Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Proximal sensing techniques to monitor pasture quality and quantity on dairy farms

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Soil Science

at Massey University, Manawatu,
New Zealand

Pullanagari Rajasheker Reddy

2011
Abstract

Regular and timely measurements of pasture quality and quantity allow dairy farmers to make effective decisions ensuring an adequate supply of nutrients to animals, efficient utilization of pasture, manipulation of stocking rates, management grazing intervals, and optimisation of input resources (e.g. nitrogen fertilisers) which results in more economic, environmentally aware, sustainable grazing systems.

The objectives of this research were to investigate the potential of proximal sensing tools to estimate pasture quality parameters (crude protein, CP; acid detergent fibre, ADF; neutral detergent fibre, NDF; ash, dietary cation-anion difference, DCAD; lignin, lipid, metabolisable energy, ME and organic matter digestibility, OMD) in mixed pastures. Three proximal sensors, ASD FieldSpec® Pro FR spectroradiometer (hyperspectral), Cropscan™ (multispectral) and Crop Circle™ (multispectral), were employed in this study.

In the hyperspectral study, the spectral reflectance measurements of pasture samples were acquired using an ASD FieldSpec® Pro FR spectroradiometer which has a spectral range of 350-2500 nm and attached with canopy pasture probe (CAPP) to ensure ambient light conditions. The acquired spectral data were pre-processed by various procedures: spectral averaging, smoothing and derivative transformation, then partial least squares regression was applied to regress against the corresponding measured values. The regression model was validated with an external dataset to evaluate the reliability and robustness of the model. The performance of both calibration and validation models were more or less similar. The validation model predicted the pasture quality parameters CP, ADF, NDF, ash, DCAD, lignin, ME and OMD with reasonable accuracy (0.65 ≤ R² ≤ 0.83; 1.70 ≤ RPD ≤ 2.48; 0.64 ≤ NSE ≤ 0.83) and the lipid was predicted with lower accuracy (R²-0.55; RPD-1.44; NSE-0.50).

Cropscan relies on sunlight for its energy source and measures reflectance in 16 broad wavebands; it was evaluated for its potential to assess pasture quality parameters that are collected in one season. The relationship between spectral reflectance measured using the Cropscan and pasture quality parameters were established using single wavebands, new vegetation indices and stepwise multiple linear regression (SMLR) and the models were
validated with an external dataset. Of all the models, the new non-linear new combination of RDVI index models were performed satisfactory results ($0.65 \leq R^2 \leq 0.85$) for predicting CP, DCAD, ME and OMD. CP, ash, DCAD, lipid, ME and OMD were estimated with moderate accuracy ($0.60 \leq R^2 \leq 0.80$) using the SMLR model. The Cropscan instrument was also used to test the potential for predicting pasture quality in different seasons (autumn, spring and summer). Improved accuracy was observed with season-specific models as compared to the combined season dataset models.

A three channel active optical sensor, Crop Circle™ was used to estimate herbage biomass and standing crude protein (SCP) using various indices. The results showed that the three channel based pasture index proved a reliable index for estimating biomass ($R^2 = 0.69$; RMSE = 518 kg ha$^{-1}$) and SCP ($R^2 = 0.77$; RMSE = 110 kg ha$^{-1}$) with moderate accuracy. Based on the calibration of PI, spatial analysis was assessed for biomass in ten dairy fields. In spatial analysis, semivariograms revealed the spatial dependency for biomass was moderate to strong and varied between the fields.

This study indicates that proximal sensors have considerable potential for real-time in situ assessment of pasture quality and quantity in mixed pastures. The results indicate that spectral resolution and number of wavelengths used in the sensor are crucial for determining pasture quality with high accuracy which would allow future research to develop proximal sensors with an optimal number of wavelengths and spectral resolution.
Acknowledgements

I am deeply indebted to, chief supervisor, Professor Ian Yule for his continuous support and encouragement during this study. His creative and stimulating ideas allowed me to think as an independent researcher. My sincere thanks also go to co-supervisor’s: Mike P. Tuohy who taught me the fundamentals of remote sensing and Prof. Mike J. Hedley whose valuable suggestions helped me in all the time of research.

