Industrial Design and Engineering Transition
to Radical Innovation for Sustainability in Tertiary Education:

Concept Design Strategies based on a New Zealand Study

A thesis presented in partial fulfilment of the
requirements for the degree of

Master of Philosophy

in

Product Development

at Massey University, Albany,
New Zealand

Linda Haemmerle

29th March 2011
Copyright is retained by the author of this thesis, for complete thesis content and all research outcomes, with moral rights to be identified as the author and creator thereof.
Abstract

A UN Decade of Education for Sustainable Development (UNDESD) is currently in progress from 2005 – 2014. The importance of Sustainable Development (SD) and Sustainable Product Design (SPD) has been recognized by the professional bodies for industrial design and engineering, and promoted within tertiary education. A consensus gained from a literature review revealed that radical innovation is now necessary to achieve Factor 4 (i.e. reducing resource use to a quarter of the total), or Factors 10-20 (reducing resource use to a 10th – 20th of levels in the present production/consumption model) in upholding global environmental and social integrity. Design and engineering are seen as “core catalysts of change” towards radical innovation for sustainability, and therefore essential that industrial designers and engineers be appropriately educated. The motivation and main aim of this research was therefore to develop an educational framework for mainstream industrial design and engineering in SD/SPD at tertiary level. This should be based on the key concepts of SD/SPD towards radical innovation, successful international examples of industrial design and engineering curricula, as well as any pertinent information derived locally from the New Zealand design and engineering scenario. The latter was derived via a survey of industrial/product design, mechanical/mechatronics engineering students in their final year of undergraduate study in New Zealand.

These research strands were synthesized and further refined, using a 4-year undergraduate degree structure (combined years 1-2 for a 3-year design degree programme). The Conceptual Educational Framework and Guidelines are intended as an aid and underlying structure towards embedding radical innovation for sustainability in Industrial Design and Engineering curricula. Together, they provide a draft, a roadmap of essential and important concepts, to combine with discipline-specific core content of Industrial Design and Engineering undergraduate degrees.

The NZ survey results proved similar to international studies: an overall discrepancy between the high ratings of the importance of sustainability and low values in actual knowledge, with definitions of ecodesign (eco-efficiency through reduction and/or minimization of harmful environmental impacts), rather than eco-effective, beneficial sustainable design (comprising environmental, economic and social considerations). The key recommendations are documented within four concepts: 1. Emphasis on the Social Element of SD/SPD, 2. Transition towards Systems Thinking via PSS (Product-Service Systems), 3. Complementary Sustainable Design Strategies and 4. Transition towards Strategic Design. These concepts advocate emphasis on the social element of SD/SPD through context and creativity; systems thinking via PSS; eco-effectiveness and Cradle-to-Cradle design principles (C2C), followed by eco-efficiency for optimization; and all governed by strategic design. The design intent of the Conceptual Educational Framework and Guidelines is to maximize beneficial, eco-effective systems, sustainable behaviour, equity, quality of life, and connecting design, technology and human behaviour.
Acknowledgements

I would like to sincerely thank all those who have helped me in their various ways towards completion of this Master’s thesis, a goal that I set myself as an industrial designer towards ecological and sustainable design literacy. By clarifying for myself, I hope that I have also been able to clarify for others the complex factors that contribute towards radical innovation for Sustainable Product Design, and how concepts relate to each other.

- To my supervisors, Dr. Aruna Shekar, Massey University – Albany, and Assoc. Prof. Jane Goodyer, Massey University – Palmerston North, for their ongoing support and keeping me on track with all things

- To Sri Nagappan, IT, Massey University – Albany, for all of his help with the taming of this thesis as a Long Word Document

- The NZ final year student survey received a ‘Low Risk’ status from the Massey University Ethics Committee

- To Prof. David Walker, formerly of the Open University, UK and recently Chair of Creative Industries, UCOL, Universal College of Learning, Whanganui, for his extremely helpful advice and insight, his wisdom, encouragement and support

