Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
COMPARATIVE EVALUATION OF DIET SELECTION, HERBAGE INTAKE AND PERFORMANCE OF LAMBS GRAZING YORKSHIRE FOG (Holcus lanatus L.), PERENNIAL RYEGRASS (Lolium perenne L.) AND TALL FESCUE (Festuca arundinacea Schreb.) AND ASSESSMENT OF EFFECTS OF CONDENSED TANNINS (CT) IN THE GRASSES ON LAMB PERFORMANCE

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Plant Science Department of Massey University, Palmerston North, New Zealand.

Fuyuan LIU

May, 1996
COMPARATIVE EVALUATION OF DIET SELECTION, HERBAGE INTAKE AND PERFORMANCE OF LAMBS GRAZING YORKSHIRE FOG (*Holcus lanatus* L.), PERENNIAL RYEGRASS (*Lolium perenne* L.) AND TALL FESCUE (*Festuca arundinacea* Schreb.) AND ASSESSMENT OF EFFECTS OF CONDENSED TANNINS (CT) IN THE GRASSES ON LAMB PERFORMANCE

Fuyuan LIU
Department of Plant Science, Massey University, Palmerston North, New Zealand

A series of grazing experiments was carried out at the Pasture and Crop Research Unit, Massey University, Palmerston North, New Zealand, to compare Yorkshire fog (*Holcus lanatus* cv. Massey Basyn)/white clover (*Trifolium repens* cv. Grasslands Tahora) with perennial ryegrass (*Lolium perenne* cv. Grasslands Nui)/white clover cv. Grasslands Tahora and tall fescue (*Festuca arundinacea* cv. Grassland Roa)/white clover cv. Grasslands Tahora pastures with reference to grazing behaviour, diet selection, herbage intake and performance of lambs, and to specifically assess the effects of low concentrations of condensed tannins (CT) in grasses on body growth and wool growth of animals. Half of the lambs were drenched with polyethylene glycol (PEG) (CT inactivated) and the remainder were drenched with water as a control (CT acting) in each experiment. PEG is assumed to specifically bind and inactivate CT without influencing the digestion of other nutrients.

In the first experiment, a comparative study of grazing behaviour, diet selection, herbage intake and performance of lambs grazing Yorkshire fog/white clover and
ryegrass/white clover swards was made from late May to late June, 1993. Thirty-six lambs, balanced in sets of six based on initial fasted weight continuously grazed paddocks with three replicates of the two pasture treatments for 7 weeks. Yorkshire fog had greater sward bulk density and intake per bite (68 vs 51 ± 7.1 mg OM/bite) than ryegrass. Perennial ryegrass had a consistent superiority over Yorkshire fog in organic matter digestibility (OMD) (80 vs 77 ± 0.3 %, P≤0.05) and herbage OM intake (1117 vs 930 ± 31.5 g/day, P≤0.1), resulting in faster liveweight gain (174 vs 144 ± 9.7 g/day), significantly higher carcass weight (17.7 vs 16.3 ± 0.1 kg, P≤0.05) and dressing out % (49 vs 48 ± 0.2, P≤0.05). Low CT concentrations (1.7 - 2.2 g/kg DM) were found in the diets selected from both the grasses; these low CT concentrations had no effect on grazing behaviour, diet selection and herbage intake. Small responses to PEG administration were observed in initial liveweight gain, but PEG had no effects on overall liveweight gain, carcass weight, carcass weight gain and GR (depth of total soft tissue over the 12th rib at a point 11 cm from the mid carcass).

The next two experiments were designed to compare Yorkshire fog cv. Massey Basyn)/white clover cv. Grassland Tahora with tall fescue cv. Grassland Roa/white clover cv. Grassland Tahora pastures in terms of grazing behaviour, diet selection, herbage intake and performance of lambs, and to further quantify the effects of low CT concentrations in the grasses on lamb performance, especially on initial liveweight gain of lambs, under rotational grazing management in late spring, summer and early autumn, 1993/1994. The comparisons between Yorkshire fog and tall fescue pastures were made under similar sward conditions. Previous grazing experience on the appropriate pasture and sex were designed as treatments as well as pasture species and PEG supplementation. Forty-eight lambs balanced for previous grazing experience and sex in sets of sixteen were used in each experiment. One group of 16 was slaughtered as the initial group at the start of each experiment to measure the carcass weight. The other two groups of lambs grazed six paddocks of each pasture treatment in a 30-day rotation.
Abstract

Tall fescue had higher total N than Yorkshire fog in early December (3.56 vs 3.43 ±0.018 % DM, P≤0.05) and late February (3.24 vs 2.91 ±0.022 % DM, P≤0.0001), and had higher OMD in early December (81 vs 78 ±0.6 %, P≤0.01) and late February (72 vs 68 ± 1.1 %, P≤0.05), but lower OMD in early February (71 vs 74 ± 1.1 %, P≤0.05). Yorkshire fog produced faster liveweight gain (99 vs 76 ± 6.7 g/day, P≤0.1), greater carcass weight (14.7 vs 13.9 ± 0.2 kg, ≤0.05) and faster carcass weight gain (32 vs 20 ± 3.1 g/day, P≤0.05) than tall fescue in late spring and summer (Experiment 2), but not in late summer and early autumn (Experiment 3). Male lambs had faster liveweight gain than female lambs in Experiment 2 (95 vs 80 ± 3.3 g/day, P≤0.05) and in Experiment 3 (80 vs 72 ± 2.3 g/day, P≤0.05). Previous grazing experience had no effects on final liveweight gain, carcass weight, carcass weight gain. There was no significant effect of interaction between previous pasture and current pasture on these parameters.