I would like to acknowledge Pastoral 21 Feed Programme and Foundation of Arable Research (FAR) for financial support for this study and also to Massey University for providing scholarships: Colin Homes, DG Bowler, Helen E Akers, Peter During and Sports Turf.

My special thanks go to Dr. Robyn Dynes from AgResearch who provided valuable and critical comments on the manuscripts which have been submitted to various journals. I am also grateful to Dr. Carolyn Hedley from Land Care for her thoughtful ideas and kind suggestions towards improving the quality of thesis.

I would like to express my gratitude to staff from AgResearch, Grant Rennie, Linda Yates, Brian DeVantier, Ray Moss and Westlea Clarke-Hill; and Dairy NZ, Laura Rossi for being involved in field work at various places of New Zealand. My thanks also to the staff of Soil & Earth Sciences for their assistance, Dr. Ranvir Singh, Liza Haarhoff, Bob Toes and Lance Currie.

My immense pleasure to Mathew Irwin, genuine kiwi, for his kind assistance and fun throughout study. In addition, I extent my gratitude to Michel Killick for his help during the field work. During the journey of PhD, in New Zealand, I had great fun and joy with friends, namely, Palash, Anand, Jatin, Ina Draganova, Venu, Thariq, Stefanie and Pip.

Especially, I would like to express my heartfelt thanks to my family whose patient love enabled me to complete this work successfully.
Table of Contents

ABSTRACT ... I

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS ... IV

LIST OF TABLES .. V

LIST OF FIGURES ... X

ACRONYMS .. XII

CHAPTER 1 ... 1

GENERAL INTRODUCTION ... 1

1.1. GENERAL BACKGROUND ... 2
1.2. RESEARCH OBJECTIVES ... 5
1.3. THE STUDY AREAS .. 6
1.4. THESIS OUTLINE .. 8

CHAPTER 2 ... 10

LITERATURE REVIEW .. 10

2.1. GENERAL BACKGROUND OF REMOTE SENSING .. 11
2.2. REMOTE SENSING OF VEGETATION ... 18
2.3. COMPUTATION OF SPECTRAL DATA .. 21

2.3.1. Empirical based approaches .. 22

2.3.1.1. Univariate Statistical Methods ... 22
2.3.1.2. Multispectral Indices ... 24
2.3.1.3. Hyperspectral Indices ... 25
2.3.1.2. Multivariate Regression methods .. 26
2.3.1.2.1. Step wise multiple linear regression (SMLR) ... 27
2.3.1.2.2. Partial Least Squares Regression (PLSR) .. 28
2.3.1.3. Red Edge Position (REP) .. 29

2.3.1.3.1. Linear Interpolation .. 29
2.3.1.3.2. Linear Extrapolation .. 30
2.3.1.3.3. Polynomial fitting technique .. 31
2.3.1.3.4. Lagrangian Technique .. 31
2.3.1.3.5. Inverted Gaussian (IG) fitting technique .. 32