- To my husband Enrico, not only in his professional capacity as Assoc. Prof. Mechatronics Engineering at the University of Auckland, but also as my collaborateur in sustainable product design and development, my main champion and supporter throughout all my years of study and ongoing design endeavours, for his love and understanding

- To my daughters Corina and Bianca, for their contribution towards data input of the final year student survey, for caring about what I do and being a continual source of love and support
Table of Contents

Abstract .. iii
Acknowledgements ... iv
Table of Contents ... v
List of Figures .. viii
List of Tables .. x
List of Appendices ... xi
Glossary of Terms ... xii

1. INTRODUCTION .. 1

1.1 Motivation and Rationale for this Research .. 2
1.2 Definitions of SD/SPD.. 3
1.3 The Importance of SD/SPD Concepts in Tertiary Education ... 5
 1.3.1 *International SD Tertiary Education* .. 5
1.4 Sustainability Guidelines of Professional Bodies ... 7
 1.4.1 *SD/SPD and Industrial Design Accreditation* ... 7
 1.4.2 *SD/SPD and Engineering Accreditation* ... 8
1.5 Ecopreneurs – Change Agents of the Future? .. 10
1.6 Purpose of this Research .. 12
 1.6.1 *Research Aim and Objectives* .. 12
1.7 The Scope and Contribution of this Research... 13
1.8 Overview and Structure of Thesis .. 15

2. LITERATURE REVIEW OF KEY CONCEPTS OF RADICAL INNOVATION FOR SD/SPD…….. 17

2.1 Overview ... 17
2.2 Concept 1: Emphasis on the Social Element of SD/SPD ... 19
 2.2.1 *‘Wicked’ Problems are User-Centred in Systems Design* .. 19
 2.2.2 *The Human Factor as Part of the Whole, within Systems Thinking* 21
 2.2.3 Symbiotic Effects between Ecosystem Services and Human Well-being 25
 2.2.4 *Technology needs to be linked to Human Behaviour* ... 27
 2.2.5 Human Factors and Understanding Consumption .. 29
2.3 Concept 2: Transition towards Systems Thinking via PSS (Product-Service Systems)………………… 35
 2.3.1 Overview ... 35
 2.3.2 *Broadening of Scope from Products to Systems* .. 36
 2.3.3 *PSS (Product-Service Systems)* .. 44
2.4 Concept 3: Complementary Sustainable Design Strategies .. 49
 2.4.1 Eco-efficiency / Cradle-to-Grave ... 49
 2.4.2 Eco-effectiveness / Cradle-to-Cradle .. 51
2.5 Concept 4: Transition towards Strategic Design ... 59
2.6 Complementary Professions of Industrial Design/Engineering 65
2.7 Educational Perspectives .. 71
 2.7.1 Differences between Design and Engineering Courses in SPD Education 71
 2.7.2 SD/SPD and Industrial Design Curricula / International 75
 2.7.3 Academic Design Research Projects – Case Studies .. 76
 2.7.4 DEEDS (Design Education & Sustainability) .. 78
 2.7.5 SD/SPD and Engineering Curricula / International 80
 2.7.6 SD/SPD in Curricula / Interdisciplinary .. 90
 2.7.7 Prior SD/SPD Frameworks/Surveys in Design & Engineering Curricula 94
2.8 Key Conclusions of Literature Review .. 101

3. RESEARCH METHODOLOGY .. 103
 3.1 Research Methodology and Design Process of this Thesis 103
 3.2 Rationale for Key Concepts of Radical Innovation .. 105
 3.3 Rationale for using a Survey ... 107
 3.4 Design of Survey Questionnaire ... 110
 3.4.1 Questionnaire Composition and Design ... 110
 3.4.2 Drafting the Survey Questionnaire .. 111
 3.5 Pilot Study of Survey Questionnaire .. 113
 3.6 Final Survey – Nature of Survey Sample ... 115
 3.7 Ethics Considerations ... 115
 3.7.1 The Human Ethics Committee at Massey University 115
 3.7.2 Ethics Procedures – Low Risk Notification ... 116
 3.8 Distribution of Survey Questionnaire ... 116
 3.8.1 Schedule of Distribution .. 116
 3.8.2 Summary of Survey Characteristics ... 117

