonary intravascular macrophage</td>
</tr>
<tr>
<td>pO₂</td>
<td>Oxygen tension</td>
</tr>
<tr>
<td>POMC</td>
<td>Proopiomelanocortin</td>
</tr>
<tr>
<td>PPD</td>
<td>Purified protein derivative</td>
</tr>
<tr>
<td>PWM</td>
<td>Poke weed mitogen</td>
</tr>
<tr>
<td>R</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>REA</td>
<td>Restriction endonuclease analysis</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RFLF</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SI</td>
<td>Stimulation index</td>
</tr>
<tr>
<td>SRBC</td>
<td>Sheep red blood cells</td>
</tr>
<tr>
<td>T₃</td>
<td>Triiodothyronine</td>
</tr>
<tr>
<td>T₄</td>
<td>Thyroxine</td>
</tr>
<tr>
<td>Tb</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TbL</td>
<td>Tuberculous lesion</td>
</tr>
<tr>
<td>Th1</td>
<td>T-helper 1</td>
</tr>
<tr>
<td>Th2</td>
<td>T-helper 2</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>ZN</td>
<td>Ziehl-Neelsen stain</td>
</tr>
<tr>
<td>95%CI</td>
<td>95% Confidence interval</td>
</tr>
</tbody>
</table>