2.3.1.4. Artificial intelligence (AI) .. 33
CHAPTER 3 ... 39

IN-FIELD HYPERSPECTRAL PROXIMAL SENSING FOR ESTIMATING QUALITY PARAMETERS OF MIXED PASTURE ... 39

ABSTRACT ... 40

3.1. INTRODUCTION .. 40

3.2. MATERIALS AND METHODS ... 42

3.2.1. Study area ... 42

3.2.2. Spectral measurements .. 42

3.2.3. Sampling .. 44

3.2.4. Chemical Analysis ... 45

3.2.5. Data processing and statistical analysis ... 45

3.2.5.1. Data manipulations .. 45

3.2.5.2. Data Analysis .. 46

3.2.6. Quantifying Model Accuracy ... 47

3.3. RESULTS ... 50

3.3.1. Summary statistics of NIRS data .. 50

3.3.2. Correlation among the pasture quality parameters ... 52

3.3.3. Principal component analysis ... 52

3.3.4. PLSR models for calibration and validation datasets ... 53

3.3.5. Important wavebands explaining the variance of pasture quality components 54

3.4. DISCUSSION .. 57

3.5. CONCLUSION .. 61

CHAPTER 4 ... 62

MULTISPECTRAL RADIOMETRY TO ESTIMATE PASTURE QUALITY COMPONENTS ... 62

ABSTRACT ... 63
4.1. INTRODUCTION ..63
4.2. MATERIALS AND METHODS ..66
 4.2.1. Reflectance readings ..67
 4.2.2. Data analysis ..68
4.3. RESULTS ..69
 4.3.1. Summary of reflectance spectrum and pasture quality components data69
 4.3.2. Single band relationships for pasture quality estimation ..71
 4.3.3. Combinations of broad-band vegetative indices relationships with pasture quality components .. 74
 4.3.4. Stepwise multiple linear regression (SMLR) for pasture quality assessment76
4.4. DISCUSSION ...77
4.5. CONCLUSION ..81

CHAPTER 5 ..83

PROXIMAL SENSING OF THE SEASONAL VARIABILITY OF PASTURE NUTRITIVE VALUE USING MULTISPECTRAL RADIOMETRY ... 83

ABSTRACT ..83
5.1. INTRODUCTION ..83
5.2. MATERIALS AND METHODS ..85
 5.2.1. Study Area and sampling ..85
 5.2.2. Data analysis ..86
5.3. RESULTS ..88
 5.3.1. Relationship between pasture nutritive value parameters and spectral reflectance88
 5.3.2. Seasonal-specific models between pasture nutritive value parameters and spectral reflectance .. 92
5.4. DISCUSSION ...95
5.5. CONCLUSION ..97

CHAPTER 6 ..99

ESTIMATION OF PASTURE BIOMASS, STANDING CRUDE PROTEIN AND SPATIAL ANALYSIS OF HERBAGE BIOMASS USING AN ACTIVE OPTICAL SENSOR 99

ABSTRACT ..100
6.1. INTRODUCTION ... 100
6.2. MATERIALS AND METHODS .. 103
 6.2.1 Canopy Reflectance .. 103
 6.2.2 Data analysis ... 104
 6.2.1.1 Development and validation of calibration models ... 104
 6.2.1.2 Spatial analysis of herbage biomass on commercial dairy fields 105
6.3. RESULTS .. 107
6.4. DISCUSSION .. 112
6.5. CONCLUSION .. 113

CHAPTER 7 .. 115

OVERALL SUMMARY, DISCUSSION AND RECOMMENDATIONS FOR FUTURE WORK.....115

7.1. OVERALL SUMMARY .. 116
 7.1.1 Hyperspectral sensor study .. 116
 7.1.2 Multispectral sensors study .. 118
7.2. RECOMMENDATIONS FOR FUTURE WORK ... 120

