Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CITRIC ACID PRODUCTION USING ASPERGILLUS NIGER BY SOLID SUBSTRATE FERMENTATION

A thesis presented in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Process and Environmental Technology at Massey University

MINYUAN LU
1995
To My Mother
Abstract

The aim of this work was to investigate solid substrate fermentation for citric acid production using *Aspergillus niger*, in an attempt to provide systematic information and an understanding of the process. Initial experiments were performed to select an appropriate substrate and organism. Thus, kumara and a strain of *Aspergillus niger*, Yang No.2 were found favourable for citric acid production, while potato was a poor substrate due to its excessive nitrogen content. The fermentations were carried out under various conditions, i.e. inoculum size, moisture content and particle size of the substrate to optimize these parameters. Inoculum sizes between 10^4 and 10^6 spores/40 g kumara, moisture contents between 65 and 71\% and particle sizes between 4 and 6 mm were optimal for citric acid production. It was found that the organism takes up nutrient by penetrating into the substrate, thus the fermentation had a direct relationship with the available surface area. The solid substrate was found to have the potential ability to overcome the adverse effect of high concentrations of metal ions. Addition of 150 mg/kg substrate of Fe$^{2+}$, 25 mg/kg substrate of Cu$^{2+}$, 75 mg/kg substrate of Zn$^{2+}$ and 150 mg/kg substrate of Mn$^{2+}$ had slightly stimulatory effects on citric acid production rather than inhibitory effects. Based on the optimized conditions, the kinetics of the solid substrate fermentation in flasks were studied. The maximum observed gravimetric rate, maximum observed specific rate and overall productivity of citric acid production were 1.5 g/kg.h, 122 mg/g biomass.h and 0.48 g/kg.h, respectively.

To develop the solid substrate fermentation process, experiments were performed in different types of reactors, including a gas-solid fluidized bed, a gas-liquid-solid fluidized bed, a rotating drum and a packed bed. Except for the packed bed reactor, these systems were found to be unsuitable for the fermentation, due to harsh conditions of abrasion, friction, low moisture supply, or combinations of these factors. The fermentation in the packed bed reactor was optimized with respect to air flow rate, bed loading and particle size. Based on these optimized conditions, the kinetics were studied,
and it was determined that the fermentation allowed much higher rates of citric acid production than were observed in flasks, i.e. a maximum observed gravimetric rate of 1.9 g/kg.h and an overall productivity of 0.82 g/kg.h. In an attempt to understand mass and heat transfer in the solid substrate fermentation, experiments were conducted in a multi-layer packed bed reactor. However, because of the complexity of mass transfer in solid substrate fermentation, the understanding of this aspect in this process was rather limited. Nevertheless, the multi-layer packed bed reactor improved the mass transfer considerably compared with the single layer packed bed with the same bed loading, and allowed precise measurement of the gradients for gases, citric acid, biomass and starch. The results suggest that the multi-layer packed bed reactor is a suitable reactor for further investigations, and has the possibility of being used for large scale production of citric acid in solid substrate fermentation.

This systematic investigation of solid substrate fermentation for citric acid production, which is the first reported, provides detailed information and understanding of this fermentation technology.
Acknowledgements

The author wishes to acknowledge the following people:

Chief supervisor, Associate Professor, Dr. Ian S. Maddox for his remarkable guidance and supervision. His encouragement, patience and enthusiasm throughout the course of this Ph.D. study was greatly appreciated.

Supervisors, Associate Professor, Dr. John D. Brooks and Professor, Dr. S.M. Rao Bhamidimarri, the Head of the Department of Process and Environmental Technology, for their supervision and interest in this project.

Professor R.L. Earle, the former Head of the Department of Process and Environmental Technology for his encouragement throughout the project.

Associate Professor Bob Chong, Dr. John Mawson and Dr. Brian Wilkeson for their guidance and support in this project.

Mr. Graham Manderson and Mr. Ross Davies for their support and kindness during the study.

Mr. John Alger, Mr. Bruce Collins and Mr. Don Mclean for their willing and excellent assistance with all the related technical matters and laboratory equipment fabrication requirements that arose during this project.

Mr. John Sykes, Mrs Ann-marie Jackson and Mr. Mike Sahayam for their laboratory support.

