Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Fresh and processed apple products:
vacuum infiltration, texture and quality

A thesis presented in partial fulfilment of the requirements for the degree
of
Doctor of Philosophy in Plant Science
at
Massey University

Suzie Marie Newman
1997
Abstract

Apple slice texture and quality is affected by a diverse array of preharvest, postharvest and processing factors. The study described in this thesis had two primary objectives:

1) to investigate factors that influence the effectiveness of the vacuum infiltration process and thereby identify ways to enhance infiltration in difficult-to-infiltrate fruit.

2) to ascertain the effects of a range of pre- and post- harvest factors including cultivar, temperature, edible surface coatings and calcium treatments on fresh and processed apple texture and quality.

Vacuum infiltration is used to replace the 8-36% of tissue volume made up by occluded gases in the commercial production of solid-pack canned apple slices. This removal: reduces textural degradation caused by thermal expansion of these gases; prevents can corrosion and off-flavour development caused by residual oxygen; and ensures that relative density of the tissue is increased sufficiently to achieve prescribed can fill weights. Vacuum infiltration is often incomplete for fruit produced in cold growing seasons and also with immature fruit. In this study, level of infiltration achieved in apple slices was affected by pre-condition of the tissue (eg. maturity, porosity, whole fruit density) and by variables that relate directly to the vacuum infiltration process (eg. vacuum time, absorption time, solution temperature). Infiltration was enhanced in fruit taken from later harvests and in fruit pre-stored for a short period at 20 °C. Key aspects of the vacuum infiltration process were investigated and the relationships between vacuum time, absorption time, and slice relative density were characterised. Reduced vacuum levels were detrimental to liquid impregnation. To maximise infiltration in ‘Braeburn’ fruit required: high vacuum levels (preferably > 95 kPa), vacuum times of approx 2 min, and absorption times ≥ 6 min. Infiltration was enhanced by heating the infiltrating solution.
The texture and quality of solid-pack canned apple slices is to a large extent determined by the quality of the raw product. ‘Braeburn’, ‘Fuji’ and ‘Granny Smith’ apples varied quite markedly in terms of textural quality, storage potential, tolerance of ambient temperatures and ultimately in their response to processing. In general, fresh and processed apple texture declined with increasing fresh fruit storage temperature and duration. Application of edible surface coatings enhanced texture and reduced free-juice content of canned slices. The level of benefit achieved varied considerably with cultivar and storage temperature and, to a more limited extent, grower line and coating concentration. Calcium application during the pre- or post-harvest phases had little effect on processed slice texture, but in some cases free-juice volume was reduced. The interrelationships between the variables under study are discussed and a conceptual model presented that describes the effects of key postharvest variables on fresh and processed fruit texture.
Acknowledgements

Special thanks to my chief supervisor Professor Nigel Banks whose enthusiasm for science, encouragement, guidance and numerous helpful suggestions throughout the course of this project were invaluable. Thanks also to my co-supervisor Dr Roger Harker whose texture expertise and editing comments were greatly appreciated. I am also grateful to Mr Malcolm Reeves for his help and advice during the early stages of the project and particularly for introducing me to the 'world of processing'.

Thanks too to Ms Lynley Drummond for her advice and support.

I am particularly grateful to J Wattie Foods for their financial support. Particular thanks go to Mr Gary Stichbury, Mr Byran Powlesland and Mr Paul Brizzle for their support and advice and for providing opportunities for discussion and presentation of new ideas. Thanks also to Massey University VC study award, Helen Akers and MacMillan Brown agricultural research trusts for providing additional financial support.

My sincere thanks to the technical and support staff from the Departments of Plant Science, Food Technology and Agricultural Engineering especially Gary Radford, Alistair Young, Byron McKillop, Chris Rawlingson, Sue Nicholson, Colin Tod, Anna Kingsley, Ian Painter, Leo Boulter, Bruce Collins and Les Boyd. Thanks also to the Department of Plant Science secretaries for their encouragement and support and to the Fruit Crops Unit staff for their co-operation and helpful advice especially Shane Max (Fruit Crops Unit Manager).

I also particularly appreciated the support and encouragement of the postgraduate students within the Departments of Plant Science and Food Technology especially Wirut Ampun, Mike Currie, Ivan Davie, Peter Jeffery, Inge Merts, Lynette Morgan, Huang Ning and Chris Yearsley. Thanks also to Stephanie Blackler.
My sincere appreciation and thanks goes to my friends particularly Jeanette and Rob Parsons, Denise and Dave Nicholson, Evelyn and William Brown and to my parents Merle and Graham Nowland for their unstinting support, friendship and encouragement throughout this phase of my life. I am particularly grateful to my husband Phil, for his encouragement, love, support, tolerance and enthusiasm for life. Finally, I thank my God for the fullness of life he has given me (Philippians 3:12-14; Proverbs 3:5-6).
Chapter 1. General Introduction