REFERENCES .. 122

AUTHOR’S PUBLICATIONS ... 143
List of Tables

Table 2.1 Selected multispectral sensors and their characteristics 15
Table 2.2 Current and future hyperspectral sensors and their characteristics 17
Table 2.3 Various vegetation indices listed in literature .. 23
Table 3.1 The experimental site locations .. 43
Table 3.2 Descriptive statistics of the pasture quality parameters of calibration \(n=107 \) and validation sets \(n=107 \) measured by NIRS ... 50
Table 3.3 Intercorrelation coefficients of measured pasture quality parameters 51
Table 3.4 PLSR results between first derivative reflectance and pasture quality concentrations for cross-validated calibration and validation datasets 56
Table 4.1 Descriptive statistics of pasture quality components 70
Table 4.2 Coefficient of determination \((r^2) \) between canopy reflectance at 16 individual wavelengths and pasture quality components .. 72
Table 4.3 Best performing RDVI indices (top two-band combinations) with high coefficient of determination \((r^2) \) values for selected pasture quality components 75
Table 4.4 Coefficients of determination \((r^2) \) between crop reflectance of best regressors and pasture quality components using stepwise linear regression to select important wavelengths .. 76
Table 5.1 Descriptive statistics (mean, minimum, maximum, standard deviation; SD, coefficient of variation \%; CV) of pasture nutritive value parameters for the calibration dataset \(n=210 \) and calibration model results measured at four sites during three seasons (autumn, spring and summer) in 2009-2010 in Waikato, Tarnaki, Manawatu and Catebury regions, New Zealand .. 90
Table 5.2 Descriptive statistics (mean, minimum, maximum, standard deviation; SD, coefficient of variation %; CV) of pasture nutritive value parameters for the validation dataset (n=210) measured at four sites during three seasons (autumn, spring and summer) in 2009-2010 in Waikato, Taranaki, Manawatu and Canterbury regions, New Zealand 90

Table 5.3 Descriptive statistics (mean, minimum, maximum, standard deviation; SD, coefficient of variation %; CV) of pasture nutritive value parameters measured at four sites for individual seasons (autumn, spring and summer) in 2009-2010 in Waikato, Taranaki, Manawatu and Canterbury regions, New Zealand. ... 92

Table 5.4 Calibration and cross-validation of spectral and pasture nutritive value data using partial least squares regression (PLSR) at four sites during three seasons (autumn, spring and summer) in 2009-2010 in Waikato, Taranaki, Manawatu and Canterbury regions, New Zealand... 94

Table 6.1 The selected vegetation indices .. 105

Table 6.2 Descriptive statistics of pasture biomass and standing crude protein for the calibration dataset (n=200).. 107

Table 6.3 Regression equations for predicting biomass and standing crude protein from various indices.. 108

Table 6.4 Summary of variogram parameters (nugget, partial sill and range), model type and root mean square error (RMSE) of pasture biomass at 10 fields .. 110
List of Figures

Figure 1.1 Study farms located across New Zealand; 1) Ruakura dairy farm, AgResearch 2) Tokanui dairy farm, AgResearch 3) Scot dairy farm, AgResearch 4) Dairy No. 1, Massey University dairy farm 5) Dairy No. 4, Massey University dairy farm 6) Aorangi dairy farm, AgResearch 7) WESTPAC dairy farm, DairyNZ 8) Brian dairy farm 9) Lincoln University dairy farm 10) Synlait dairy farm 11) Mackie dairy farm 12) Greendale dairy farm 13) Pang Born dairy farm 14) Ward dairy farm ... 7

Figure 2.1 Electromagnetic spectrum (NASA, 1998) ... 11

Figure 2.2 Spectral signatures for various feature types (Lillesand et al., 2004) 13

Figure 2.3 Interaction between energy source, leaf structure and spectral sensor (Lillesand et al., 2004); the diagram of the leaf structure adapted from https://dbscience3.wikispaces.com/Drew ... 18

Figure 2.4 Spectral signatures of green and dry vegetation (NASA, 1994) 20

Figure 2.5 The various computational approaches for analysing spectral data 21

Figure 3.1 (a) Mean reflectance (b) Mean and standard deviation of first derivative reflectance of acquired pasture samples (n=214) ... 44

Figure 3.2 Score plot of first and second principal components from the PCA 52

Figure 3.3 Variable importance in projection (VIP) plot showing the importance of each waveband in developing a model of pasture quality attributes across the electromagnetic spectrum; X-axis represents wavelength (nm) and Y-axis represents VIP-scores 54

Fig. 4.1 Canopy spectral mean reflectance (n=151) and coefficient of variation values at 16 wavelengths .. 70
Figure 4.2 The 2-D correlograms showing the amount of variation in pasture quality components explained (r^2 values colour bar) by spectral reflectance acquired in the field and expressed as RDVI indices calculated from 16 discrete wavelengths 74