The results of the experiments further confirmed the low CT concentrations (1. - 2.1 g/kg DM) present in Yorkshire fog in Experiment 1 and small responses of lambs to PEG supplementation in initial liveweight gain only in Yorkshire fog (101 vs 92 ± 4.1 g/day, P≤0.1) in Experiment 2. There were no significant effects on carcass weight, dressing out, GR and wool growth rate. Lower faecal egg counts in lambs in Yorkshire fog than in tall fescue suggested some potential of Yorkshire fog for parasite control. The low CT concentrations in the Yorkshire fog reduced to some extent rumen ammonia concentration, but were not enough to effectively promote animal performance. The relatively low CT concentrations detected in tall fescue were probably an artifact, because there was no PEG effect on rumen ammonia concentration for tall fescue.

The final grazing experiment was conducted to evaluate grazing behaviour, herbage intake and performance of lambs as affected by grazing selection opportunity and low condensed tannin (CT) concentrations in Yorkshire fog/white clover pasture under rotational grazing management from late November, 1994 to early February, 1995. Twelve lambs were slaughtered as the initial group at
the start of the experiment to measure the preliminary carcass weight. Forty-eight lambs were allocated to two groups in sets of twenty-four and rotationally grazed eight paddocks each of 0.1 ha, in which a "leader" group of 24 lambs grazed each paddock for four days, followed by a similar "follower" group of 24 lambs grazing for four days.

The leader/follower grazing regime created the desired contrasts in herbage quality and quantity. The superiority in sward allowance, selection opportunity, diet quality and reduced possibility of infection by worm parasites resulted, as expected, in faster body growth and wool growth rate in the 'leader' lambs than in the 'follower' lambs. The results of the experiment further confirmed the findings of the influence of low CT concentrations in Yorkshire fog on rumen ammonia concentration. The effect of low CT concentrations on animal performance was not different for generous and restricted grazing.

The following general conclusions can be drawn from this series of experiments:

1) The diets selected by sheep comprised more green material and less dead material than the swards offered to the animals, while diet composition was determined largely by the structure and distribution of sward components rather than by deliberate selection by the animals.

2) Herbage OM intake was influenced to a greater extent by nutritional factors than by behavioral limitations, there being substantially higher herbage OMD and OM intake on ryegrass than on Yorkshire fog in winter.

3) Perennial ryegrass/white clover pasture tended to have higher animal production than Yorkshire fog/white clover pasture under continuous grazing management in winter, and Yorkshire fog pasture produced slightly higher animal performance than tall fescue in rotational grazing management in late spring and early summer.
4) The results of the trials confirmed that low CT concentrations (0.18 - 0.32 % on a DM basis) were present in Yorkshire fog, and provided evidence that perennial ryegrass contained relatively low CT concentrations, but the low CT concentrations detected in tall fescue were probably an artifact of the current procedures of analysing CT.

5) The low CT concentrations in the grasses had no effect on grazing behaviour, diet selection or herbage intake. The low CT concentrations in Yorkshire fog to some extent reduced rumen ammonia concentration, but were not enough to effectively improve animal production.

**Keywords:** Yorkshire fog (*Holcus lanatus*), white clover (*Trifolium repens*), perennial ryegrass (*Lolium perenne*), tall fescue (*Festuca arundinacea*), condensed tannins (CT), polyethylene glycol (PEG), grazing behaviour, diet selection, herbage intake, animal performance.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my chief supervisor, Professor J. Hodgson for his organizing and arranging a Ph.D programme for me to pursue, which enabled me to have an advanced educational experience and an excellent opportunity to learn new methodologies and skills and to share his profound knowledge, and for his enthusiastic encouragement and stimulation, great patience and warm guidance during this research project. I am greatly indebted to my co-supervisor, Professor T. N. Barry for his encouragement and enthusiastic supervision and invaluable advice.

I am sincerely thankful to Mr T. Lynch, Mr M.A. Osborne, Mr G. Evans and Ms. R. Richardson of Plant Science Department, Mr D. Bumhum, Ms Y.H. Cottam, Ms F.S. Jackson and Mr G.S. Purchas of Animal Science Department for their technical field assistance and Ms M.L. Zhou, Ms F.S. Jackson and Mr J.A. Bateson of Animal Science Department for their laboratory assistance.

The heartfelt thanks are expressed to my friends, Mr G.D. Li and Mr Z.N. Nie for their helps during the field studies. Sincere thanks are extended to Dr Y. X. Wang and Dr F. Montossi for their discussion and sharing information with me. Thanks are due to Mr X.J. Tang, Mr X.R. Meng Fu, Dr A. Garay-Hernandez, Dr M.U.H. Awan, Mr Z.H. Li, Ms H. Cai and Ms C.H. Cheng for their assistance.

I gratefully acknowledge the former Vice-chancellor of Massey University, Sir Neil Waters for his providing me with the financial support of Research Fellowship to fulfil the project. Special thanks to the former President of Beijing Agricultural University, Professor Y. Shi, Professor P. Wang, Professor J. Xia and other colleagues at the University for their encouragement and helps in many ways.

I wish to thank to Dr I.L. Gordon for his advice on statistical analyses and to the staff of the Departments of Plant Science, Dr Alex C.P. Chu, Dr C. Matthew, Mr
P.N.P Matthews, Dr P. Kemp and Dr I. Valentine, Mrs J. Cave, Ms C. McKenzie, Ms F. Brown, Mrs K. Hamilton and others for their friendly and generous support.