Chapter 2. Literature Review

2.1 What is texture?

2.2 The structural basis of fruit texture

2.2.1 Apple morphology

2.2.2 Cell wall structure

2.2.2.1 Composition of the cell wall

2.2.2.2 Cell wall models

2.2.2.3 Role of calcium

2.2.3 Turgor pressure

2.3 Textural changes

2.3.1 Ripening induced textural changes

2.3.2 Enzymes involved in fruit softening

2.3.2.1 Pectinesterase (PE)

2.3.2.2 Polygalacturonase (PG)

2.3.2.3 β-(1-4) glucanase or cellulase

2.3.2.4 Other cell wall hydrolases

2.3.3 Cell wall changes that occur during thermal processing

2.4 Evaluation of fruit texture

2.4.1 Puncture tests

2.4.2 Tensile tests
2.4.3 Shear and extrusion tests 23
2.4.4 Compression tests .. 25
2.4.5 Texture profile analysis (TPA) 25
2.4.6 Nonmechanical tests 28
2.4.7 Sensory evaluation ... 29
2.4.8 Relationship between instrumental and sensory tests 30

2.5 Factors that affect fruit texture .. 31
2.5.1 Cultivar ... 31
2.5.2 Preharvest factors ... 32
2.5.3 Postharvest factors ... 35
 2.5.3.1 Storage duration 35
 2.5.3.2 Temperature .. 36
 2.5.3.3 Gas exchange .. 38
 2.5.3.4 Calcium .. 48
2.5.4 Processing factors .. 50
 2.5.4.1 Vacuum infiltration 51
 2.5.4.2 Blanching and thermal process 56
2.5.5 Relationship between fresh and processed apple quality . 58

Chapter 3. General materials and methods 61

3.1 Fresh fruit measurements 61
 3.1.1 Determining internal O₂ and CO₂ partial pressures 61
 3.1.2 Background colour 61
 3.1.3 Texture measurements 62
 3.1.3.1 Twist tester .. 62
 3.1.3.2 Penetrometer 64
 3.1.3.3 Instron textural tests 65
 3.1.4 Soluble solids ... 65
 3.1.5 Calcium analyses 66
3.2 Processing procedure for the production of solid-pack apple
 slices ... 67
3.3 Processed product assessment 69
 3.3.1 Preliminary measurements 69
3.3.2 Juice measurements ... 69
 3.3.2.1 Juice volume ... 69
 3.3.2.2 Juice quality ... 69
3.3.3 Relative density of the tissue 70
3.3.4 Dry matter content ... 70
3.3.5 Textural measurements 70
 3.3.5.1 Compression ... 70
 3.3.5.2 Shear ... 71

Chapter 4. Factors affecting vacuum infiltration in
‘Braeburn’ apples ... 73

4.1 Introduction ... 73
 4.1.1 Background justification 73
 4.1.2 Theoretical development 74
4.2 Materials and methods .. 75
 4.2.1 Fruit source ... 75
 4.2.2 Fruit relative density 76
 4.2.3 Slice relative density 76
 4.2.4 Change in slice relative density 77
 4.2.5 Tissue porosity ... 77
 4.2.5.1 Method a: \(\Delta \rho_{\text{slice}}^{\text{rel}} \) of fully infiltrated tissue 77
 4.2.5.2 Method b: \(\varepsilon \) estimated from \(\rho_{\text{slice}}^{\text{rel ini}} \) and \(\rho_{\text{slice}}^{\text{rel}} \) 78
 4.2.6 Harvest date ... 79
 4.2.7 Storage conditions .. 80
 4.2.8 Modification of the vacuum infiltration sequence 80
 4.2.8.1 1994 season .. 80
 4.2.8.2 1995 season .. 81
 4.2.9 Modification of temperature and composition of
 infiltration solution ... 81
 4.2.9.1 1994 season .. 81
 4.2.9.2 1995 season .. 82
 4.2.10 Relationship between level of infiltration and
 product texture .. 82
4.2.11 Statistical analysis ... 82
4.3 Results .. 83
4.3.1 Relationship between porosity and $p_{rel,\text{air}}^{slice}$ 83
4.3.2 Comparison of methods for measuring porosity 83
4.3.3 Harvest date .. 83
4.3.4 Relationship between whole fruit relative density and degree of infiltration .. 88
4.3.5 Storage conditions ... 88
4.3.6 Modification of the vacuum infiltration sequence 91
 4.3.6.1 Vacuum level and time 91
 4.3.6.2 Absorption time and release speed 93
4.3.7 Modification of infiltration solution 97
 4.3.7.1 1994 season .. 97
 4.3.7.2 1995 season .. 98
4.3.8 Relationship between degree of infiltration and product texture ... 98
4.3.9 Comparing DOI with Δp_{rel}^{slice} 101
4.4 Discussion .. 103
 4.4.1 Developing a method for estimating degree of infiltration ... 103
 4.4.1.1 Estimating tissue porosity from $p_{rel,\text{air}}^{slice}$ 103
 4.4.1.2 DOI vs Δp_{rel}^{slice} 103
 4.4.2 $p_{rel,\text{air}}^{slice}$ as a predictor of ease of infiltration 104
 4.4.3 Harvest date .. 104
 4.4.4 Storage temperature ... 105
 4.4.5 Enhancing infiltration in difficult-to-infiltrate fruit 106
 4.4.5.1 Modification of vacuum infiltration sequence 106
 4.4.5.2 Modification of infiltrating solution 108
 4.4.6 Quantifying the influence of degree of infiltration on product texture ... 109
 4.4.7 Commercial implications 110
Chapter 5. Variation in raw and processed apple texture associated with differences in cultivar and storage conditions

