Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Solution and Solid State Analysis of Xylylic Di-copper Complexes as Receptors for Encapsulating Anions

James Rawiri Stevens

2011

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Science

in Chemistry at Massey University, Palmerston North, New Zealand
Abstract

The investigation into neutral aryl-linked oxime dicopper helicates encapsulating a number of anions was carried out. Two dicopper aryl-linked salicyloxime derived complexes were synthesized and studied which contained either *p*-xylylic (1) or *m*-xylylic (2) incorporated spacer groups. UV-visible spectroscopy was used to determine the binding stability constants of the anion complexes. Complex binding, encapsulation of anions and the conformational flexibility of 1 and 2 was supported and ascertained by the crystal structural data obtained. Receptor 1 expressed an exceptional binding strength for sulfate in THF where a log K value of 5.5 ± 0.3 was acquired. Receptor 2 could form both helical and non-helical structures. This was able to bind bromide selectively in a 2:1 stoichiometry of anion:receptor with a log K_2 value of 9.2 ± 0.1 and showed an unexpectedly high association constant for the perchlorate anion in a 1:1 stoichiometry with a log K value of 4.6 ± 0.2 (presumably in a helical structure).
Acknowledgements

Firstly, I wish to give a great big shout out to everyone that has contributed towards this project. The ever helpful knowledge, assistance and insight into synthetic techniques, crystal growth and formation and spectroscopic analysis provided by my supervisor Dr Paul Plieger has helped me immensely to complete my project and thesis. Another great big thank you goes out to Dr Marco Wenzel and Ross Davidson for all their help and knowledge in the lab and office whenever I needed it.

A very special thanks goes to my girlfriend Kelsey, for her love, understanding and support during all the long boring nights of thesis writing. She has also provided focus to the work at hand through her heartening smile and love throughout the last few years.

Many thanks must go towards my dependable and steadfast friend Liam. Without his protective roof over my head and the continually enjoyable evenings together, I believe we gained a lot of mutual respect and understanding of each other.

I also wish to express appreciation to Geoff Jameson, who assisted in X-ray crystallography assignment; Pat Edwards for providing excellent knowledge of NMR; Dave Lun for his help in expanding my knowledge of the ESMS system and lastly but not in the least to all my fellow co-workers and friends I have made along this perilous journey to which the advice and support has been encouraging.

I express sincere appreciation to all, as there is no doubt that the project would not have been successful without their efforts.
Contents

Abstract...i
Acknowledgements..ii
Contents...iii
List of Figures..vii
List of Tables...xi
Abbreviations..xiii

Chapter 1 Introduction 1
1.1 Anion Binding Systems...1
 1.1.1 Anion Background...1
 1.1.2 Anion Receptor Evolution...2
1.2 Assessment of Anion Receptor Systems..12
1.3 Project Objectives...16

Chapter 2 Titrations of [Cu₂(L¹-2H)₂] 19
2.1 Introduction...19
2.2 Results and Discussion...21
 2.2.1 Synthesis of Complexes..21
 2.2.2 Absorption Spectra of [Cu₂(L¹-2H)₂] (1)..21
 2.2.3 Acid Titrations with 1...23
2.3 X-ray Crystal Structures of 1..29
 2.3.1 X-ray Crystal Structure of L¹.tol...29
 2.3.2 X-ray Crystal Structure of [Cu₂(L¹-2H)₂].CHCl₃ (1)...32
 2.3.3 X-ray Crystal Structure of [ClO₄⁻(Cu₂L¹₂)][ClO₄]₃ (3)...38
 2.3.4 X-ray Crystal Structure of [BF₄⁻(Cu₂L¹₂)][BF₄]₃ (4)..47
Chapter 3 Titrations of [Cu₂(L²-2H)₂] 61

3.1 Introduction...61
3.2 Results and Discussion..62
 3.2.1 Synthesis of complexes..62
 3.2.2 Absorption Spectra of 2..63
 3.2.3 Acid Titrations with 2...64
3.3 X-ray Crystal Structures of 2...69
 3.3.1 X-ray Crystal Structure of L²..69
 3.3.2 X-ray Crystal Structure of [Cu₂(L²-2H)₂].2DIPE (2)............71
 3.3.3 X-ray Crystal Structure of [NO₃⊂(Cu₂L²)₂](NO₃)₃ (5)............76
 3.3.4 X-ray Crystal Structure of [2Br⊂(Cu₂L²)₂](Br)₂ (6).............83
 3.3.5 X-ray Crystal Structure of [2Br⊂(Cu₂L²)₂](BF₄)₂ (7)...........91
3.4 Summary...97
3.5 Experimental...98
 3.5.1 Materials and Reagents...98
 3.5.2 Spectrophotometric Titrations.......................................98
 3.5.3 Solution Preparation...99