Mr. Mike Steven for his availability to supply the required chemicals during this project.
Mr. Wayne Mallet for his support in the related computer work.

The New Zealand Ministry of External Relations and Trade for the financial support of this study.

Mrs. N. Arnott & Mr. R. Arnott, Mrs. B. Williams & Mr. A. Williams, Mrs. B. Sanson & Mr. T. Sanson for their kindness and friendship.

Fellows of the Associate of Chinese Students of Massey University, Feng Yu, Hailong Wang and Li Ouyang for their assistance and kind consideration.

Postgraduate fellows, Ms. Tania Ngapo, Mr. David Oldfield, Ms. Pinthita Mungkarndee, Ms. Sirichom Leangon, Ms. Bongkot Noppon, Mr. Edgar Rushizha for sharing their time and friendship.

Chinese friends, Zhang Lin & Huiting Ma, Hong Chen & Xingjun Xu, Patrick Xiao Ping Li & Susan Qing Su, Jian Peng Gu & Pei Zhong, Xiao Ping Pan & Liang Li Kong, Ms. Wen Luo and Mr. Shimin Fu for their friendship, sharing time, kindness and support. Their kind considerations on me, willing and availability of help are deeply appreciated.

Little friends, Aster Yi Lin, John Linan Chen and Jiesi Gu for sharing their naive time.

My Father, sister and brothers for their constant support and encouragement throughout this study.

My father-in-law and mother-in-law for their support and encouragement.

My wife Jing Wang for her typing and advising on the thesis, and for her love, patience and encouragement.
Contents

Abstract .. i
Acknowledgements .. iii
Contents ... v
List of Figures .. xii
List of Tables ... xvii
Nomenclature .. xix

Chapter 1

Introduction .. 1

Chapter 2

Literature Review ... 2

2.1 Introduction .. 2

2.2 History of Citric Acid Production ... 2

2.3 Organisms .. 3

2.4 Nutritional Status of the Medium .. 4

2.4.1 Carbohydrate ... 5

2.4.2 Nitrogen and phosphate .. 6

2.4.3 Metal ions ... 7

2.4.4 Other additives ... 8

2.5 Environmental Factors ... 9

2.5.1 pH ... 9

2.5.2 Temperature .. 10

2.5.3 Aeration .. 10

2.5.4 Other factors ... 11

2.6 Fundamental Biochemistry of Citric Acid Production 11

2.7 Fermentation Technologies for Citric Acid Production 14

2.7.1 Introduction ... 14

2.7.2 Liquid surface fermentation ... 14

2.7.3 Submerged fermentation ... 16
Chapter 3 Materials and Methods

3.1 Materials

3.1.1 Microbiological media

3.1.2 Chemicals

3.1.3 Raw substrates

3.1.4 Gases

3.1.5 Organism

3.2 Media Sterilization

3.3 Cleaning of Glassware

3.4 Avoidance of Wall Growth in Flasks and Reactors

3.5 Analytical Methods

3.5.1 pH measurement

3.5.2 Spore count

3.5.3 Treatment of samples

3.5.3.1 Treatment process for raw substrate

3.5.3.2 Treatment process for fermentation samples
3.5.4 Determination of fungal biomass 38
3.5.5 Analysis of starch .. 38
3.5.6 Determination of glucoamylase activity
and free glucose ... 39
3.5.7 Determination of citric acid 40
3.5.8 Determination of carbon 41
3.5.9 Determination of carbon dioxide 41
3.5.10 Determination of oxygen 42
3.5.11 Determination of temperature 43
3.5.12 Measurement of air flow rate 43
3.5.13 Measurement of air pressure 43

3.6 Culture Conditions ... 43
3.6.1 Preparation of substrate 43
3.6.2 Preparation of inoculum for fermentations 45
3.6.3 Flask culture .. 45
3.6.4 Tube culture .. 45
3.6.5 Gas-solid fluidized bed reactor culture 46
3.6.6 Liquid-solid-gas fluidized bed reactor culture 49
3.6.7 Rotating drum reactor culture 49
3.6.8 Packed bed reactor culture 53
3.6.9 Multi-layer packed bed reactor culture 56