I greatly appreciate the friendship I shared with the fellows at Massey University, Dr A. Garay-Hernandez, Dr F. Montossi, Dr Y. Wang, Mr S.M. Fu, Dr F. Yu, Dr M.U.H. Awan, Dr Y.M. Gong, Dr S.C. da Silva, Dr H.M. Nodoushan, Dr M.R. Ghannadha, Dr H. Tavakoli, Mr J.Y. Zhou, Mr Y.K. Hu, J.Z. Yang, Ms J. Wen, Mr H. Wei, Mr C. Poli, Mrs Y.M. Pan, Ms X. Zou, Mr. L.B. Guo, Mr H. Wang, Mr C.Q. Liu, Mrs G. Griffiths, Mr S. Oppong, Mr M. Padilla, Mr B. Butler, Mr H.B. Zhang and others.

Thanks are also due to Mrs R. Hodgson for her very kind solicitude to my wife, daughter and son.

I am extremely grateful to my parents for their education and great encouragement and parents-in-law for their best of care for my families during their staying at home. I am extremely grateful to my sister, brothers and friends for their encouragement.

My immense appreciation is to my wife Feng Wang for her patience, dedication, physical and mental support during my study, and to my daughter Jun Liu and to my little son Bryan Chen Liu.

Thanks also to all people who offered assistance to me but I fail to name individually here.
# TABLE OF CONTENTS

ABSTRACT ......................................................................................... I  
ACKNOWLEDGEMENTS ........................................................................ VI  
TABLES OF CONTENTS ......................................................................... VIII  
LIST OF TABLES ................................................................................... XV  
LIST OF FIGURES ................................................................................ XX  
LIST OF APPENDICES ........................................................................... XXIV  
LIST OF APPENDIX DATA .................................................................... XXVII  
LIST OF ABBREVIATIONS ..................................................................... XXXI  

CHAPTER 1: GENERAL INTRODUCTION AND OBJECTIVES ............... 1  

CHAPTER 2: LITERATURE REVIEW ..................................................... 4  

2.1. GENERAL INTRODUCTION .......................................................... 4  
2.2. NUTRITIONAL VALUE OF FORAGES ........................................ 5  
  2.2.1. Variations in Nutritional Value of Forages ......................... 6  
  2.2.2. Animal Factors Affecting Digestion & Utilisation of Nutrients in Forages ..................................................... 9  
2.3. CONTROL OF HERBAGE INTAKE ............................................. 14  
2.4. GRAZING BEHAVIOUR AND HERBAGE INTAKE OF Ruminants ........................................................................... 18  
  2.4.1. Herbage Intake and its Variations ....................................... 19  
  2.4.2. Sward Effects on Herbage Intake ..................................... 24  
  2.4.3. Animal Effects on Herbage Intake ..................................... 26  
  2.4.4. Compensatory Relationship Between Variables in Grazing Behaviour and Herbage Intake ......................... 27  
2.5. DIET SELECTION ........................................................................ 30  
  2.5.1. General Explanation of Diet Selection and Selection Strategies ............................................................. 30
# Table of Contents

2.5.2. Sward Characteristics and Diet Selection .................. 32
2.5.3. Animal Characteristics and Diet Selection .................. 36

2.6. CONDENSED TANNINS IN PLANTS AND THEIR EFFECTS
UPON NUTRITIONAL VALUE OF FORAGES .................. 39
2.6.1. Ecological Significance and Types of Tannins .................. 39
2.6.2. Biological Significance of Condensed Tannins .................. 40
2.6.3. Concentrations of CT in Plants .................. 41
   2.6.3.1. Separations of CT Fractions .................. 42
   2.6.3.2. Factors Affecting CT Concentration in Plants .................. 42
2.6.4. Effects of CT on the Nutritional Value of Forages .................. 43
   2.6.4.1. Effects of Condensed Tannins on Digestion .................. 44
      2.6.4.1.1. Effects of CT on N Digestion and Absorption .................. 44
      2.6.4.1.2. Effects of CT on DM, OM and Fibre Digestion .................. 47
   2.6.4.2. Effects of CT on DM Intake, Diet Selection and Performance of Animals .................. 48
   2.6.4.3. Condensed Tannins and Bloat .................. 53
2.6.5. Potential Part of CT in Grazing System .................. 54

2.7. PASTURE SPECIES .................. 55

2.8. CONCLUSIONS .................. 57

CHAPTER 3: EXPERIMENT 1 - HERBAGE INTAKE AND PERFORMANCE OF LAMBS GRAZING YORKSHIRE FOG AND PERENNIAL RYEGRASS PASTURES IN WINTER .................. 59

ABSTRACT .................. 59

3.1. INTRODUCTION .................. 61
# Table of Contents

3.2. MATERIALS AND METHODS ......................................................... 62
   3.2.1. Experimental Site ......................................................... 62
   3.2.2. Swards ................................................................. 62
   3.2.3. Animals and Treatments ................................................. 63

3.3. Measurements ................................................................. 63
   3.3.1. Sward Measurements .................................................. 63
   3.3.2. Grazing Behaviour and Herbage Intake ................................ 64
   3.3.3. Liveweight Gain, Carcass Gain, Dressing out and Carcass Fatness. 66
   3.3.4. The Rate of Wool Growth ............................................. 67

3.4. Statistical Analysis ......................................................... 67

3.5. RESULTS ................................................................. 68
   3.5.1. Sward Characteristics ................................................. 68
      3.5.1.1. Sward Surface Height ........................................... 68
      3.5.1.2. Herbage Mass and Bulk Density ................................ 68
      3.5.1.3. Botanical Composition of Swards ................................ 68
      3.5.1.4. Canopy Structure within the Sward .......................... 73
   3.5.2. Diet Composition - Botanical and Chemical ....................... 76
   3.5.3. Grazing Behaviour .................................................... 79
   3.5.4. Herbage Intake ....................................................... 79
   3.5.5. Liveweight Gain, Carcass Weight, Dressing Out and GR ........... 79
   3.5.6. The Rate of Wool Growth ............................................. 85