5.1 Introduction .. 113
5.2 Materials and methods ... 115
 5.2.1 1993 storage temperature experiment ... 115
 5.2.1.1 Fruit supply .. 115
 5.2.1.2 Experimental design .. 115
 5.2.1.3 Assessment procedure .. 116
 5.2.1.4 Data analysis ... 116
 5.2.2 1994 Fruit softening behaviour experiment .. 116
 5.2.2.1 Fruit supply .. 116
 5.2.2.2 Experimental design .. 117
 5.2.2.3 Assessment procedure .. 117
 5.2.2.4 Data analysis ... 118
5.3 Results .. 118
 5.3.1 1993 storage temperature experiment .. 118
 5.3.1.1 Fresh Fruit .. 118
 5.3.1.2 Processed fruit .. 124
 5.3.2 1994 softening behaviour experiment .. 127
 5.3.2.1 ‘Braeburn’ .. 127
 5.3.2.2 ‘Fuji’ .. 134
 5.3.3 Comparison of instrumental tests ... 137
 5.3.4 Relationship between raw fruit texture and blanched slice firmness 144
5.4 Discussion ... 145

Chapter 6. Influence of surface coatings and calcium dips on raw and processed apple texture ... 155

6.1 Introduction .. 155
6.2 Materials and methods ... 157
List of Figures

2-1 A typical plant cell (Becker and Deamer, 1991). 8
2-2 Carpita and Gibeaut’s model (1993) of the expanding primary cell wall of flowering plants (excluding grasses). The figure depicts a single layer, several such layers condense to form the wall. Microfibrils are aligned in parallel but in a helical formation around elongating cells. They are crosslinked with hemicellulosic xyloglucan polymers that have been partially cleaved to permit microfibril separation. Embedded in this domain is a second one consisting of a matrix of pectic polygalacturonic acid (PGA), which forms junction zones in the presence of Ca\(^{2+}\) and rhamnogalacturonan 1 (RG 1) with arabinogalactan side chains. A third domain of extensin molecules, interlocks the separated microfibrils and limits further stretching once growth has ceased. .. 11
2-3 Characteristic force-distance curves obtained on apples using a 7.9 mm Magness Taylor Pressure Tester tip mounted in the Instron (Bourne, 1980) .. 22
2-4 Generalized texture profile curve obtained using the Instron testing machine (Bourne et al., 1978). .. 26
2-5 Changes in texture profile of ‘Ovid’ pears as they ripen. Texture profile performed on 20 mm diameter cylinders 10 mm high, with 75% compression on an Instron materials testing machine (Bourne, 1980). .. 27
2-6 Changes in texture profile of ‘Delicious’ apples in cold storage (Bourne, 1980). .. 27
2-7 Instron texture profile curves of representative individual ‘Golden Delicious’ and ‘York Imperial’ apples after each storage period (no ripening) (Abbott et al., 1984). .. 28
2-8 Principal pathways responsible for the respiration of carbohydrate (Rees, 1980). .. 40
2-9 Typical steps in a mass transfer operation between a porous food and a liquid in which it is immersed during a vacuum infiltration sequence (Modified from Fito (1994)) .. 53
3-1 Schematic diagram of the twist tester .. 63
3-2 The motor-driven twist tester .. 64
3-3 Typical force-deformation curve of a Kramer shear test on fresh apple slices. ... 66

3-4 Production of solid-pack apple (generalised form) 68

3-5 Typical force-deformation curve of a two-cycle uniaxial compression test on processed apple slices. .. 71

4-1 Diagram showing how apple slices were sectioned for the experimental work outlined in section 4.2.5.1. 78

4-2 The relationship between porosity (ε) and $\rho_{slice}^{rel,init}$ in ‘Braeburn’ apples using sections of tissue taken from different parts of the apple, as illustrated in Fig. 4-1. CI and PI are the 95% confidence and prediction intervals respectively. .. 84

4-3 The relationship between porosity estimated by method b (ε_b) and porosity estimated by method a (ε_a) for sections of ‘Braeburn’ apple slices cut as shown in Fig. 4-1 ($\varepsilon_b=0.0012+1.044*\varepsilon_a$, $r^2=0.91$; where the standard errors for the intercept and the slope were 0.00535 and 0.0413, respectively). .. 85