3.7 Discussion of Methods .. 59
3.7.1 Organism .. 59
3.7.2 Raw substrate ... 59
3.7.3 Treatment of samples 59
3.7.4 Determination of fungal biomass 59
3.7.5 Determination of carbon dioxide using 0.2 M NaOH
solution ... 60
3.7.6 Gas-solid fluidized bed reactor culture 60
3.7.7 Liquid-solid-gas fluidized bed reactor culture 61
3.7.8 Packed bed reactor culture 61
3.7.9 Multi-layer packed bed reactor culture 61
Contents

Chapter 4

Selection of Substrate and Organism for Citric Acid Production 63

4.1 Introduction .. 63

4.2 The Basic Parameters of the Substrate 64

4.3 Comparison of Citric Acid Production among Potato, Kumara and Taro 67

4.4 Reason(s) for poor Citric Acid Production from Potato 70

4.4.1 Time course of citric acid production in solid substrate fermentation 71

4.4.2 Effect of nitrogen and phosphate addition on citric acid production from potato 71

4.4.3 Effect of nitrogen addition on citric acid production from kumara .. 74

4.4.4 Effect of inoculum size on citric acid production from potato 76

4.5 Discussion .. 76

4.6 Conclusions .. 77

Chapter 5

Optimization of Citric Acid Production from Kumara 78

5.1 Introduction .. 78

5.2 Effect of the Initial Moisture Content of the Substrate on Citric Acid Production 79

5.3 Effect of Inoculum Size on Citric Acid Production .. 83

5.4 Effect of Particle Size of the Substrate on Citric Acid Production .. 86

5.5 Effect of Surface Area to Weight of the Substrate on Citric Acid Production 86

5.6 Measurement of Ability of Organism to Penetrate into Substrate .. 89

5.7 Effect of Metal Ions on Citric Acid Production .. 93

5.7.1 The fractional factorial design for estimation of effects of metal ions on citric acid production 94
Contents

5.7.2 Estimated Effects of metal ions on citric acid production and yield .. 97
5.7.3 Estimated Effects of metal ions on biomass production and yield .. 97
5.7.4 Estimated Effects of metal ions on starch utilization ... 99
5.7.5 Estimated Effects of metal ions on ratio of citric acid to biomass production 99
5.7.6 Discussion ... 99
5.7.7 Conclusion of effects of metal ions on citric acid production ... 105
5.8 Conclusions ... 105

Chapter 6 Kinetics of Citric Acid Production from Kumara in Flasks ... 107
6.1 Introduction ... 107
6.2 Results and Discussion .. 108
6.2.1 Time course and kinetic characteristics .. 108
6.2.2 An alternative unit for the expression of the reaction kinetics .. 117
6.3 Discussion .. 120
6.4 Conclusions ... 124

Chapter 7 Selection of Reactors for Citric Acid Production by Solid Substrate Fermentation 125
7.1 Introduction .. 125
7.2 Gas-solid Fluidized Bed Reactor ... 126
7.2.1 Introduction .. 126
7.2.2 Preparation of experiments .. 127
7.2.3 Results and discussion .. 127
7.2.4 Conclusion .. 129
7.3 Liquid-solid-gas Fluidized Bed Reactor .. 129
7.3.1 Introduction .. 129
Chapter 8
Optimization of Packed Bed Reactor for Citric Acid Production 140

8.1 Introduction 140
8.2 Experimental Design 141
8.3 Statistical Analysis of Responses in the Full Factorial Design 145
 8.3.1 Estimated effects for citric acid production 145
 8.3.2 Estimated effects for biomass production 151
 8.3.3 Estimated effects for carbon dioxide production 160
 8.3.4 Estimated effects for Starch utilization 166
8.4 Discussion and Conclusion 171

Chapter 9
Citric Acid Production in Packed Bed Reactor 173

9.1 Introduction 173
9.2 Kinetics of Solid Substrate Fermentation for Citric Acid Production in Packed Bed Reactor 173
 9.2.1 Introduction 173
 9.2.2 Results and discussion 174
Contents

9.3 Axial Concentration Gradients within the Substrate Layer in Packed Bed Reactor .. 181
9.3.1 Introduction ... 181
9.3.2 Results and discussion 182
9.4 Comparison Fermentations with the Multi-layer Packed Bed Reactor .. 191
9.5 Conclusions ... 195