3.6. DISCUSSION ............................................................... 85
   3.6.1. Sward Characteristics ................................................. 86
   3.6.2. Botanical and Chemical Composition of the Diet Selected .......... 87
   3.6.3. Grazing Behaviour and Herbage Intake ................................ 89
   3.6.4. Animal Performance ................................................... 90

3.7. CONCLUSIONS ............................................................. 92
CHAPTER 4: EXPERIMENTS 2 & 3 - COMPARATIVE STUDIES OF HERBAGE INTAKE AND ANIMAL PERFORMANCE OF LAMBS GRAZING YORKSHIRE FOG (Holcus lanatus) AND TALL FESCUE (Festuca arundinacea) PASTURES UNDER A ROTATIONAL MANAGEMENT

ABSTRACT ................................................................. 93

4.1. INTRODUCTION .................................................. 96

4.2. MATERIALS AND METHODS ...................................... 97
  4.2.1. Experimental Site and Duration ......................... 97
  4.2.2. Swards ...................................................... 97
  4.2.3. Animals and Treatments .................................. 98

4.3. MEASUREMENTS ................................................... 99
  4.3.1. Sward Measurements ..................................... 99
  4.3.2. Ingestive Behaviour and Herbage Intake ................. 99
  4.3.3. Faecal Egg Counts (FECs) ............................... 100
  4.3.4. Rumen Ammonia Concentration .......................... 100
  4.3.5. Liveweight Gain, Carcass Gain, Dressing Out and Carcass Fatness ............................................. 100
  4.3.6. The Rate of Wool Growth ................................ 101

4.4. STATISTICAL ANALYSIS ........................................... 101

4.5. RESULTS .......................................................... 102
  4.5.1. EXPERIMENT 2 ................................................ 102
    4.5.1.1. Sward Characteristics ................................ 102
      4.5.1.1.1. Sward Surface Height ........................... 102
      4.5.1.1.2. Herbage Mass and Bulk Density ................. 104
      4.5.1.1.3. Botanical Composition of Swards ............... 104
      4.5.1.1.4. Canopy Structure within the Sward .......... 108
    4.5.1.2. Animal Measurements ................................. 108
Table of Contents

4.5.1.2.1. Diet Composition - botanical and chemical ........................................ 108
4.5.1.2.2. Grazing Behaviour ................................................................. 113
4.5.1.2.3. Herbage Intake ................................................................. 113
4.5.1.2.4. Faecal Egg Counts ............................................................ 113
4.5.1.2.5. Liveweight Gain, Carcass Weight, Dressing Out and GR ................. 116
4.5.1.2.6. The Rate of Wool Growth .................................................. 116
4.5.2. EXPERIMENT 3 ................................................................. 120
  4.5.2.1. Sward Characteristics ....................................................... 120
    4.5.2.1.1. Sward Surface Height .................................................. 120
    4.5.2.1.2. Herbage Mass and Bulk Density ..................................... 120
    4.5.2.1.3. Botanical Composition of Swards ................................... 120
    4.5.2.1.4. Canopy Structure within the Sward ................................ 125
  4.5.2.2. Animal Measurements ....................................................... 130
    4.5.2.2.1. Diet Composition - botanical and chemical ....................... 130
    4.5.2.2.2. Grazing Behaviour ...................................................... 133
    4.5.2.2.3. Herbage Intake .......................................................... 133
    4.5.2.2.4. Faecal Egg Counts (FECs) ............................................ 135
    4.5.2.2.5. Rumen Ammonia Concentration ...................................... 135
    4.5.2.2.6. Liveweight Gain, Carcass Weight, Dressing Out and GR .......... 135
    4.5.2.2.7. The Rate of Wool Growth .............................................. 141
4.6. DISCUSSION ................................................................. 141
  4.6.1. Evaluation of Experimental Procedures ...................................... 141
  4.6.2. Sward Characteristics ....................................................... 142
  4.6.3. Herbage Consumption ......................................................... 143
  4.6.4. Animal Performance .......................................................... 148
4.7. CONCLUSIONS ............................................................... 150
# Table of Contents

**CHAPTER 5:** EXPERIMENT 4 - EFFECTS OF LEADER/FOLLOWER GRAZING REGIME AND CONDENSED TANNINS ON INGESTIVE BEHAVIOUR, HERBAGE INTAKE AND PERFORMANCE OF LAMBS GRAZING YORKSHIRE FOG PASTURE ........................................... 151