4-4 Changes in a) starch index (SI=0.936+0.058*HD, $r^2=0.96$); b) soluble solids (SS=10.84+0.031*HD, $r^2=0.96$); c) firmness (f=95.83-0.281*HD, $r^2=0.88$); d) background colour (BC=109.59-0.184*HD, $r^2=0.94$); and e) whole fruit relative density ($\rho_{rel}^{frac}=0.905-0.0002*HD$, $r^2=0.97$) with time of harvest (HD) relative to the commercial opening date (where harvest date is the number of days before or after the commercial opening date (March 28)). Vertical bars indicate standard errors of means .. 86

4-5 Frequency distribution of whole fruit relative density values of ‘Braeburn’ apples at each of seven harvests. 87

4-6 a) Changes in $\Delta \rho_{rel}^{slice}$ of slices of ‘Braeburn’ apples with time of harvest (HD) relative to opening date of commercial harvest in 1995 (March 28; $\Delta \rho_{rel}^{slice}=0.071+0.00054*HD$, $r^2=0.92$; where the standard errors for the intercept and the slope are 0.0021 and 0.000071, respectively); b) The relationship between $\Delta \rho_{rel}^{slice}$ and whole fruit relative density (ρ_{rel}^{frac}; $\Delta \rho_{rel}^{slice}=2.14-2.28*\rho_{rel}^{frac}$, $r^2=0.94$; where the intercept and slope are 0.004 and 0.261, respectively). .. 89
4-7 Changes in Δp_{rel}^{slice} of ‘Braeburn’ apples associated with storage temperature and relative humidity during a 14 day storage period, which began after 2 months storage at 0 °C. Evaluation at time 0 is shown as an open square. ... 90

4-8 Effect of vacuum time on Δp_{rel}^{slice} of a) 1994 and b) 1995 ‘Braeburn’ apple slices. The fitted curves show the lines of best fit obtained by non-linear regression. Δp_{rel}^{slice} was calculated using Eq. 4-6. Fitted values for the parameters were: Fig. 4-7a: $c=0.0868\pm0.0072$; $d=-0.4023\pm0.1297$; Fig. 4-7b: $c=0.1210\pm0.0014$; $d=-1.1881\pm0.860$ (water); $c=0.1039\pm0.0024$; $d=-1.1547\pm0.1671$ (3.5% sucrose solution). Vertical bars indicate standard errors of means ... 92

4-9 Effect of absorption time, excluding release time, on Δp_{rel}^{slice} of a) 1994 and b) 1995 ‘Braeburn’ apple slices at a series of different vacuum release speeds. The fitted curves show the lines of best fit obtained by non-linear regression using the equation: $\Delta p_{rel}^{slice} = g + (h*t)/(i+t)$. Fitted values for the parameters are shown in Table 4-3. Vertical bars indicate standard errors of means. ... 94

4-10 Effect of absorption time, including release time, on Δp_{rel}^{slice} of a) 1994 and b) 1995 ‘Braeburn’ apple slices. The fitted curve is the line of best fit obtained by non-linear regression using the equation: $\Delta p_{rel}^{slice} = g + (h*t)/(i+t)$. Fitted values for the parameters are shown in Table 4-3. Vertical bars indicate standard errors of means ... 95

4-11 Effects of vacuum release speed on changes in pressure within the vacuum infiltration chamber. ... 96

4-12 Effect of solution temperature on Δp_{rel}^{slice}. The fitted curve shows the line of best fit obtained by non-linear regression using the equation: $\Delta p_{rel}^{slice} = j + k*T + l*T^2$. Fitted values for the parameters were: $j=0.0836\pm0.0018$; $k=0.0007\pm0.0002$; $l=0.00003\pm0.00003$. Vertical bars indicate standard errors of means ... 99

4-13 Effect of absorption time on a) Δp_{rel}^{slice} and b) slice texture of ‘Braeburn’ apple slices as measured by Kramer shear. The fitted curve shows the line of best fit obtained by non-linear regression using Eq. 4-9. Fitted values for the parameters were: $g=0.0514\pm0.0038$; $h=0.1067\pm0.0045$; $i=1.17183\pm0.287$. Vertical bars indicate standard errors of means. 100
a) Effect of vacuum time on DOI of ‘Braeburn’ apple slices.
b) Relationship between DOI and $\Delta \rho_{\text{slice}}^{\text{rel}}$ for ‘Braeburn’ apple slices infiltrated with water (DOI = 0.05 + 664 * $\Delta \rho_{\text{slice}}^{\text{rel}}$, $r^2 = 0.999$; where the standard errors for the intercept and slope are 0.981 and 9.8, respectively) or a weak sucrose solution (3.5%; DOI = 0.04 + 622 * $\Delta \rho_{\text{slice}}^{\text{rel}}$, $r^2 = 0.999$; where the standard errors for the intercept and slope are 0.63 and 7.3, respectively). Vertical bars indicate standard errors of means.