Chapter 10 Final Discussion and Conclusions ... 197

Reference ... 200

Appendices

Appendix 1 Processing of Regression Equations to Create Response Surfaces 217
Appendix 2 Calculation of Carbon Balance .. 225
Appendix 3 Publications ... 232
List of Figures

Figure

2.1 The tricarbxylic acid cycle with glyoxylic acid cycle and carbohydrate input (Dawson, 1986) 13

3.1 Diagram of gas-solid fluidized bed reactor .. 47
3.2 Schematic diagram of gas-solid fluidized bed reactor system 48
3.3 Schematic diagram of gas-liquid-solid reactor system 50
3.4 Diagram of gas-liquid-solid reactor ... 51
3.5 Schematic diagram of rotating reactor system 52
3.6 Diagram of Agee jar (reactor) .. 52
3.7 Schematic diagram of packed bed reactor system 54
3.8 Diagram of packed bed reactor ... 55
3.9 Diagram of multi-layer packed bed reactor ... 57
3.10 Schematic diagram of multi-layer packed bed reactor system 58
4.1 Time profiles of substrate hydrolysis using enzymes 66
4.2 Time course of citric acid production from potato using strain MH15-15 .. 72
4.3 Effect of addition of nitrogen on citric acid production from potato using strain MH15-15 (6 days fermentation) 73
4.4 Effect of addition of phosphate on citric acid production from potato using strain MH15-15 (6 days fermentation) 73
4.5 Effect of addition of nitrogen on citric acid production from kumara using strain MH15-15 (6 days fermentation) 75
4.6 Effect of inoculum size on citric acid production from potato using strain MH15-15 (6 days fermentation) 75
5.1 Effect of initial moisture content on citric acid production (6 days fermentation) .. 80
5.2 Effect of initial moisture content on yields of citric acid and biomass (6 days fermentation) .. 80
5.3 Effect of initial moisture content on ratio citric acid to biomass (6 days fermentation) ... 81
List of Figures

Figure 5.4 Effect of inoculum size on citric acid production
(4 days fermentation) ... 84

5.5 Effect of inoculum size on citric acid production
(6 days fermentation) ... 84

5.6 Effect of inoculum size on citric acid production
(8 days fermentation) ... 85

5.7 Effect of inoculum size on ratio of citric acid to biomass
(6 days fermentation) ... 85

5.8 Effect of particle size on citric acid production
(4 days fermentation) ... 87

5.9 Effect of particle size on citric acid production
(5 days fermentation) ... 87

5.10 Effect of particle size on citric acid production
(6 days fermentation) ... 88

5.11 Ratio of citric acid to biomass production varying
on substrate particle size .. 88

5.12 Effect on citric acid production of the ratio of exposed surface
area to the weight of substrate on substrate size 91

5.13 Effect on citric acid production per unit area of the exposed
surface area to the weight of substrate on substrate particle size 91