ABSTRACT ........................................... 151

5.1. INTRODUCTION .................................. 153

5.2. MATERIALS AND METHODS ....................... 154

5.2.1. Experimental Site and Duration ............... 154

5.2.2. Swards ...................................... 154

5.2.3. Animals and Treatments ...................... 155

5.3. MEASUREMENTS .................................. 155

5.3.1. Sward Characteristics ....................... 156

5.3.2. Ingestive Behaviour and Herbage Intake .... 156

5.3.3. Faecal Egg Counts (FECs) .................... 157

5.3.4. Rumen Ammonia Concentration ............... 157

5.3.5. Animal Performance ......................... 157

5.4. STATISTICAL ANALYSIS ......................... 158

5.5. RESULTS ..................................... 158

5.5.1. Sward Characteristics ....................... 158

5.5.1.1. Sward Surface Height .................... 158

5.5.1.2. Herbage Mass and Bulk Density ........... 160

5.5.1.3. Botanical Composition of Swards .......... 160

5.5.2. Animal Measurements ........................ 160

5.5.2.1. Diet Composition - botanical and chemical 160

5.5.2.2. Grazing Behaviour ....................... 166

5.5.2.3. Herbage Intake ......................... 166

5.5.2.4. Faecal Egg Counts (FECs) ................. 168

5.5.2.5. Rumen Ammonia Concentration ............. 168

5.5.2.6. Animal Performance ...................... 168
Table of Contents

5.6. DISCUSSION ....................................................... 174
  5.6.1. Sward Characteristics ...................................... 174
  5.6.2. Botanical and Chemical Composition of the Diet Selected ........................................... 174
  5.6.3. Grazing Behaviour and Herbage Intake .................. 175
  5.6.4. Internal Parasites .......................................... 176
  5.6.5. Rumen Ammonia Concentration ............................ 176
  5.6.6. Animal Performance ........................................ 177

5.7. CONCLUSIONS .................................................... 178

CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS ............. 179

6.1. INTRODUCTION .................................................. 179
6.2. EVALUATION OF THE EXPERIMENTAL PROCEDURE
  USED IN THE CURRENT RESEARCH PROGRAMME .................. 179
6.3. EVALUATION OF HERBAGE AND ANIMAL PRODUCTION
  FOR THREE GRASS PASTURES ..................................... 184
6.4. SWARD EFFECTS ON SELECTION AND HERBAGE
  INTAKE OF ANIMALS ............................................. 186
6.5. VARIATION OF CT CONCENTRATIONS IN GRASSES AND
  THEIR EFFECT ON RUMEN AMMONIA CONCENTRATION .......... 188
  6.5.1. Variation of CT Concentrations in Grass .................. 188
  6.5.2. Evaluation of the Effect of CT Content
         on Rumen Ammonia Concentration .......................... 190
6.6. EFFECTS OF CT IN GRASSES ON PERFORMANCE
  OF RUMINANTS .................................................. 191
6.7. CONCLUSIONS .................................................. 195

BIBLIOGRAPHY ...................................................... 197
APPENDIX ........................................................... 237
APPENDIX DATA ..................................................... 253
LIST OF TABLES

CHAPTER 3

Table 3.1. Sward characteristics of ryegrass and Yorkshire fog pastures under continuous grazing management in winter, 1993 .... 70

Table 3.2. Botanical composition (%) of ryegrass and Yorkshire fog pastures under continuous grazing management in winter, 1993 ......................................................... 72

Table 3.3. The botanical composition of the samples selected by OF sheep grazing ryegrass/white clover and Yorkshire fog/white clover in winter, 1993 ......................................................... 77

Table 3.4. Chemical composition of the samples selected by OF sheep grazing ryegrass/clover and Yorkshire fog pastures in winter, 1993 ......................................................... 78

Table 3.5. Grazing behaviour of lambs grazing ryegrass/clover and Yorkshire fog/clover in the two periods of winter, 1993 .... 80

Table 3.6. Effects of species and PEG administration on herbage OM and DOM intakes of lambs grazing ryegrass/clover and Yorkshire fog/clover pastures in winter, 1993 ............ 81

Table 3.7. Effects of pasture species and PEG administration on liveweight gain, carcass weight, carcass weight gain, dressing out % and wool growth of lambs grazing ryegrass/clover and Yorkshire fog/clover in winter, 1993 ... 84
Table of Contents

| Table 4.1. | Sward characteristics of Yorkshire fog/clover and tall fescue/clover pastures under rational grazing management in late spring and early summer, 1993/1994 | 105 |
| Table 4.2. | The percentage (%) of component of Yorkshire fog/clover and tall fescue/clover swards before and after grazing under rotational grazing management in late spring and early summer, 1993/1994 | 107 |
| Table 4.3. | The percentage of components in the samples selected by OF sheep grazing Yorkshire fog/clover and tall fescue/clover in late spring and early summer, 1993/1994 | 111 |
| Table 4.4. | Chemical composition of the samples selected by OF sheep grazing Yorkshire fog/clover and tall fescue/clover pastures in late spring and early summer, 1993/1994 | 112 |
| Table 4.5. | Grazing behaviour and herbage OM and DOM intakes of lambs grazing Yorkshire fog/clover and tall fescue/clover in late spring and early summer, 1993/1994 | 114 |
| Table 4.6. | Faecal egg counts (eggs/g faeces) of lambs grazing Yorkshire fog/clover and tall fescue/clover pastures in late spring and early summer, 1993/1994 | 115 |
| Table 4.7. | Effects of previous pasture, current pasture, sex and condensed tannins (CT) on the liveweight gain, carcass weight, carcass weight gain, dressing out %, GR and wool growth rate of lambs grazing Yorkshire fog/clover and tall fescue/clover pastures in late spring and early summer, 1993/1994 | 119 |
Table 4.8. Sward characteristics of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in summer and early autumn, 1994 .................. 122

Table 4.9. The percentage (%) of components of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in summer and early autumn, 1994 ........ 124

Table 4.10. The percentage (%) of components in the samples selected by OF sheep grazing Yorkshire fog/clover and tall fescue/clover in summer and early autumn, 1994 ........ 131

Table 4.11. Chemical composition of the samples selected by OF sheep grazing Yorkshire fog/clover and tall fescue/clover in summer and early autumn, 1994 ....................... 132

Table 4.12. Grazing behaviour and herbage OM and DOM intakes of lambs grazing Yorkshire fog/clover and tall fescue/clover in summer and early autumn, 1994 ....................... 134

Table 4.13. Faecal egg counts (eggs/g faeces) of lambs grazing Yorkshire fog/clover and tall fescue/clover in summer and early autumn, 1994 ....................... 136

