Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
MAMMOGENESIS IN THE MOUSE:
A STUDY OF THE RESPONSES OF THE IMMATURE
MAMMARY GLAND TO MINIMAL OESTROGENIC
STIMULATION

A thesis presented in partial fulfilment of
the requirements for the
Degree of Doctor of Philosophy
at Massey University

Khin Maung Aye
1979
Abstract of a thesis presented in partial fulfilment of the requirements of the Degree of Doctor of Philosophy

MAMMOGENESIS IN THE MOUSE:
A STUDY OF THE RESPONSES OF THE IMMATURE MAMMARY GLAND TO MINIMAL OESTROGENIC STIMULATION

by KHIN MAUNG AYE

The response of the mammary glands of immature ovariectomized mice of the NOS strain to minimal levels of oestradiol monobenzoate was investigated in two experiments using both objective and subjective measurements as indices of response. Uterus weight, thickness of the uterine wall and vaginal opening were used as additional measures of the effectiveness of the oestrogenic stimulation.

In the first experiment single injections of OMB at four levels (0.01, 0.03, 0.09 and 0.27 μg) were used and mice were killed at four intervals after the injection (1, 2, 4 and 8 days). A significant dose response relationship was observed for mammary gland area to OMB which was essentially linear. Different stages of the response were observed both with respect to the morphology (in whole mounts) and the micro-anatomy (in serial histological sections) of the duct system. The sampling errors of a histometric estimate of volume of glandular tissue were investigated and the results used to design a stratified sampling system for the second experiment.

In the second experiment dual injections at one of three levels (0.04, 0.1 and 0.2 μg total), given at one of three spacings (2, 4 and 8 days) were used and mice were killed at one of three intervals after the second injection (2, 6 and 14 days). The
response of the mammary gland to log-dose of OMB was essentially linear for the estimate of volume of glandular tissue, but no response to increasing level of OMB was seen with mammary gland area. The detailed observations of the morphological and histological changes have been discussed in relation to the results reported in other studies.

The following stages have been proposed as the sequence of events, which can extend over a period greater than a week, following discrete doses of oestrogen at minimally effective levels:

1. Increase in width of principal ducts, thickening of the epithelial wall and the appearance of a non-specific secretion:
2. Formation of peripheral 'clubs' accompanied by mitotic activity along the length of the principal ducts;
3. Extension of the principal ducts from the peripheral clubs and formation of small end buds at discrete points along the principal ducts.
4. Extension of the small end buds to form higher order duct branches.
ACKNOWLEDGMENT

I am greatly indebted to my supervisor, Professor R.E. Munford of the Physiology and Anatomy Department for suggesting this topic, providing facilities in the department, and help and encouragement without which this work could not have been possible.

My thanks are due to Mr M.J. Birtles of the Physiology and Anatomy Department for his assistance in histological work and facilities made available to me throughout this research work.

The assistance given by Mr T. Law, the Photographer in Veterinary Faculty, in processing and printing photomicrographs is greatly appreciated.

My thanks are also due to all technical staff who have given help in various ways when carrying out this work in the laboratory.

Mr J.E. Ormsby of Small Animal Production Unit has kindly provided required animals and facilities in his Unit.

I would like to thank Mrs Wicherts for typing and help in preparing this thesis.

I am grateful to the Government of the Socialist Republic of the Union of Burma for granting a study leave and the Government of New Zealand, especially the Colombo Plan section of External Aid Division, Ministry of Foreign Affairs for awarding a scholarship.

I am thankful to my wife, Khin May Myint, for her patience, love and care given to our children while I was away.
TABLE OF CONTENTS

Section Page

ABSTRACT ii
ACKNOWLEDGEMENT iv
LIST OF TABLES vii
LIST OF FIGURES ix

1. A REVIEW OF SOME ASPECTS OF MAMMOGENESIS, WITH PARTICULAR REFERENCE TO THE ENDOCRINE CONTROL OF MAMMOGENESIS IN THE VIRGIN FEMALE MOUSE