5.14 Measurement of penetrating ability of organism in solid
substrate fermentation .. 92

6.1 Time course of the solid substrate fermentation for citric
acid production .. 110

6.2 The morphological observation of A. niger growth on
kumara paste (day 1) ... 111

6.3 The morphological observation of A. niger growth on
kumara paste (day 2) ... 111

6.4 The morphological observation of A. niger growth on
kumara paste (day 3) .. 112
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>The morphological observation of A. niger growth on kumara paste (day 4)</td>
<td>112</td>
</tr>
<tr>
<td>6.6</td>
<td>The morphological observation of A. niger growth on kumara paste (day 5)</td>
<td>113</td>
</tr>
<tr>
<td>6.7</td>
<td>Time course of free glucose and glucoamylase activity</td>
<td>113</td>
</tr>
<tr>
<td>6.8</td>
<td>Gravimetric rates during solid substrate fermentation process</td>
<td>115</td>
</tr>
<tr>
<td>6.9</td>
<td>Specific rates during solid substrate fermentation process</td>
<td>115</td>
</tr>
<tr>
<td>6.10</td>
<td>Relationship between free glucose, glucoamylase activity and gravimetric rate of starch utilization</td>
<td>116</td>
</tr>
<tr>
<td>6.11</td>
<td>Gravimetric rates of the solid substrate fermentation represented by basing on residual starch</td>
<td>119</td>
</tr>
<tr>
<td>6.12</td>
<td>Plot of specific citric acid production rate against specific growth rate in solid substrate fermentation</td>
<td>122</td>
</tr>
<tr>
<td>7.1</td>
<td>Morphological observation of fungal growth in a packed bed reactor (6 days fermentation)</td>
<td>137</td>
</tr>
<tr>
<td>7.2a</td>
<td>Morphological observation of fungal growth in a packed bed reactor, in packed situation (6 days fermentation)</td>
<td>138</td>
</tr>
<tr>
<td>7.2b</td>
<td>Morphological observation of fungal growth in a packed bed reactor, in a radius section view (6 days fermentation)</td>
<td>138</td>
</tr>
<tr>
<td>8.1a, b, c</td>
<td>Response surfaces of citric acid concentration in packed bed reactor (keeping particle size constant)</td>
<td>148</td>
</tr>
<tr>
<td>8.2a, b, c</td>
<td>Response surfaces of citric acid concentration in packed bed reactor (keeping bed loading constant)</td>
<td>149</td>
</tr>
<tr>
<td>8.3a, b, c</td>
<td>Response surfaces of citric acid concentration in packed bed reactor (keeping air flow rate constant)</td>
<td>150</td>
</tr>
<tr>
<td>8.4a, b, c</td>
<td>Response surfaces of biomass concentration in packed bed reactor (keeping particle size constant)</td>
<td>154</td>
</tr>
<tr>
<td>8.5a, b, c</td>
<td>Response surfaces of biomass concentration in packed bed reactor (keeping bed loading constant)</td>
<td>155</td>
</tr>
<tr>
<td>8.6a, b, c</td>
<td>Response surfaces of biomass concentration in packed bed reactor (keeping air flow rate constant)</td>
<td>156</td>
</tr>
</tbody>
</table>
List of Figures

Figure

8.7a, b, c Response surfaces of biomass yield in packed bed reactor (keeping particle size constant) .. 157
8.8a, b, c Response surfaces of biomass yield in packed bed reactor (keeping bed loading constant) 158
8.9a, b, c Response surfaces of biomass yield in packed bed reactor (keeping air flow rate constant) 159
8.10a, b, c Response surfaces of amount of carbon dioxide production in packed bed reactor (keeping particle size constant) 162
8.11a, b, c Response surfaces of carbon dioxide yield in packed bed reactor (keeping particle size constant) 163
8.12a, b, c Response surfaces of carbon dioxide yield in packed bed reactor (keeping bed loading constant) 164
8.13a, b, c Response surfaces of carbon dioxide yield in packed bed reactor (keeping air flow rate constant) 165
8.14a, b, c Response surfaces of percentage of starch utilization in packed bed reactor (keeping particle size constant) 168
8.15a, b, c Response surfaces of percentage of starch utilization in packed bed reactor (keeping bed loading constant) 169
8.16a, b, c Response surfaces of percentage of starch utilization in packed bed reactor (keeping air flow rate constant) 170
9.1 Time course of citric acid fermentation in packed bed reactor 176
9.2 Gravimetric rates of citric acid fermentation in packed bed reactor 177
9.3 Specific rates of citric acid fermentation in packed bed reactor 177
9.4 Air flow pressure drop along the substrate layer in packed bed reactor ... 180
9.5 Plot of specific rate of citric acid production versus specific growth rate of fermentation in packed bed reactor 180
9.6 Time profiles of CO₂ production in multi-layer packed bed reactor 183
9.7 Time profiles of temperature in multi-layer packed bed reactor 183
9.8 Time profiles of starch utilization in multi-layer packed bed reactor ... 184
List of Figures

Figure
9.9 Time profiles of biomass production in multi-layer packed bed reactor .. 184
9.10 Time profiles of citric acid production in multi-layer packed bed reactor .. 185
9.11 Morphological observation of the fermentation in multi-layer packed bed reactor (5 days fermentation) 185
9.12 Gravimetric rates of layer 1 in multi-layer packed bed reactor .. 188
9.13 Gravimetric rates of layer 2 in multi-layer packed bed reactor .. 188
9.14 Gravimetric rates of layer 3 in multi-layer packed bed reactor .. 189
9.15 Gravimetric rates of layer 4 in multi-layer packed bed reactor .. 189
9.16 Time profiles of O₂ and CO₂ in multi-layer packed bed reactor .. 193
9.17 Time profiles of temperature in multi-layer packed bed reactor .. 193
List of Tables