Table 4.14. Effects of previous pasture, current pasture, sex and condensed tannins (CT) on the liveweight gain, carcass weight, carcass weight gain, dressing out %, GR and wool growth rate of lambs grazing Yorkshire fog/clover and tall fescue/clover pastures in summer and early autumn, 1994 .. 140
<table>
<thead>
<tr>
<th>Table 5.1.</th>
<th>Sward characteristics of Yorkshire fog sward/clover pastures under rotational grazing management in summer, 1994/1995</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.2.</td>
<td>Relative contribution (%) of Yorkshire fog sward/clover pastures under rotational grazing management in summer, 1994/1995</td>
<td>163</td>
</tr>
<tr>
<td>Table 5.3.</td>
<td>Comparison of the botanical composition (%) of the samples selected by OF sheep and the swards offered to the sheep</td>
<td>164</td>
</tr>
<tr>
<td>Table 5.4.</td>
<td>Chemical composition of the samples selected by OF sheep in leader (L-G) and follower groups (F-G)</td>
<td>165</td>
</tr>
<tr>
<td>Table 5.5.</td>
<td>Grazing behaviour and herbage intake of leader (L-G) and follower lambs (F-G) grazing Yorkshire fog/clover pasture in summer</td>
<td>167</td>
</tr>
<tr>
<td>Table 5.6.</td>
<td>Faecal egg counts of leader (L-G) and follower lambs (F-G) grazing Yorkshire fog/clover pasture in summer, 1995</td>
<td>169</td>
</tr>
<tr>
<td>Table 5.7.</td>
<td>Liveweight gain, carcass weight, carcass weight gain, dressing out % and wool growth rate of leader and follower lambs grazing Yorkshire fog/clover pasture in summer, 1994/1995</td>
<td>173</td>
</tr>
</tbody>
</table>
CHAPTER 6

Table 6.1. CT concentrations in plant material and in the diets selected by sheep grazing grass pastures. 

Table 6.2. Effects of CT concentrations in the grass-based pastures on liveweight gain, carcass weight, carcass weight gain and wool growth rate.
LIST OF FIGURES

CHAPTER 3

Figure 3.1. Sward surface height (cm) of ryegrass/clover and Yorkshire fog/clover pastures under continuous grazing management in winter ............................................. 69

Figure 3.2. Botanical composition (%) of perennial ryegrass/white clover and Yorkshire fog/white clover pastures under continuous grazing management in winter ............................................. 71

Figure 3.3. The stratum structure of plant parts within the sward canopy of ryegrass/clover and Yorkshire fog/clover pastures under continuous grazing management in winter ............................................. 74

Figure 3.4. The percentage of plant parts in the different strata of ryegrass/clover and Yorkshire fog/clover pastures under continuous grazing management in winter ............................................. 75

Figure 3.5. Liveweight (kg) of lambs grazing ryegrass/white clover and Yorkshire fog/white clover pastures in winter ................................................................. 82

Figure 3.6. Liveweight gain (g/day) of lambs grazing ryegrass/white clover and Yorkshire fog/white clover pastures between twice measurements in winter ............................................. 83
CHAPTER 4

Figure 4.1. Sward surface height (cm) of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in late spring and early summer, 1993/1994 ................. 103

Figure 4.2. Botanical composition (%) of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in late spring and early summer ......................... 106

Figure 4.3. The stratum structure of plant parts within the sward canopy of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in late spring and early summer, 1993/1994 ............................................. 109

Figure 4.4. The percentage of plant parts in the different strata of Yorkshire fog/clover and tall fescue/clover swardsunder rotational grazing management in late spring and early summer, 1993/1994. .......................................................... 110

Figure 4.5. Liveweight (kg) lambs grazing Yorkshire fog/clover and tall fescue/clover pastures under rotational management in late spring and early summer, 1993/1994 ............................... 117

Figure 4.6. Liveweight gain (g/day) lambs grazing Yorkshire fog/clover and tall fescue/clover pastures under rotational management in late spring and early summer, 1993/1994 ............................... 118

Figure 4.7. Sward surface height (cm) of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in summer and early autumn, 1994 ............................... 121
Figure 4.8. Botanical composition (%) of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in summer and early autumn, 1994 .......................... 123

Figure 4.9a. The stratum structure of plant parts within the sward canopy of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in summer (February, 1994) ........................................ 126

Figure 4.9b. The percentage of plant parts in the different strata of Yorkshire fog/clover and tall fescue/clover swards under rotational grazing management in summer (February, 1994) ........................................ 127

Figure 4.10a The stratum structure of plant parts within the sward canopy of Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in early autumn (March, 1994) ........................................ 128

Figure 4.10b The percentage of plant parts in the different strata of Yorkshire fog/clover and tall fescue/clover swards under rotational grazing management in early autumn (March, 1994) ........................................ 129

Figure 4.11. Ammonia concentration (mg N/l) of sheep fistulated in the rumen on Yorkshire fog/clover and tall fescue/clover pastures in summer ........................................ 137

Figure 4.12. Liveweight (kg) of lambs grazing Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in summer and early autumn, 1994 .......................... 138
Figure 4.13. Liveweight (kg) of lambs grazing Yorkshire fog/clover and tall fescue/clover pastures under rotational grazing management in summer and early autumn, 1994 .............................. 139

CHAPTER 5

Figure 5.1. Sward surface height (cm) of "leader" and "follower" Yorkshire fog sward/clover pastures under rotational grazing management in summer, 1994/1995 .............................. 159

Figure 5.2. Botanical composition (%) of Yorkshire fog sward/clover pastures under rotational grazing management in summer, 1994/1995 .................................................... 162