Figure 4.3 The amount of variation in pasture quality components explained (r^2) by spectral reflectance acquired in the field using four different predictive modelling techniques.. 79

Figure 5.1 (a) The relative proportion of variation explained by the six principal components in the principal component analysis (PCA) (b) The score plot of third and fourth principal components with respective seasons (autumn, spring and summer) in 2009-2010. ... 89

Figure 5.2 Relationship between near infrared spectroscopy (NIRS) measured pasture nutritive values and values predicted by multispectral radiometer of validation ($n=210$) dataset of total (autumn ●, spring ● and summer ★ datasets) dataset using partial least squares regression (PLSR) method .. 91

Figure 5.3 Average pasture canopy reflectance (lines) and coefficient of variation (%) (bars) during autumn, spring and summer seasons in 2009-2010 at the three sites (Waikato, Taranaki, Manawatu and Canterbury) across New Zealand. 93

Figure 6.1 Typical shape of a spherical variogram model.. 107

Figure 6.2 Relationship between measured and predicted herbage biomass in the validation dataset ($n=207$) using vegetation indices ... 109

Figure 6.3 Semivariograms of herbage biomass of 10 fields .. 111
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>artificial intelligence</td>
</tr>
<tr>
<td>ANN</td>
<td>artificial neural networks</td>
</tr>
<tr>
<td>AOAC</td>
<td>association of official analytical chemists</td>
</tr>
<tr>
<td>ASD</td>
<td>analytical spectral devices – ASD Inc.</td>
</tr>
<tr>
<td>ADF</td>
<td>acid detergent fibre</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>airborne visible infrared imaging spectrometer</td>
</tr>
<tr>
<td>CAPP</td>
<td>canopy pasture probe</td>
</tr>
<tr>
<td>CCRS</td>
<td>canada centre for remote sensing</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>DCAD</td>
<td>dietary cation-anion difference</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>EM</td>
<td>electromagnetic</td>
</tr>
<tr>
<td>FDR</td>
<td>first derivative reflectance</td>
</tr>
<tr>
<td>FOV</td>
<td>field of view</td>
</tr>
<tr>
<td>GIS</td>
<td>geographic information system</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>LAI</td>
<td>leaf area index</td>
</tr>
<tr>
<td>LIBERTY</td>
<td>leaf incorporating biochemistry exhibiting reflectance and transmittance yields</td>
</tr>
<tr>
<td>LV</td>
<td>latent variable</td>
</tr>
<tr>
<td>ME</td>
<td>metabolisable energy</td>
</tr>
<tr>
<td>MIR</td>
<td>mid infrared</td>
</tr>
<tr>
<td>NASA</td>
<td>national aeronautics and space administration</td>
</tr>
<tr>
<td>NDF</td>
<td>neutral detergent fibre</td>
</tr>
<tr>
<td>NDVI</td>
<td>normalised difference vegetation index</td>
</tr>
<tr>
<td>NIR</td>
<td>near infrared region</td>
</tr>
<tr>
<td>NSE</td>
<td>nash-sutcliffe efficiency</td>
</tr>
<tr>
<td>NV</td>
<td>nutritive value</td>
</tr>
</tbody>
</table>
NIRS near infrared reflectance spectroscopy
OMD organic matter digestibility
PCA principal component analysis
PCR principle component regression
PLSR partial least squares regression
PRESS predicted residual error sum of square
R^2 coefficient of determination
RDVI renormalized difference vegetation index
REP red edge position
RMSE root mean square error
RMSECV root mean square error of cross-validation
RMSEP root mean square error of prediction
RPD ratio prediction to deviation
SD standard deviation
SAIL scattering by arbitrarily inclined leaves
SAR synthetic aperture radar
SAVI soil adjusted vegetation index
SMLR stepwise multiple linear regression
SWIR shortwave infrared
SVM support vector machines
SVR support vector regression
USDA united states department of agriculture
UV ultra violet
VI vegetation indices
VIP variable importance for the projection
Vis/VIS visible
Vis-NIRS visible near infrared spectroscopy