Chapter 4 Assessment of Anion Binding 101

4.1 Results and Discussion..101
 4.1.1 Trends in the Anion Binding Abilities of 1 vs. 2...............101
 4.1.2 Trends in the Anion Binding Abilities of 1 vs. C₆ oxime......103
 4.1.3 Trends in the Anion Binding Abilities of 2 vs. C₆ oxime......105
Chapter 5 Conclusions and Future Work 109

5.1 Conclusions...109
5.2 Applications...111
5.3 Future Explorations..111

Chapter 6 Synthesis of Ligands and Complexes 114

6.1 General Procedures...114
6.2 Synthesis of L₁..115
 6.2.1 Synthesis of 1a...115
 6.2.2 Synthesis of 1b...116
 6.2.3 Synthesis of L₁...117
6.3 Synthesis of L₂..118
 6.3.1 Synthesis of 2a...118
 6.3.2 Synthesis of 2b...119
 6.3.3 Synthesis of L₂...121
6.4 Synthesis of the L₁ Complex Series..............................122
 6.4.1 General Cu(II) Complex Synthesis with L₁...............122
 6.4.2 [Cu₂(L₁·2H)₂] (1) Anion-free complex.......................123
 6.4.3 [SO₄⊂(Cu₂L₁²)](SO₄)₃ (8)..123
 6.4.4 [ClO₄⊂(Cu₂L₁²)](ClO₄)₃ (3).......................................124
 6.4.5 [NO₃⊂(Cu₂L₁²)](NO₃)₃ (9)..124
 6.4.6 [Br⊂(Cu₂L₁²)](Br)₃ (10)...125
 6.4.7 [BF₄⊂(Cu₂L₁²)](BF₄)₃ (4)..125
6.5 Synthesis of the L₂ Complex Series..............................126
 6.5.1 General Cu(II) Complex Synthesis with L₂...............126
 6.5.2 [Cu₂(L₂·2H)₂] (2) Anion-free complex.......................126
 6.5.3 [SO₄⊂(Cu₂L₂²)](SO₄)₃ (11).......................................127
 6.5.4 [ClO₄⊂(Cu₂L₂²)](ClO₄)₃ (12)....................................127
 6.5.5 [NO₃⊂(Cu₂L₂²)](NO₃)₃ (5)......................................128
 6.5.6 [2Br⊂(Cu₂L₂²)](Br)₂ (6)..129
 6.5.7 [2Br⊂(Cu₂L₂²)](BF₄)₂ (7)..129
Appendix A

Recorded UV-Visible Spectra for the Acid Addition to 1 [Cu$_2$(L$_1^{-2H}$)$_2$]132
Recorded UV-Visible Spectra for the Acid Addition to 2 [Cu$_2$(L$_2^{-2H}$)$_2$]136

References

vi
List of Figures

Figure 1. Schematic view of the ATPase active site 1
Figure 2. Proposed structure of a NiZn–Pd nanocomposite catalyst, showing an intercalated anionic Pd(II) hydroxide complex 1
Figure 3. Young and co-workers’ flexible tren-capped cryptand 1 and the more rigid 1,3,5-triethylbenzene-capped cryptand 2 4
Figure 4. Cholic Acid and an example of a modified cholic acid anion receptor derivative 4
Figure 5. Macrocyclic polyamine 17 with an akyl chain spacer 5
Figure 6. Macrocyclic polyamines 18-20 with an ether spacer 5
Figure 7. Cyclic aryl-linked polyamines 21, 22, 23 and P3; rigid analogues of the alkyl-linked cyclic polyamines in Fig. 5 and 6 6
Figure 8. The octaaza cryptands 8
Figure 9. Schematic of the interactions in the urea/Pt(II) complex 9
Figure 10. Salen-derived ligands of Tasker and co-workers’, able to bind both a metal cation and its attendant anion 10
Figure 11. The general alkyl-chain linked ligand used by Plieger and co-workers’ to form the Cu(II) helicate complex with an encapsulated anion with L2 12
Figure 12. The p-xylylic L1 ligand used to produce complex 1 and the m-xylylic L2 ligand utilised to create complex 2 17
Figure 13. The previously studied 1st generation iminophenyl (A) and 2nd generation oxime (B) hexylene-linked dicopper helicates and the currently studied 3rd generation p-xylylic helicate 1 (C) 19
Figure 14. The hexylene linked oxime analogue vs. L1 which was used to produce the anion free complex 1 21
Figure 15. UV-Visible absorbance spectra of 1 in THF. The band at 350 nm is characteristic of the phenolate moiety 22
Figure 16. The calculated stability constants for anions binding within the cavity of complex 1 vs. size of the anion