Figure 5.3. Ammonia concentration (mg N/L) of sheep fistulate din the rumen on Yorkshire fog/clover pastures in summer, 1995 (PEG drenching twice daily at 0800 and 1600 hrs) .......... 170

Figure 5.4. Liveweight (kg) of leader (L-G) and follower lambs (F-G) grazing Yorkshire fog/clover pasture in summer, 1994/1995 ............................................................... 171

Figure 5.5. Liveweight (kg) of leader (L-G) and follower lambs (F-G) grazing Yorkshire fog/clover pasture in summer, 1994/1995 ............................................................... 172
LIST OF APPENDICES

CHAPTER 3

Appendix 3.1. Rainfall (mm) and mean 10 cm soil temperature (°C) in 1993 compared with 10-year average values from the same site .......................... 237

CHAPTER 4

Appendix 4.1. Rainfall (mm) and mean 10 cm soil temperature (°C) in 1993/1994 compared with 10-year average values from the same site ......................... 238

Appendix 4.2. Sward characteristics of Yorkshire fog/clover and tall fescue/clover pastures under a rotational grazing management in late spring and early summer, 1993/1994 .................................................. 239

Appendix 4.3. The proportion of components of Yorkshire fog and tall fescue swards before and after grazing under rotational grazing management in spring, 1993/1994 . 240

Appendix 4.4. Grazing behaviour of lambs grazing Yorkshire fog/clover and tall fescue/clover in late spring and summer, 1993/1994 .......................... 241

Appendix 4.5. Herbage OM intake of lambs grazing Yorkshire fog/clover and tall fescue/clover in late spring and summer, 1993/1994 .............................. 242
### Table of Contents

| Appendix 4.6. | Sward characteristics of Yorkshire fog/clover and tall fescue/clover pastures under a rotational grazing management in summer and early autumn, 1994 | 243 |
| Appendix 4.7. | The proportion of components of Yorkshire fog and tall fescue swards before and after grazing under rotational grazing management in summer and early autumn, 1994 | 244 |
| Appendix 4.8. | The proportion of components in the diets selected by OF sheep grazing fog and tall fescue in summer and early autumn, 1994 | 245 |
| Appendix 4.9. | Grazing behaviour of lambs grazing Yorkshire fog/clover and tall fescue/clover in summer (February, 1994) | 246 |
| Appendix 4.10. | Grazing behaviour of lambs grazing Yorkshire fog/clover and tall fescue/clover in early autumn (March, 1994) | 247 |
| Appendix 4.11. | Herbage OM intake of lambs grazing Yorkshire fog/clover and tall fescue/clover in summer (February, 1994) | 248 |
| Appendix 4.12. | Herbage OM intake of lambs grazing Yorkshire fog/clover and tall fescue/clover in early autumn (March, 1994) | 249 |
Appendix 4.13. Effects of current pasture species and CT on ammonia production of sheep grazing Yorkshire fog/white clover and tall fescue/white clover pastures in summer and early autumn, 1994 ............... 250

CHAPTER 5

Appendix 5.1. Rainfall (mm) and mean 10cm soil temperature (°C) in 1994/1995 compared with 10-year average values from the same site ......................................................... 251

Appendix 5.2. Chemical composition of the diets selected by OF sheep in leader (L-G) and follower groups (F-G) grazing Yorkshire fog in summer, 1994/1995 .......... 252
LIST OF APPENDIX DATA

CHAPTER 3

Appendix Data 3.1. Grazing behaviour in winter, 1993 ................. 253

Appendix Data 3.2. Intake per bite (mg OM/bite), the botanical composition (%) and OMD of the diets selected by sheep in winter, 1993 ..................... 254

Appendix Data 3.3. Condensed tannin concentration (CT: g/kg DM) in the diets from ryegrass/clover and Yorkshire fog/clover pastures in winter, 1993 .................. 255

Appendix Data 3.4. Herbage intake (g OM/day) in lambs in winter, 1993 256

Appendix Data 3.5. Liveweight (kg), fasted weight (kg) and carcass weight (kg) of lambs at slaughter in winter, 1993 .... 257

Appendix Data 3.6. Wool weight (g/100cm²) and wool growth rate (mg/100 cm² per day) in lambs in winter, 1993 ..... 258

CHAPTER 4

Appendix Data 4.1. The rate of biting (bites/min) in spring and early summer, 1993/1994 ........................................ 259

Appendix Data 4.2. Grazing behaviour in spring and early summer, 1993/1994 ........................................ 260
<table>
<thead>
<tr>
<th>Appendix Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.</td>
<td>Intake per bite (mg OM/bite), the botanical composition (%) and OMD (%) of the diets selected by sheep in spring and early summer, 1993/1994</td>
</tr>
<tr>
<td>4.4.</td>
<td>Condensed tannin concentrations (CT: g/kg DM) and N (% DM) in the diets from Yorkshire fog/clover and tall fescue/clover pastures in late spring (Dec., 1993)</td>
</tr>
<tr>
<td>4.5.</td>
<td>Herbage intake (g OM/day) in lambs in spring and early summer, 1993</td>
</tr>
<tr>
<td>4.6.</td>
<td>Liveweight (kg) of lambs measured weekly in spring and early summer, 1993/1994</td>
</tr>
<tr>
<td>4.7.</td>
<td>Fasted weight (kg), carcass weight (kg) and GR in lambs at slaughter in spring and early summer, 1993/1994</td>
</tr>
<tr>
<td>4.8.</td>
<td>Wool weight (g/100cm²) and wool growth rate (mg/100 cm² per day) in lambs in spring and early summer, 1993/1994</td>
</tr>
<tr>
<td>4.9.</td>
<td>The rate of biting (bites/min) in summer and early autumn, 1994</td>
</tr>
<tr>
<td>4.10a.</td>
<td>Grazing behaviour in summer (Feb., 1994)</td>
</tr>
<tr>
<td>4.10b.</td>
<td>Grazing behaviour in early autumn (March, 1994)</td>
</tr>
</tbody>
</table>
Appendix Data 4.11. Intake per bite (mg OM/bite), botanical composition (%) and OMD (%) of the diets selected by sheep in summer and early autumn, 1994 .......................... 270