4. SURVEY RESULTS AND EVALUATION .. 119
 4.1 Overview ... 119
 4.2 New Zealand Survey Results .. 120
 4.3 Differences between NZ and International Studies / T-Test 123
 4.3.1 Rationale for using a Statistical T-Test .. 123
 4.3.2 Evaluation of Studies for Sustainable Development Concepts 127
 4.3.3 Evaluation of Studies for Environmental Issues ... 129
 4.3.4 Evaluation of Studies for Policy, Standards and EMS 132
List of Figures

Figure 1: Diagram of the concept of sustainable development (Szymkowiak, 2003) .. 4
Figure 2: Diagram of how Sustainable Design is attained (Charter, 2001) ... 4
Figure 3: Thesis Structure and Content .. 16
Figure 4: A model for design and ‘well-being’, (Fuad-Luke, 2007, p. 24). .. 22
Figure 5: Differentiation of innovation types and their sustainability potential (Tischner, 2008, p. 162) 35
Figure 6: Hierarchy of waste management (Cooper, 1994), cited in (T. A. Bhamra, 2004, p. 560) 37
Figure 7: Brezet’s four stages of product improvement to innovation (Brezet, 1997). .. 39
Figure 8: Structure of service system and environmental strategies (Jackson, 1996), cited in (T. A. Bhamra, 2004, p. 561) ... 40
Figure 9: Environmental strategies and temporal scales (Bras, 1997) .. 41
Figure 10: Conceptual model of ecodesign process ... 43
Figure 11: Evolution of the Product-Service System concept (Baines et al., 2007, p. 1546) .. 45
Figure 12: Product-Service continuum (Kotler, 1994), cited in (T. A. Bhamra & Lofthouse, 2007, p. 126) 45
Figure 13: Differentiation of PSS categories and sub-categories (Arnold Tukker, 2004, p. 248) 48
Figure 14: An integrative framework for Industrial Ecology, LCM and Supply Chain Management 50
Figure 15: Eco-effectiveness strives to generate an entirely (100%) beneficial impact (Braungart, McDonough, & Bollinger, 2007, p. 1343) ... 51
Figure 16: Fractal tile, used to visualise C2C concerns (W. McDonough & Braungart, 2003, p. 150) 52
Figure 17: Material flows in the context of an Intelligent Materials Pooling community ... 53
Figure 18: Back view of ‘Mirra’ chair (Berry, 2005, p. 229). ... 58
Figure 19: Generative principles in design thinking (Buchanan, 2001, p. 76) ... 59
Figure 20: The relationships within the product design process for ISDPS concept .. 61
Figure 21: Wheel of options for product enhancement, (Parsons, 2009, p. 83) .. 62
Figure 22: Model of ecodesign innovation, (Charter, 1997), cited in (Sherwin & Evans, 2000, p. 113) 67
Figure 23: Model of integrating Ind. Design and Design Engineering (Sherwin & Evans, 2000, p. 116) 68
Figure 24: EMUDE research process (Jegou, 2008, p. 180) .. 76
Figure 25: From ecodesign to Design for Sustainability (Spangenberg et al., 2010, p. 1490) 78
Figure 26: Adapted from Charter, Tischner et al, 2000, see Figure 2 (Ramirez, 2006, p. 199) 95
Figure 27: Double diamond design process (Design Council, 2007) ... 103
Figure 28: Sustainable Development Concepts, NZ Survey 2010 ... 120
Figure 29: Environmental Issues, NZ Survey 2010 .. 121
Figure 30: Environmental Product Policy (EPP), NZ Survey 2010 .. 121
Figure 31: Standards and Environmental Management Systems (EMS), NZ Survey 2010 .. 122
Figure 32: Tools, Technologies and Approaches, NZ Survey 2010 ... 122
Figure 33: Ratings of the Importance of Sustainable Development, NZ Survey 2010 ... 123
Figure 34: Comparison of Studies for Sustainable Development Concepts ... 127
Figure 35: Comparison of Studies for Environmental Issues ... 129
Figure 36: Comparison of Studies for Policy, Standards and EMS .. 132
Figure 37: Comparison of Studies for Tools, Technologies and Approaches ... 134
Figure 38: Comparison of Studies for Ratings of the Importance of Sustainable Development 137
Figure 39: Strategic Design Cycle - model of complementary but sequential SPD Strategies 151
Figure 40: Core structure underlying framework, using diverging/converging design process 159
Figure 41: Conceptual Educational Framework, a structure to combine with discipline-specific courses ... 161
List of Tables

