VIRUS AND VIRUS-LIKE DISEASES

OF ROSES IN NEW ZEALAND

A thesis on studies conducted in the Department of Horticulture and Plant Health in partial fulfilment of the requirement for a Doctor of Philosophy Degree at Massey University.

by

P.C. Gardner

June 1983
ERRATA

p 1 Para. 4, line 4: Rosa not R.
p 1 Para. 6, line 2: diseases not disorders
p 2 Para. 2, line 10: 'Iowa State Univ - 60 (ISU-60)
p15 Para. 1, line 2: thought not though
p15 Para. 8, line 2: viruliferous not viuliferous
p20 Para. 5, line 3: for not in
p31 Para. 2, line 1: diseases not disorders
p40 Para. 4, line 2: amaranticolor not amaranthicolor
p54 Para. 7: Delete this paragraph
p57 Para. 1, line 1: electrophoresis not electrophoresis
p70 Para. 1, line 3: TobRSV not TSV
p91 Para. 5, line 1: condition not conditions
p92 Para. 1, line 2: indicator not test
Roses in New Zealand were surveyed for the presence of symptoms which might be caused by virus or virus-like graft transmissible agents. Representative samples (221) of all symptom types and many apparently symptomless plants were indexed by a number of methods. Prunus necrotic ringspot virus was found to be widespread, occurring in plants both with and without symptoms. Apple mosaic virus was detected in one plant and arabis mosaic virus was detected in some plants of one cultivar clone.

Prune dwarf virus, tobacco streak virus, tobacco ringspot virus, and strawberry latent ringspot virus were not detected.

Two graft transmissible virus-like diseases of rose flowers are described. One of them, rose petal fleck, was widespread in both obviously affected and symptomless plants. The other, rose colour break, was largely confined to some glasshouse cutflower cultivars and a few garden cultivars.
Two hundred and twenty one rose samples showing a wide range of symptoms which might be caused by virus or virus-like graft transmissible agents were indexed for transmission and perpetuation on *Rosa multiflora* 'Iowa State University 60' understocks.

All samples were indexed on herbaceous hosts and by the enzyme-linked immunosorbent assay (ELISA) serological technique for *prunus necrotic ringspot virus* (PNRSV), *apple mosaic virus* (ApMV), *prune dwarf virus* (PDV), *danish plum line pattern virus* (DPLPV), *tobacco streak virus* (TSV), *tobacco ringspot virus* (TobRSV), *strawberry latent ringspot virus* (SLRSV) and *arabis mosaic virus* (ArMV).

A range of selected samples were also indexed on 'Golden Queen' peach seedlings, apple understocks, 'Shirofugen' cherry and *Rosa multiflora* 'Burr'.

The ELISA technique was modified to detect heterologous strains of PNRSV and a method was developed to detect the presence of any one or more of three viruses in any one or more of ten plants simultaneously.

One plant only, with heavy gold leaf blotching, was found to be infected with ApMV. All other plants tested with mosaic type leaf symptoms or rose wilt type decline and dieback of mature plants were found to be infected with PNRSV as were a number of apparently symptomless plants. Symptomless ArMV was found on some plants of one cultivar clone only. No other viruses were detected.

The symptoms in mature plants attributed to 'rose wilt virus' could invariably be associated with the presence of PNRSV but the proliferation symptom in maiden plants could not.

In infected plants PNRSV reached a higher titre in more metabolically active and younger tissue than in older tissue but virus could not be detected in embryos excised from seeds.

Four symptomless plants of supposedly 'high health' status of each of 274 rose cultivars were indexed. Fourteen cultivars were positive for PNRSV and one cultivar positive for ArMV.
Approximately 200 cultivars of so-called "old and species type" roses were indexed. Seventeen cultivars were positive for PNRSV and all tests for other viruses were negative.

Six clones of *R. multiflora* understock, in commercial use for some years, were all at least in part infected with PNRSV but were negative for other viruses.

A polyacrylamide gel electrophoresis separation of ribonucleic acid (RNA) extracted from PNRSV showed a multipartite genome with RNA with molecular weights of about 1.4, 1.0, 0.7 and 0.3 \(\times 10^6 \).

Two virus-like diseases of flowers were described. Rose petal fleck (RPF) and rose colour break (RCB) were transmitted by grafting both separately and together to healthy rose plants. No causal agent was detected for these disorders.

Rose petal fleck was widespread occurring in both obviously infected and apparently symptomless cultivars. A number of so-called "old and species type" roses consistently had flecked petals which is considered normal for those cultivars. On indexing they were found to have RPF.

Rose colour break was found only occasionally, mainly in glasshouse cutflower varieties.
PREFACE

With increased understanding and recognition of the effects of virus infection, transmission and perpetuation in vegetively propagated woody plants it has become essential for the horticultural industry to have access to propagative material as free of viral pathogens as possible.