Figure 17. Perspective view of L1 with included toluene solvent molecule showing the adopted labeling scheme

Figure 18. Perspective view of L1 showing the extended intra and intermolecular H-bonding network

Figure 19. Perspective view of 1 and the weakly coordinated axial oxygen and Cu atoms of adjacent complexes

Figure 20. Perspective view of 1 showing the intermolecular H-bonding between adjacent complex molecules

Figure 21. Perspective front and side views of 1 showing the edge on nature of the aryl linkers and positioning of the solvent molecule

Figure 22. Perspective view of 3 with the encapsulated perchlorate anion and the weakly coordinated axial O–N–Cu atoms of an adjacent complex

Figure 23. Perspective side views of 3 showing one disordered position of the encapsulated ClO4– anion and the multitude of moderate to weak interactions within the cavity

Figure 24. Perspective view of 4, showing the encapsulation of a tetrafluoroborate anion

Figure 25. Perspective side views of one of the two disordered states of the encapsulated BF4– anion (40:60 for B1:B1b) in 4 showing the major disordered interactions and the face-on positioning of the aryl linkers

Figure 26. Perspective front-on views of complex 4 showing the two states of disorder of the encapsulated BF4– anion showing the anion–π interactions to the aryl rings of the linker

Figure 27. The m-xylylic oxime ligand L2 which was used to produce [Cu2(L2-2H)2], the anion free dicopper complex 2 and used in the UV-visible titrations

Figure 28. UV-Visible absorbance spectra of 2 in THF. The broad band at 355 nm is characteristic of the phenolate moiety

Figure 29. The calculated stability constants for anions binding to 2 vs. anion size
Figure 30. Perspective view and the adopted labeling scheme of L^2 69
Figure 31. Perspective front view of [Cu$_2$(L2-2H)$_2$].DIPE and the axially coordinated Cu–O of the adjacent complex molecules 71
Figure 32. Perspective front and side views of complex 2 [Cu$_2$(L2-2H)$_2$], showing the close π–π stacking interactions and the edge-on positioning of the aryl rings in the strap 72
Figure 33. Perspective view of the Cu(II) centre showing the box shape of the axially coordinated Cu and oxygen atoms of an adjacent complex molecule 73
Figure 34. Perspective top view of 2. One L^2 ligand is coloured grey and the other is coloured green, demonstrating the orientations of the individual ligand units 74
Figure 35. Perspective view of complex 5, showing the NO$_3^-$ anion encapsulated within the central cavity 76
Figure 36. Perspective side-on views of the H-bonding of the protonated amines of the linker straps to the encapsulated nitrate anion and the phenolic oxygens 79
Figure 37. Perspective view of 6, the counter bromide anions and the methanol solvent molecules 83
Figure 38. Perspective length and width side views showing the overall shape of complex 6 and the orientation of the aryl linkers 85
Figure 39. Partial perspective views of the binding pockets in 6, showing the H-bonding and close contact hydrogens surrounding the coordinated Br1 and Br2 87
Figure 40. Perspective view of one complex within the unit cell, two of the counter tetrafluoroborate anions and an acetone solvent molecule in 7 91
Figure 41. Comparison of the calculated stability constants for anions binding to 1 and 2 vs. the size of the anion 103
Figure 42. Comparison of the calculated stability constants for binding anions between 1 (in THF) and the hexylene linked oxime (in DCE:IPA) analogue vs. anion volume 105
Figure 43. Comparison of the calculated stability constants for anions binding to 2 and C6 oxime vs. the size of the anion 107
Figure 44. Labeled schematic of 1a, the precursor of ligand 1b 115
Figure 45. Labeled schematic of 1b, the precursor to ligand L1 116
Figure 46. Labeled schematic of L1 117
Figure 47. Labeled schematic of 2a, the precursor of ligand 2b 118
Figure 48. Labeled schematic of 2b, the precursor to ligand L2 119
Figure 49. Labeled schematic of L2 121
List of Tables

Table 1. The log K, stoichiometry and the main ESMS peaks observed as evidence for the binding of the anions to 1 in THF at 294 K

Table 2. Selected intra and inter H-bond distances for L^1

Table 3. Selected bond lengths and angles for the Cu(II) centres of 1

Table 4. Selected intramolecular oxime H-bond distances for 1

Table 5. Selected intermolecular H-bond distances between 1 and an adjacent molecule

Table 6. Selected bond lengths and angles for the Cu(II) centres of L^1

Table 7. Selected H-bond distances and angles between the protonated amines and the two disordered states of the encapsulated ClO$_4^-$ anion

Table 8. Selected anion–π distances and angles for the disordered encapsulated ClO$_4^-$ anion