Table 1: Summary of Maslow’s hierarchy of needs (T. Bhamra & Lofthouse, 2007, p. 57) 29
Table 2: Max-Neef’s satisfiers of human needs (Max-Neef, 1992) ... 30
Table 3: Ecodesign principles & strategies (van Hemel, 1998), cited in (T. A. Bhamra, 2004, p. 562) 42
Table 4: The 12 Principles of Green Engineering ... 56
Table 5: Parameters for MBDC’s materials assessment protocol ... 57
Table 6: Herman Miller Design for Environment assessment criteria .. 58
Table 7: Reframing our perspectives on sustainable design (Walker, 2002, p. 9) .. 59
Table 8: Design activities (Sherwin & Evans, 2000, p. 114) ... 67
Table 9: Pedagogic comparators in engineering and design (Morris et al., 2007, p. 138) 71
Table 10: SCALES core principles (Spangenberg et al., 2010, p. 1492), source (Blincoe et al., 2009) 79
Table 12: Clusters of various topics on SD courses (K. F. Mulder, 2006, p. 141) ... 84
Table 13: Overview of ethical viewpoints (Zandvoort, 2008) ... 85
Table 14: Ethics framework at DUT, including the MSc Joint Venture teaching model (JV) 88
Table 15: Essay topics of the MSc Joint Venture teaching model (JV) (Zandvoort et al., 2008) 89
Table 16: Scenarios for general and specific energy-saving measures (Uiterkamp & Vlek, 2007, p. 182) ... 91
Table 17: The TEOs of the interdisciplinary Ijssel project (K. F. Mulder, 2006, p. 140) 92
Table 18: Programme on backcasting in the Netherlands (K. F. Mulder, 2006, p. 141) 93
Table 19: Pilot study and Final survey participants .. 113
Table 20: Distribution schedule of final year student survey in New Zealand, 2010 116
Table 21: Summary of significantly different Data between Studies ... 125
Table 22: Evaluation of Studies for Sustainable Development Concepts / T-Values 127
Table 23: Significantly different Data for Sustainable Development Concepts 128
Table 24: Evaluation of Studies for Environmental Issues / T-Values .. 129
Table 25: Significantly different Data for Environmental Issues .. 130
Table 26: Evaluation of Studies for Policy, Standards and EMS / T-Values ... 132
Table 27: Significantly different Data for Policy, Standards and EMS .. 133
Table 28: Evaluation of Studies for Tools, Technologies and Approaches / T-Values 135
Table 29: Significantly different Data for Tools, Technologies and Approaches 136
Table 30: Final Year ID / Eng. Student Definitions of Sustainable Design, New Zealand, 2010 139
Table 31: Design and Engineering Taught Courses / Papers with Sustainability Components 140
Table 32: SD/SPD Topics requested by Final Year ID / Eng. Students, New Zealand, 2010 141
Table 33: Sources of Inspiration and Motivation for Final Year ID / Eng. Students 143
Table 34: Curricula Guidelines for Emphasis on the Social Element of SD/SPD 164
Table 35: Curricula Guidelines for Transition towards Systems Thinking via PSS 166
Table 36: Curricula Guidelines for Complementary Sustainable Design Strategies 167
Table 37: Curricula Guidelines for Transition towards Strategic Design ... 168
List of Appendices