Effect of storage temperature on fresh fruit texture of ‘Granny Smith’ apples as determined by the twist test a) Tmax and b) TBio. Bars represent standard error of means (SEM). Regression equations are tabulated in Table 5-1.

Effect of storage temperature on fresh fruit texture of ‘Granny Smith’ apples as determined by a) penetrometer (IPen) and b) Kramer shear cell (FKra). Bars represent SEM. Regression equations are tabulated in Table 5-1.

Effect of storage temperature on fresh fruit texture of ‘Braeburn’ apples as determined by the twist test a) Tmax and b) TBio. Bars represent SEM. Regression equations are tabulated in Table 5-2.

Effect of storage temperature on fresh fruit texture of ‘Braeburn’ apples as determined by a) penetrometer (IPen) and b) Kramer shear cell (FKra). Bars represent SEM. Regression equations are tabulated in Table 5-2.

Effect of fresh fruit storage temperature and duration on process slice firmness for a) ‘Granny Smith’ and b) ‘Braeburn’ as determined by the Kramer shear cell (PKra). Bars represent SEM.

Effect of storage treatment on ‘Braeburn’ fresh fruit texture as determined by the twist test (TMax and TBio), for fruit stored at 0 °C (a and b) or 20 °C (c and d). Bars represent SEM. Regression equations are tabulated in Table 5-5.

Effect of storage treatment on ‘Braeburn’ fresh fruit texture as determined by the penetrometer for fruit stored at a) 0 °C and b) 20 °C. Bars represent SEM. Regression equations are tabulated in Table 5-6.

Effect of storage treatment on blanched ‘Braeburn’ slice texture as determined by the Kramer shear cell for fruit stored at a) 0 °C and b) 20 °C. Bars represent SEM. Regression equations are tabulated in Table 5-5.
5-9 Effect of storage treatment on ‘Fuji’ fresh fruit texture as determined by the twist test (TMax and TBio), for fruit stored at 0 °C (a and b) or 20°C (c and d). Bars represent SEM. Regression equations are tabulated in Table 5-7. .. 135

5-10 Effect of storage treatment on ‘Fuji’ fresh fruit texture as determined by the penetrometer for fruit stored at a) 0 °C and b) 20 °C. Bars represent SEM. Regression equations are tabulated in Table 5-7. 136

5-11 Effect of storage treatment on blanched ‘Fuji’ slice texture as determined by the Kramer shear cell for fruit stored at a) 0 °C and b) 20 °C. Bars represent SEM. Regression equations are tabulated in Table 5-7. .. 138

5-12 Interrelationships between the instrumental tests carried out on fresh ‘Granny Smith’ and ‘Braeburn’ apples stored for different periods in 1993. a) TBio vs TMax; b) IPen vs TMax; c) FKra vs TMax; d) IPen vs TBio; e) FKra vs TBio; and f) FKra vs IPen. 139

5-13 Interrelationships between the instrumental tests carried out on fresh (TMax, TBio, DPen) and blanched (BKra) ‘Braeburn’ and ‘Fuji’ apples stored for different periods in 1994. a) TBio vs TMax; b) DPen vs TMax; and c) BKra vs TMax. .. 140

5-14 Interrelationships between the instrumental tests carried out on fresh (TMax, TBio and DPen) and blanched (BKra) ‘Braeburn’ and ‘Fuji’ apples stored for different periods in 1994 (cont.) a) DPen vs TBio; b) BKra vs TBio; and c) BKra vs DPen. 141

6-1 The effect of surface coatings on internal partial pressure of oxygen (p_{O_2}) and internal carbon dioxide (p_{CO_2}) partial pressures of ‘Granny Smith’ apples stored at a) 20°C or b) 0°C in 1993. .. 162

6-2 The effect of surface coatings on internal partial pressure of oxygen (p_{O_2}) and internal carbon dioxide (p_{CO_2}) partial pressures of ‘Braeburn’ apples stored at a) 20°C or b) 0°C in 1993. .. 163

6-3 Influence of surface coatings, calcium dips and storage temperature on fruit firmness of ‘Granny Smith’ apples as determined by a) twist test (TMax); b) Kramer shear cell (FKra) and c) penetrometer (IPen), after 6 weeks. .. 167

6-4 Influence of surface coatings, calcium dips and storage duration at 0 °C on fruit firmness of ‘Granny Smith’ apples as determined by a) twist test (TMax and b) penetrometer (DPen). .. 168

6-5 Influence of surface coatings, calcium dips and storage temperature on fruit firmness of ‘Braeburn’ apples as determined by a) twist test (TMax); b) Kramer shear cell (FKra) and c) penetrometer (IPen), after 4 weeks. ... 170

xvii
6-6 Influence of surface coatings, calcium dips and storage duration at 0 °C on fruit firmness of ‘Braeburn’ apples as determined by a) twist test (TMax); b) Kramer shear cell (FKra) and c) penetrometer (IPen)........ 171