Table

2.1 Application of reactors in solid substrate fermentation 28
2.2 Characteristics of reactors for solid substrate fermentation 29
3.1 Sucrose-beef extract medium .. 33
3.2 Chemicals and suppliers ... 34
4.1 Starch contents of substrates as determined following acid or enzymatic hydrolysis ... 65
4.2 Starch contents of substrates based on wet and dry weight of the substrate ... 65
4.3 Citric acid production from kumara, taro and potato using
A. niger strain Yang No.2 and MH15-15 68
4.4 Nutrients compositions of kumara, taro and potato 69
4.5 Comparison of ratio carbohydrate to other nutrients for potato,
kumara, taro and a liquid medium .. 69
5.1 The matrix of the fractional factorial design 95
5.2 The added concentrations of metal ions 95
5.3 Responses of citric acid production affected by the added metal ions
after 6 days fermentation ... 96
5.4 Estimated effects and coefficients for citric acid production 98
5.5 Estimated effects and coefficients for yield of citric acid 98
5.6 Estimated effects and coefficients for biomass production 99
5.7 Estimated effects and coefficients for yield of biomass 99
5.8 Estimated effects and coefficients for starch utilized concentration 101
5.9 Estimated effects and coefficients for percentage of starch utilized ... 101
5.10 Estimated effects and coefficients for ratio of citric acid to biomass ... 102
6.1 Comparison of kinetic characters among different fermentation
technologies ... 123
7.1 Fermentation parameters for citric acid production from kumara in a
packed bed reactor ... 136
8.1 Matrix of full factorial design and decoded value 143
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Responses of experiments for the full factorial design (after 4 days fermentation)</td>
<td>144</td>
</tr>
<tr>
<td>8.3</td>
<td>Estimated effects for citric acid concentration</td>
<td>147</td>
</tr>
<tr>
<td>8.4</td>
<td>Estimated effects for citric acid yield</td>
<td>147</td>
</tr>
<tr>
<td>8.5</td>
<td>Estimated effects for biomass concentration</td>
<td>153</td>
</tr>
<tr>
<td>8.6</td>
<td>Estimated effects for biomass yield</td>
<td>153</td>
</tr>
<tr>
<td>8.7</td>
<td>Estimated effects for amount of carbon dioxide produced</td>
<td>161</td>
</tr>
<tr>
<td>8.8</td>
<td>Estimated effects for yield of carbon dioxide</td>
<td>161</td>
</tr>
<tr>
<td>8.9</td>
<td>Estimated effects for percentage of starch utilised</td>
<td>167</td>
</tr>
<tr>
<td>9.1</td>
<td>Comparison of fermentations in packed bed reactor and flasks</td>
<td>179</td>
</tr>
<tr>
<td>9.2</td>
<td>Carbon balance of the fermentation in a multi-layer packed bed reactor (4 days fermentation)</td>
<td>190</td>
</tr>
<tr>
<td>9.3</td>
<td>Fermentation in single layer packed bed reactor with 400 g bed loading (5 days fermentation)</td>
<td>194</td>
</tr>
</tbody>
</table>
Nomenclature

ATM
bar
BM
CA
cm
°C
g
h
kcal
kg
kj
l
M
mg
min
ml
mm
NAD⁺, NADH
ppm
q
r
rpm
RS
t
µ
µl
%(w/w)
%(w/v)
%(v/v)

atmospheric pressure, 1 kg/cm²
pressure, 1.02 kg/cm²
Biomass concentration, in g/kg initial wet substrate
Citric acid concentration, in g/kg initial wet substrate
Centimetre(s)
Degree Celsius
Gram(s)
Hour(s)
1000 Caloric
kilogram
1000 joule
Litre(s)
Mole concentration
Milligram(s)
Minute(s)
Millitre(s)
Millimetre(s)
Nicotinamide adenine dinucleotide, and its reduced form
Parts per million
Specific rate, in g/g biomass.h
Rate of production or utilization, in g/kg.h
Revolutions per minute
Resident starch concentration, in g/kg initial wet substrate
time, in hour or day
Specific growth rate, in h⁻¹
Microlitre(s)
Percentage weight by weight
Percentage weight by volume
Percentage volume by volume