To achieve this objective a knowledge of the virus and virus-like pathogens infecting a crop and rapid and reliable methods for their detection are essential.

Crops considered to be of significance to the New Zealand economy have been given high priority by the Department of Scientific and Industrial Research for such investigations.

Although roses are an important nursery and cut flower crop within New Zealand they have a relatively low export potential and therefore despite an obvious need for investigation of their viral status the same priority could not be given to roses as to export fruit crops.

However, in recognition of the urgent need for research in rose viruses the DSIR made funds available to Massey University in 1978 for a Rose Research Contract.

The New Zealand rose industry and the rose growing public at large are indebted to DSIR for providing the funds which made this investigation possible. The continuing work by the New Zealand Nursery Research Centre, at Massey University, is now enabling the practical application of these results.

I wish to express my thanks to Professor K.S. Milne and the Department of Horticulture and Plant Health at Massey University for guidance, support and patience, and to Mr H.F. Neilson for invaluable technical assistance. The opportunity to work with Dr J.B. Sweet (Massey Post-doctoral Fellow), who had considerable experience with viruses of rosaceous plants was also most helpful.
For the supply of materials, antisera and advice, thanks are due to Dr P.F. Fry, Plant Diseases Division, DSIR, Auckland, Professor R.W. Fulton, University of Wisconsin, U.S.A. and Dr B.D. Harrison, Scottish Horticultural Research Insititute, U.K.

Members of the nursery industry throughout New Zealand have always been supportive, allowing access to their crops and the opportunity to collect material for investigation. I trust these results will be of benefit to them in the future.

Last but not least, my thanks to my wife and family for their patience and long-suffering understanding.

P.C. Gardner
June 1983
TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION
- Source of Rose Material 2
- Rose Symptoms 5
- Rose Mosaic - Review 9
- Rose Wilt and Proliferation - Review 19
- Association of *Prunus* Necrotic Ringspot Virus with Rose Mosaic and Rose Wilt Symptoms 24

CHAPTER 2. INDEXING
- Bud Grafting
 - *Rosa multiflora* 'ISU-60' 28
 - *Rosa multiflora* 'Burr' 31
 - *Prunus serrulata* 'Shirofugen' 33
- Apple Rootstocks 36
- Peach 'Golden Queen' Seedlings 37
- Mechanical Transmission 38
- Electron Microscopy 43
- Serological Methods 45

CHAPTER 3. PRUNUS NECROTIC RINGSPOT VIRUS - Purification
- Characteristics of Particles 50
- Antiserum Production and Testing 60

CHAPTER 4. ENZYME-LINKED IMMUNOSORBENT ASSAY
- Methods and Results of ELISA Indexing
 - "Diseases Collection" 71
 - "High Health Mother Plants" 78
 - Simultaneously for a Range of Viruses 81
 - "Old Rose Collection" 83
 - Non Rose Hosts and Rose Rootstocks 84
 - Distribution of Virus Within the Rose Plant 86

CHAPTER 5. VIRUS-LIKE FLOWER DISORDERS
- Rose Colour Break 93
- Rose Petal Fleck 94

CHAPTER 6. CONCLUSIONS 102

BIBLIOGRAPHY 105

APPENDIX I

Back cover
FIGURES

1. Optical density profiles of five isolates of prunus necrotic ringspot virus nucleoprotein 53

2. Optical density profile of prunus necrotic ringspot virus, rose isolate '154' after polyacrylamide gel electrophoresis 58

3. ELISA plate showing reactions, against PNRSV-RA (Fulton) antiserum, of isolates from the rose "disease collection", PNRSV-G (Fulton), ApMV (Fultons's serotype from rose) all ex cucumber 77a

4. ELISA plate showing reactions, against ApMV-C (Fulton) antiserum, of young leaf samples from 46 roses in the "disease collection" (samples '45' to '90' inclusive), healthy rose, C. quinoa infected with ApMV-C (Fulton), and cucumber infected with PNRSV-G (Fulton) 77b

5. ELISA plate showing PNRSV-RA (Fulton), ApMV-C (Fulton), and the combination of these two antisera with ArMV (Harrison) against isolates of rose '21' infected with PNRSV, Rosa multiflora grafted with rose '72' (ApMV), rose '101' in cucumber, and ApMV (Fulton) in C. quinoa 77c

6. Two flowers of the rose cultivar 'Bridal Pink' showing severe symptoms of rose colour break 93a

7. Two fully open flowers of the rose cultivar 'Fragrant Cloud' used as an indicator showing symptoms of rose petal fleck induced by an infected test bud and a healthy negative test 94a