6-7 The effect of surface coatings (CMC 0-4 %) on internal partial pressure of oxygen (p’O₂) and internal carbon dioxide (p’CO₂) partial pressure of ‘Braeburn’ apples stored at 20°C in a) 1994 and b) 1995. 176

6-8 The relationship between CMC concentration and a) internal partial pressure of oxygen (p’O₂) and b) internal carbon dioxide (p’CO₂) partial pressure of ‘Braeburn’ apples at 20°C. .. 178

6-9 The effect of surface coatings (CMC 0-8 %) on: a) internal partial pressure of oxygen (p’O₂) and internal carbon dioxide (p’CO₂) partial pressures; the relationship between CMC concentration and b) internal partial pressure of oxygen (p’O₂) and c) internal carbon dioxide (p’CO₂) partial pressures of ‘Braeburn’ apples stored at 0°C in 1994. 179

6-10 The effect of CMC concentration on fruit firmness (a=TMax and b=DPen), background colour (c) and soluble solids (d) of 1995 ‘Braeburn’ apples stored at 20°C. .. 180

6-11 The effect of CMC concentration on fruit firmness (a=TMax and b=DPen), background colour (c) and soluble solids (d) of 1994 ‘Braeburn’ apples stored at 20°C. .. 182

6-12 The effect of CMC concentration on fruit firmness (a=TMax & TBio and b=DPen), background colour (c) and soluble solids (d) of 1994 ‘Braeburn’ apples stored at 0°C. .. 183

6-13 The effect of surface coatings (CMC 0-4 %) on internal partial pressure of oxygen (p’O₂) and internal carbon dioxide (p’CO₂) partial pressures of 1994 ‘Fuji’ apples stored at a) 20°C and b) 0°C. 187

6-14 The relationship between CMC concentration and a) internal partial pressure of oxygen (p’O₂) and b) internal carbon dioxide (p’CO₂) partial pressures of 1994 ‘Fuji’ apples stored at 20°C. 188

6-15 The relationship between CMC concentration and a) internal partial pressure of oxygen (p’O₂) and b) internal carbon dioxide (p’CO₂) partial pressures of 1994 ‘Fuji’ apples stored at 0°C. 189

6-16 The effect of CMC concentration on fruit firmness (a=TMax and b=DPen), background colour (c) and soluble solids (d) of 1994 ‘Fuji’ apples stored at 20°C. .. 191

6-17 The effect of CMC concentration on fruit firmness: (a) TMax & TBio and (b) DPen, and on background colour (c) and soluble solids (d) of 1994 ‘Fuji’ apples stored at 0°C for 6 or 16 weeks. 192
6-18 Interrelationships between factors affecting internal oxygen (p'_o) partial pressures in apple fruit (modified from Yearsley, 1996) 199

6-19 Slices produced from non-coated ‘Braeburn’ apples previously stored at 20 °C for 3 weeks ... 204

6-20 Slices made from coated ‘Braeburn’ apples previously stored at 20 °C for 3 weeks ... 204

7-1 Overview of factors affecting the quality of processed apple slices. 214

7-2 Factors thought to affect apple slice infiltration. 216

7-3 The relationships between some pre- and post- harvest factors and fruit texture. ... 219
List of Tables

2-1 Textural properties of foods ... 5

4-1 List of harvest dates for experiment outlined in section 4.2.6. 79

4-2 Effect of storage temperature and RH on water loss in ‘Braeburn’ apples . 91

4-3 Parameters and their standard errors for the curves fitted in Fig. 4-9
 and 4-10 using Eq. 4-9. ... 93

4-4 Effect of the composition and temperature of infiltrating solution
 on $\Delta \rho_{\text{slices}}$ and the percentage of fully infiltrated slices in ‘Braeburn’
 apples. .. 97

4-5 The effect of absorption time on canned slice drained weight, juice
 volume and soluble solids. .. 101

5-1 Parameters and their standard errors, r^2 and CV values for the linear
 regressions ($y=m-nt$) fitted to the ‘Granny Smith’ fresh fruit firmness
 data, illustrated in Figs. 5-1 and 5-2. ... 121

5-2 Parameters and their standard errors, r^2 and CV values for the linear
 regressions ($y=m-nt$) fitted to the ‘Braeburn’ fresh fruit firmness data
 for fruit stored at 0 °C, illustrated in Figs. 5-3 and 5-4. 124

5-3 Effect of storage temperature and duration on the quality attributes
 (juice volume, pH, SS, slice integrity and overall appearance) of
 processed ‘Granny Smith’ apple slices. ... 126

5-4 Effect of storage temperature and duration on ‘Braeburn’ processed
 slice quality attributes (juice volume, pH, SS, slice integrity and
 overall appearance). .. 127