Appendix Data 4.12. Condensed tannin concentrations (CT: g/kg DM) and N (% DM) in the diets from Yorkshire fog/clover and tall fescue/clover pastures in summer and early autumn, 1994 ..................... 271

Appendix Data 4.13a. Herbage intake (g OM/day) in lambs in summer (Feb., 1994) .......................... 272

Appendix Data 4.13b. Herbage intake (g OM/day) in lambs in early autumn (March, 1994) ..................... 273

Appendix Data 4.14. Liveweight (kg) of lambs in summer and early autumn, 1994 .......................... 274

Appendix Data 4.15. Fasted weight (kg), carcass weight (kg) and GR (mm) in lambs at slaughter in summer and early autumn, 1994 .......................... 275

Appendix Data 4.16. Wool weight (g/100cm²) and wool growth rate (mg/100 cm² per day) in lambs in summer and early autumn, 1994 .......................... 276

CHAPTER 5

Appendix Data 5.1. The rate of biting (bites/min) in leader and follower (L/F) lambs summer, 1994/1995 .......................... 277
Appendix Data 5.2a. Grazing behaviour in leader and follower lambs in summer (Dec., 1994) ................................. 278

Appendix Data 5.2b. Grazing behaviour in leader and follower lambs in summer (Jan., 1994) ................................. 279

Appendix Data 5.3. Intake per bite (mg OM/bite), the botanical composition (%) and OMD (%) of the diets selected by sheep in "leader" and "follower" swards in summer, 1993/1994 ................................. 280

Appendix Data 5.4. Condensed tannin concentration (CT:g/kg DM) and N (% DM) in the diets from "leader" and "follower" swards in summer, 1994/1995 ................................. 281

Appendix Data 5.5. Herbage intake (g OM/day) in leader and follower lambs in summer, 1994/1995 ................................. 282

Appendix Data 5.6. Liveweight (kg) of leader and follower lambs in summer, 1994/1995 ................................. 283

Appendix Data 5.7. Fasted weight (kg), carcass weight (kg) and GR in leader and follower lambs in summer, 1994/1995 ................................. 284

Appendix Data 5.8. Wool weight (g/100cm²) and wool growth rate (mg/100 cm² per day) in leader and follower lambs in summer, 1994/1995 ................................. 285
# LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Amino acid</td>
</tr>
<tr>
<td>BTRT</td>
<td>The rate of biting</td>
</tr>
<tr>
<td>CCS</td>
<td>Carcass weight</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CP</td>
<td>Crude protein</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>CWL</td>
<td>Corrected wool weight (g/100 cm²)</td>
</tr>
<tr>
<td>CT</td>
<td>Condensed tannins</td>
</tr>
<tr>
<td>CTRL</td>
<td>Control</td>
</tr>
<tr>
<td>DOM</td>
<td>Digestible organic matter</td>
</tr>
<tr>
<td>DOMI</td>
<td>Digestible organic matter intake</td>
</tr>
<tr>
<td>EAA</td>
<td>Essential amino acids</td>
</tr>
<tr>
<td>FEC</td>
<td>Faecal egg count</td>
</tr>
<tr>
<td>FSW</td>
<td>Fasted weight</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GR</td>
<td>A measurement of total soft tissue depth over the 12th rib at a point 11 cm from the carcass midline</td>
</tr>
<tr>
<td>GRNM</td>
<td>Green material</td>
</tr>
<tr>
<td>GT</td>
<td>Grazing time</td>
</tr>
<tr>
<td>IB</td>
<td>Intake per bite</td>
</tr>
<tr>
<td>INTK</td>
<td>Herbage intake (g/day)</td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
</tr>
<tr>
<td>( k_g )</td>
<td>Efficiency of utilisation of ME for growth</td>
</tr>
<tr>
<td>( k_l )</td>
<td>Efficiency of utilisation of ME for lactation</td>
</tr>
<tr>
<td>( k_m )</td>
<td>Efficiency of utilisation of ME for maintenance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Ltd</td>
<td>Limited</td>
</tr>
<tr>
<td>LW</td>
<td>Live weight</td>
</tr>
<tr>
<td>LWG</td>
<td>Liveweight gain</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolisable energy</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>MTTK</td>
<td>Herbage Intake (g/kg $W^{0.75}$)</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NAN</td>
<td>Non-ammonia nitrogen</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>Ammonia</td>
</tr>
<tr>
<td>OMD</td>
<td>Organic matter digestibility</td>
</tr>
<tr>
<td>OMI</td>
<td>Organic matter intake</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>PER</td>
<td>Period</td>
</tr>
<tr>
<td>PRVSP</td>
<td>Previous species</td>
</tr>
<tr>
<td>RUT</td>
<td>Ruminating time</td>
</tr>
<tr>
<td>RST</td>
<td>Resting time</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>Sig</td>
<td>Significance</td>
</tr>
<tr>
<td>SPP</td>
<td>Species</td>
</tr>
<tr>
<td>WLGTH</td>
<td>Wool growth rate</td>
</tr>
</tbody>
</table>