1.1 INTRODUCTION 1

1.2 METHODS OF STUDYING MAMMOGENESIS

1.2.1 Investigations \textit{in Vivo} 2

1.2.2 Investigations \textit{in Vitro} 4

1.2.3 Objective Methods of Assessing Mammary Development 5

1.3 THE PATTERN OF MAMMARY GROWTH IN THE MOUSE

1.3.1 Prenatal Mammary Growth 12

1.3.2 Prepubertal and Postpubertal Mammary Growth 13

1.3.3 Pregnant and Lactational Mammary Growth 15

1.4 ENDOCRINE CONTROL OF MAMMOGENESIS IN THE MOUSE

1.4.1 The Essential Hormones for Mammogenesis 16

1.4.2 Ovarian Hormones and Pre- and Postpubertal Mammary Growth 18

2. THE RESPONSE OF THE MAMMARY GLAND OF THE OVARIECTOMIZED MOUSE TO SINGLE INJECTIONS OF OESTRADIOL MONOBENOZATE

2.1 INTRODUCTION 21

2.2 MATERIALS AND METHODS

2.2.1 Animals 24

2.2.2 Diet and Housing 24

2.2.3 Application of Treatments 24

2.2.4 Measurement of the Effects of the Treatments 24

2.2.5 Statistical Analyses 26

2.3 RESULTS 27

2.3.1 Transformation of Quantitative Measurements 27
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Facing Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Two-way factorial design: interval to slaughter as one factor and level of oestradiol monobenzoate as a single injection as the other factor</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Mean body weights, uterus weights, mammary gland areas and numbers of duct buds, and incidence of vaginal opening in ovariectomised mice given a single subcutaneous injection of oestradiol monobenzoate and killed at intervals after injection</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Analyses of variance of uterus weight, mammary gland area and number of duct end buds in ovariectomised mice given a single subcutaneous injection of oestradiol monobenzoate and killed at intervals after the injection</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Mammary gland morphology in ovariectomised mice given a single subcutaneous injection of oestradiol monobenzoate at one of four levels and killed at one of four intervals after the injection</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Mammary gland histology in ovariectomised mice given a single subcutaneous injection of oestradiol monobenzoate at one of four levels and killed at one of four intervals after the injection</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Estimates of the correlation coefficients between the quantitative measurements on the uterus and the mammary gland</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Three-way factorial design: interval to slaughter; level of oestradiol monobenzoate; interval between two injections of OMB as the three factors</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean body weights, uterus weights and wall thicknesses, mammary gland areas and volumes for ovariectomised mice injected subcutaneously on two days with oestradiol monobenzoate, at one of three levels and spacings, and killed at one of three intervals after the second injection</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Mean uterus weights and wall thicknesses, mammary gland areas and volumes for ovariectomised and intact mice killed at one of two ages</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Analyses of variance of uterus weights, epithelial thickness, mammary gland area and volume of glandular tissue in ovariectomised mice given two injections of OMB</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Mammary gland morphology in ovariectomised mice injected subcutaneously on two days with OMB, at one of three levels and spacings, and killed at one of three intervals after the second injection</td>
<td>44</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Mammary gland histology in ovariectomized mice injected subcutaneously on two days with OMB at one of three levels and spacings, and killed at one of three intervals after the second injection</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>Estimates of the correlation coefficients between the sets of quantitative measurements for the uterus and the mammary gland</td>
<td>48</td>
</tr>
<tr>
<td>5.1</td>
<td>Analysis of variance and estimates of components of variance for the sources of sampling error in the estimation of volume of glandular tissue</td>
<td>64</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mammary gland growth in the virgin female CHI mouse (from Flux, 1955)</td>
<td>facing 13</td>
</tr>
<tr>
<td>1.2</td>
<td>Mammary development during the lactational cycle in the CHI mouse (after Munford, 1964)</td>
<td>facing 15</td>
</tr>
<tr>
<td>2.1</td>
<td>Uterus weight response to oestradiol monobenzoate</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Mammary gland area response to oestradiol monobenzoate</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>The sampling error of the estimate of volume of glandular tissue: effects of varying the number of sections, slides and animals</td>
<td>34</td>
</tr>
</tbody>
</table>