5-5 Parameters and their standard errors, r^2 values for the linear regression
 lines ($y=m-nt$) fitted to data for firmness of fresh and blanched
 ‘Braeburn’ apples previously stored at 0 °C (illustrated in Figs. 5-6 -
 5-8). ... 130

5-6 Parameters and their standard errors for curves fitted in Figs. 5-5 - 5-8. .. 130

5-7 Parameters and their standard errors and r^2 values for the linear
 regressions ($y=m-nt$) fitted to ‘Fuji’ fresh and blanched fruit firmness
 data illustrated in Figs. 5-9 - 5-11. ... 134

5-8 Relationship among selected instrumental tests for 1993 ‘Granny
 Smith’ and ‘Braeburn’ apples (correlation coefficients, r) 137
5-9 Relationships among selected instrumental tests for 1994 ‘Braeburn’ and ‘Fuji’ apples (correlation coefficients, r) 142

5-10 Eigenvectors generated from the PCA analysis of the 1993 instrumental data ... 143

5-11 Eigenvectors generated from the PCA analysis of the 1994 instrumental data ... 144

6-1 Internal oxygen (p'_o) and carbon dioxide (p'_cO2) partial pressures in ‘Granny Smith’ apples with different coating treatments (means ± SD). 164

6-2 Internal oxygen (p'_o) and carbon dioxide (p'_cO2) partial pressures in ‘Braeburn’ apples with different coating treatments (means ± SD) 165

6-3 Effect of surface coatings on the calcium content (mg/g dw) of ‘Granny Smith’ and ‘Braeburn’ apples. 166

6-4 Effect of surface coatings and temperature on the quality of ‘Granny Smith’ solid-pack slices, made from fruit stored for 6 weeks before processing. 172

6-5 Effect of surface coatings and storage duration at 0 °C, on the quality of ‘Granny Smith’ solid-pack slices. 173

6-6 Effect of surface coatings and temperature on the quality of ‘Braeburn’ solid-pack slices, made from fruit stored for 4 weeks before processing. 174

6-7 Effect of surface coatings and storage duration at 0 °C, on the quality of ‘Braeburn’ solid-pack slices. 175

6-8 The effect of surface coatings on processed fruit quality of ‘Braeburn’ apples made from fruit stored at 20 °C for 3 weeks before processing. ... 184

6-9 The effect of surface coatings on processed fruit quality of ‘Braeburn’ apples made from fruit stored at 20 °C for 5 weeks in 1994 before processing. ... 185

6-10 The effect of surface coatings on processed fruit quality of ‘Braeburn’ apples made from fruit stored at 0 °C for 6 or 16 weeks in 1994 before processing. ... 186

6-11 The effect of surface coatings on processed fruit quality of ‘Fuji’ apples made from fruit stored at 20 °C for 5 weeks before processing in 1994. ... 193

6-12 The effect of surface coatings on processed fruit quality of ‘Fuji’ apples stored at 0 °C in 1994. ... 193
6-13 The effect of storage duration at 0 °C on processed fruit quality of 'Fuji' apples in 1994. .. 194

6-14 Effect of CaCl₂ on fruit skin permeance. 194

6-15 The effect of storage on the fresh fruit quality of 'Braeburn' apples at harvest (0 weeks in storage) or after 20 weeks in storage. 195

6-16 The effect of preharvest calcium dips on the fresh fruit quality of 'Braeburn' apples. .. 195

6-17 The effect of storage on the processed fruit quality of 'Braeburn' apples. .. 196

6-18 The effect of preharvest calcium dips on the processed fruit quality of 'Braeburn' apples. .. 196

6-19 Effect of postharvest calcium dips on fresh fruit quality. 197

6-20 Effect of postharvest calcium dips on processed fruit quality. 197
List of Abbreviations