Table 9. Selected intramolecular H-bond distances and angles for 3

Table 10. Selected bond lengths and angles for the Cu(II) centres of 4

Table 11. Selected bond lengths and angles between the disordered encapsulated BF$_4^-$ and the Cu(II) centres of 4

Table 12. Selected H-bond distances and angles between both disordered encapsulated BF$_4^-$ orientations and the protonated amine groups in 4

Table 13. Selected anion–π distances and angles for the disordered encapsulated BF$_4^-$ anion in 4

Table 14. Selected intramolecular H-bond distances and angles for the oxime moieties in 4

Table 15. The log K, stoichiometry and the main ESMS peaks observed as evidence for the binding of the anions to 2 in THF at 294 K

Table 16. Selected H-bond distances for L^2

Table 17. Selected bond lengths and angles for the Cu(II) centre in 2

Table 18. Selected H-bond distances for the oxime moiety in 2
Table 19. Selected bond lengths and angles for the Cu(II) centres in complex 5

Table 20. Selected H-bond distances and angles of the protonated tertiary amines of the aryl linker strap to the encapsulated nitrate anion in 5

Table 21. Selected intramolecular H-bond distances and angles for 5

Table 22. Selected bond lengths and angles for the Cu(II) centres in 6

Table 23. Selected H-bonds and close contact distances and angles for the bound bromide anions in 6

Table 24. Selected H-bond distances and angles for the oxime moieties in 6

Table 25. Selected bond lengths and angles for each of the Cu1, Cu2 and Cu3 copper(II) centres in 7

Table 26. Selected H-bonds and close contact distances and angles for the bound bromides Br1, Br2 and Br3 in 7

Table 27. Selected H-bond distances and angles for the oxime moieties surrounding Cu1, Cu2 and Cu3 in 7
Abbreviations

⊂ Indicates encapsulation of a guest molecule within a host molecule/complex.

1 Anion-free complex formed between Cu(II) acetate and ligand L₁. It is used within this report to represent the unprotonated complex [Cu₂(L¹-2H)₂].

1a N, N’-dimethyl-p-xylylenediamine.

1b 3, 3’-(1, 4-phenylenebis(methylene))bis(methylazanediyl)bis(methylene)bis(5-tert-butyl-2-hydroxybenzaldehyde).

2 Anion-free complex formed between Cu(II) acetate and ligand L², representing the unprotonated form [Cu₂(L²-2H)₂].

2a N, N’-dimethyl-m-xylylenediamine.

2b 3, 3’-(1, 3-phenylenebis(methylene))bis(methylazanediyl)bis(methylene)bis(5-tert-butyl-2-hydroxybenzaldehyde).

3 [ClO₄⊂(Cu₂L₁)₂](ClO₄)₃; the zwitterionic form with a captured perchlorate anion.

4 [BF₄⊂(Cu₂L₁)₂](BF₄)₃; the zwitterionic form with a captured tetrafluoroborate anion.

5 [NO₃⊂(Cu₂L₂)₂](NO₃)₃; the zwitterionic form with a captured nitrate anion.

6 [2Br⊂(Cu₂L₂)₂](Br)₂; the zwitterionic form with two captured bromide anions and two counter bromide anions.

7 [2Br⊂(Cu₂L₂)₂](BF₄)₂; the zwitterionic form with two captured bromide anions and two counter tetrafluoroborate anions.

CCDC Cambridge Crystallographic Data Centre.

CHCl₃ Chloroform.

DCE 1,2-dichloroethane.

DMSO-d₆ Deuterated dimethyl sulfoxide.
ESMS Electro spray Ionization Mass Spectrometry.
IPA Isopropanol.
IR Infrared spectroscopy.
K Formation constant. The equilibrium constant for the formation of a complex in solution. Also referred to as the binding, stability or association constant throughout the text.
L₁ \((1E, 1'\E)\)-5-tert-butyl-3-(((4-(((5-tert-butyl-2-hydroxy-3-((E)-(hydroxyimino)methyl)benzyl)(methyl)amino)methyl)benzyl) (methyl)amino)methyl)-2-hydroxybenzaldehyde oxime.
L₂ \((1E, 1'\E)\)-5-tert-butyl-3-(((3-(((5-tert-butyl-2-hydroxy-3-((E)-(hydroxyimino)methyl)benzyl)(methyl)amino)methyl)benzyl) (methyl)amino)methyl)-2-hydroxybenzaldehyde oxime.
MeOH Methanol.
MeCN Acetonitrile.
NMR Nuclear magnetic resonance.
THF Tetrahydrofuran.
TBABr Tetra-\(n \)-butylammonium bromide.
t-Bu tertiary butyl group or 1,1-dimethylethyl group ((CH₃)₂C−).
UV-vis Ultraviolet-visible spectroscopy.