A. PSS Screening tools developed in SusProNet
B. Tools and Approaches for Eco-efficiency
C. Tools and Approaches for Eco-effectiveness
D. Backcasting
E. Draft Survey Questionnaire for NZ Final Year ID and Engineering Students
F. Final Survey Questionnaire for NZ Final Year ID and Engineering Students
G. Massey University – Human Ethics Committee - Low Risk Notification
H. Extended Table of NZ and International Studies with T-Values
I. Synthesis of Expert Views
 (integrated in the Conceptual Educational Framework)
Glossary of Terms

ABET Accreditation Board for Engineering and Technology (US)
APEC Asia-Pacific Economic Cooperation
ASEE American Society of Engineering Educators
BDes Bachelor of Design
BDVA Bachelor of Design and Visual Arts
BE Bachelor of Engineering
C2C Cradle-to-Cradle
COP Conference of the Parties
CSR Corporate Social Responsibility
CUAP Committee for University Academic Programmes (in New Zealand)
DEEDS Design Education & Sustainability (part of the EU Leonardo programme)
DF Degrees of Freedom
DINZ Designers Institute of New Zealand
ECTS European Credit Transfer Accumulation System
EE Environmental Education
EESD Engineering Education for Sustainable Development
EMS Environmental Management Systems
EMUDE Emerging Demand for Sustainable Solutions (EU programme)
EPP Environmental Product Policy
ESCD Engineering and Sustainable Community Development
ESD Education for Sustainable Development
EU European Union
FCCC UN Framework Convention on Climate Change (or UNFCCC)
GNP Gross National Product
HEE Humanitarian Engineering Ethics
ICSID The International Council of Societies of Industrial Design
OECD Organisation for Economic Cooperation and Development
IP Intellectual Property
IPCC The Intergovernmental Panel on Climate Change
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPENZ</td>
<td>The Institution of Professional Engineers New Zealand</td>
</tr>
<tr>
<td>IUCN</td>
<td>The World Conservation Union</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NIS</td>
<td>National Innovation Systems</td>
</tr>
<tr>
<td>NPD</td>
<td>New Product Development</td>
</tr>
<tr>
<td>NZQA</td>
<td>New Zealand Qualifications Authority</td>
</tr>
<tr>
<td>OAS</td>
<td>Organization of American States</td>
</tr>
<tr>
<td>PBL</td>
<td>Problem-Based Learning</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PD</td>
<td>Product Development</td>
</tr>
<tr>
<td>PDP</td>
<td>Product Development Process</td>
</tr>
<tr>
<td>PSS</td>
<td>Product-Service Systems</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>SADC</td>
<td>South African Development Community</td>
</tr>
<tr>
<td>SCD</td>
<td>Sustainable Community Development</td>
</tr>
<tr>
<td>SD</td>
<td>Sustainable Development</td>
</tr>
<tr>
<td>SME</td>
<td>Small to Medium-Sized Enterprise</td>
</tr>
<tr>
<td>SPD</td>
<td>Sustainable Product Design</td>
</tr>
<tr>
<td>STS</td>
<td>Science, Technology and Society</td>
</tr>
<tr>
<td>SusProNet</td>
<td>Sustainable Product Development Network</td>
</tr>
<tr>
<td>TEO</td>
<td>Tertiary Education Organization</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNCED</td>
<td>United Nations Conference on Environment and Development</td>
</tr>
<tr>
<td>UNDESd</td>
<td>United Nations Decade of Education for Sustainable Development</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>UN Framework Convention on Climate Change (or FCCC)</td>
</tr>
<tr>
<td>VITA</td>
<td>Volunteers in Technical Assistance</td>
</tr>
<tr>
<td>WCED</td>
<td>The World Commission on Environment and Development</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wide Fund for Nature (formerly the World Wildlife Fund)</td>
</tr>
</tbody>
</table>