- a: radius of twist tester blade (m)
- a_r: radius of twist tester spindle
- A: fruit surface area (m^2)
- A_{punch}: area of punch/penetrometer probe
- ACP: anaerobic compensation point
- ANOVA: analysis of variance
- ATP: adenosine triphosphate
- b: width of twist tester blade
- BC: background colour
- BKra: maximum force as measured by Kramer shear cell (blanched fruit slices; N)
- $c, d, g, h, i, j, k, l, m, n, o, q, s, u, v$: parameters for linear and non-linear equations
- C: chroma
- CA: controlled atmosphere storage
- CI: confidence interval
- CMC: carboxymethylcellulose, sodium salt
- cont: control
- CV: coefficient of variation
- HD: harvest date
- Δp_j: difference in partial pressure of gas j between internal and external atmospheres (Pa)
- Δp_{H_2O}: water vapour pressure difference between fruit and surrounding airstream
- Δp_{O_2}: difference in partial pressure of oxygen between internal and external atmospheres (Pa)
- Δp_{rel}^{slice}: change in relative density of an apple slice after infiltration
- DOI: degree of infiltration (%)
- DPen: firmness as measured by drill-mounted penetrometer (N)
- ε: cortical tissue porosity ($m^3.m^{-3}$)
- ε^a: cortical tissue porosity estimated using infiltration ($m^3.m^{-3}$)
- ε^b: cortical tissue porosity estimated from initial relative density of tissue and juice ($m^3.m^{-3}$)
- ε_e: effective porosity
- EP: extinction point
- Eq(s.): equation(s)
- f: resonance frequency
- f: fruit firmness
- F: bioyield point
- FCP: free choice profiling
- Fig(s.): figure(s)
- FKra: maximum force as measured by Kramer shear cell (fresh fruit slices; N)
- FT: fermentation threshold
- g: gravity constant 9.8 m.s$^{-2}$
θ angle of rotation (°)
HDM hydrodynamic mechanism
IAS intercellular air space
IPen firmness as measured by Instron operated penetrometer (N)
Kc commodity compression coefficient
K_{FT} firmness temperature coefficient (%/°C)
K_j commodity shear coefficient
L lightness
LO low oxygen storage
LOI level of infiltration
LOL lower oxygen limit (kPa)
LOL_i internal lower oxygen limit (kPa)
LTLLT low temperature long time blanch treatment
m_{\tau} moment
M mass
M_{fruit} fruit mass (kg)
M_{\text{app}} apparent mass of non-infiltrated slice in air (kg)
MA modified atmosphere storage
M_{\text{app}} apparent mass of infiltrated slice submerged in water (kg)
M_{\text{app}} apparent mass of non-infiltrated slice submerged in water (kg)
M_{\text{app}} apparent mass of slice submerged in water (kg)
NS not significant
P probability or level of significance of a statistical test
P_{\text{punch}} perimeter of punch
PD permanent deformation (mm)
pH concentration of hydrogen ions in a solution
P_{\text{atm}} atmospheric pressure
p_c capillary pressure
p_{j} partial pressure of gas j in the external atmosphere (Pa)
p_{j}^{\text{O}_2} external partial pressure of oxygen (kPa)
p_{j}^{\text{CO}_2} internal partial pressure of carbon dioxide (kPa)
p_{j} partial pressure of gas j in the internal atmosphere (Pa)
p_{j}^{\text{O}_2} internal partial pressure of oxygen (kPa)
p_r reduced capillary pressure
P_{\text{vac}} pressure during vacuum treatment
P_{\text{H}_2\text{O}}^{\text{skin}} fruit skin permeance to water vapour (mol.s^{-1}.m^{-2}.Pa^{-1})
P_{j} permeability to gas j (mol.s^{-1}.m.m^{-2}.Pa^{-1})
P_{j}^{\text{skin}} permeance to gas j (mol.s^{-1}.m^{2}.Pa^{-1})
P_{\text{O}_2}^{\text{skin}} fruit skin permeance to oxygen (mol.s^{-1}.m^{-2}.Pa^{-1})
P_{\text{O}_2}^{\text{coat}} coating permeance to oxygen (mol.s^{-1}.m^{2}.Pa^{-1})
PCA principal component analysis
PGA polygalacturonic acid
PE pectinesterase
PG polygalacturonase
PI prediction interval
PKra maximum force as measured by Kramer shear cell (processed fruit slices, N)
σ crush strength (Pa)
temperature coefficient (=rate of O_2 uptake at $(T+10^\circ C)$)/[rate of O_2 uptake at T])

QDAquantitative descriptive analysis

Rapparent compression ratio

ractual compression ratio

r^2square of the correlation coefficient (r) or the proportion of total variation in y that can be explained by the independent variable x

$\dot{r}_{O_2}^T$specific rate of transfer of O_2 at temperature T (mol.s$^{-1}$)

RHrelative humidity

RG 1rhamnogalacturonan 1

RQrespiratory quotient

RQBrrespiratory quotient breakpoint

ρ_{w}density of water (kg.m$^{-3}$)

ρ_{rel}density of whole fruit relative to water

ρ_{juice}density of juice relative to water

ρ_{slice}density of an uninfiltrated slice relative to water

$\rho_{slice, ini}$density of a slice relative to water

σstandard error

SEDstandard error of the difference between means

SEMstandard error of the mean

SIstarch index

SPEsucrose polyester formulation

SStotal soluble solids content ($\%$, °Brix)

ttime

Ttemperature ($^\circ$C)

TBio twist test bioyield (kPa)

TCAtricarboxylic acid cycle or Krebs cycle

TMaxtwist test maximum crush strength (kPa)

TPAtexture profile analysis

Vvolume

V_hvolume of submerged portion of hook (m3)

V_svolume of slice (m3)

WVPwater vapour pressure

WVPDwater vapour pressure deficit

XETxyloglucan endotransglycosylase

xvolumetric fraction of liquid

x_vvolume fraction of pore occupied by liquid

WSPwater-soluble polyuronides

Zdistance of the centre of mass of the rod from the axis of rotation