Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Developing An Authoring Environment For Procedural Task Tutoring Systems

A dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand.

Shamus Paul Smith

1997
Abstract

The use of computers in education is becoming more and more common as the price of technology drops and its general availability is increased. Unfortunately, building computer based tutoring systems is a difficult process which is fraught with many problems. A significant problem in this area is the lack of reuse of system components between computer tutor developments. This means that each new system must be started from scratch and mistakes from earlier projects can easily be repeated. A complementary difficulty is the variety of specialist skills that are required to build these systems. Typical developers do not usually possess the combination of domain, cognitive science and programming knowledge that is needed to build computer tutors. One solution to these problems is the use of an authoring environment for facilitating the building of computer based tutoring systems.

This thesis presents an authoring tool for the construction of computer based tutoring systems teaching procedural tasks in a discovery learning environment. TANDEM (Task ANd Domain Environment Model) provides tools for domain and task definition, sub-domain definition and a domain independent tutoring engine.

It is argued that such an environment can provide a non-expert user with access to advanced techniques from artificial intelligence research for knowledge acquisition and representation. Several tasks from the construction process have been automated, thus simplifying this activity. The use of sub-domain partitioning has been considered and techniques for the integration of custom built domain interfaces are described. Also, it is proposed that by providing a domain independent tutoring engine, reuse can be encouraged over numerous domains which can reduce the development time required to build these systems.
Acknowledgements

Firstly, I would like to thank my main supervisor, Ray Kemp, for his help, support and encouragement over the course of this research. He provided the motivation for this topic, co-authored several publications and proofread multiple versions of this thesis.

Also, I have appreciated the support provided by my two second supervisors, Daniela Mehandjiska-Stavreva and Mark Apperley, especially Daniela’s observations on the first draft of this thesis.

Thanks is also necessary to the FIMS Computer Support Staff for keeping all the equipment working and their flexibility and consideration, i.e. network disk space, during the write-up period of this thesis.

I am also grateful for the financial assistance provided by Massey University in the form of a MURF (Massey University Research Fund) grant, a Massey University Doctoral Scholarship and a graduate assistant position in the department of Computer Science.

Four years is a long time to keep focused and motivated on one topic and the emotional pressures of post-graduate research can be intense. I have been fortunate to have been able to share this time with four years of Honours, Masterate and Doctoral students and Computer Support Staff from the Computer Science, Information Systems and Mathematics departments. This has made life bearable with all its ups and downs.

Finally, I wish to thank my parents for their continuing encouragement and optimism.
Publications

The following publications are associated with the research presented in this thesis.

Journal Article

Conference Proceedings

Internal Report

Table of Contents

Chapter 1 Introduction

1.1 Background ... 1
1.2 Context of the Research.. 6
 1.2.1 Motivation .. 6
 1.2.2 Thesis .. 7
1.3 Thesis Outline ... 7

Chapter 2 Intelligent Tutoring Systems

2.1 Introduction ... 9
2.2 CAI and Education... 10
2.3 CAI and ITS... 11
 2.3.1 Domain Knowledge .. 14
 2.3.2 Student Model ... 15
 2.3.3 Tutoring Engine ... 18
 2.3.4 System Interface ... 20
2.4 Knowledge Representation... 21
2.5 Discovery Learning Systems... 24
2.6 Environments for Authoring ITSs.. 26
2.7 Summary .. 31

Chapter 3 ITS Authoring Tools

3.1 Introduction ... 33
3.2 ITS Authoring Tools... 34
3.3 Expert System Shells and ITS Authoring Tools....................... 37
3.4 ITSAT Requirements... 40
 3.4.1 Reuse ... 40
 3.4.2 System Control ... 43
 3.4.3 Visual Notations for Knowledge Acquisition 44
 3.4.4 Developing Domain Interfaces 45
 3.4.5 General vs. Special Purpose Tools 47
3.5 Teaching Procedural Skills... 49
 3.5.1 Static World Assumption ... 51
3.6 Summary .. 52

Chapter 4 Knowledge Representation

4.1 Introduction ... 55
4.2 Domain Model ... 55
 4.2.1 Defining the Domain Model .. 57
 4.2.2 POP Tables .. 58
 4.2.3 Graphical POP ... 62
4.3 Task Model .. 67
 4.3.1 Defining the Task Model ... 69
4.4 Sub-Domain Generation .. 75
4.5 Summary .. 81
Chapter 8 Conclusions and Future Work

8.1 Introduction.. 163
8.2 Summary of the Research... 163
8.3 Contributions of Research.. 165
 8.3.1 Theory Work... 165
 8.3.2 Practical Work.. 166
8.4 Future Work... 167

References... 169

Glossary.. 185

Appendix A Projection Graphs In TANDEM

A.1 Introduction.. 197
A.2 Node Placement... 197
A.3 Iterative Deepening ... 198
A.4 Transition Selection... 200
A.5 Generating Projection Graphs.. 202
A.6 Summary.. 204

Appendix B DCE Generated Files

B.1 Introduction.. 205
B.2 The Layout File... 206
B.3 The POP File... 208
B.4 The Task File... 209
B.5 The Interface File.. 210
B.6 Summary.. 212

Appendix C TANDEM Domain and Platform Drivers

C.1 Introduction.. 213
C.2 GDI Control Unit... 214
C.3 Platform Driver.. 215
C.4 Power Macintosh Platform Driver.. 215
C.5 Domain Driver.. 216
C.6 Power Macintosh Default Text Interface... 217
C.7 Summary.. 218

Appendix D Domain Complexity

D.1 Introduction.. 219
D.2 Domain Complexity... 219
D.3 Complexity Formula 1a.. 220
 D.3.1 Proof by Example.. 221
 D.3.2 Proof by Induction for General Node Formula... 223
 D.3.3 Proof by Induction for General Transition Formula.................................... 223
D.4 Complexity Formula 1b.. 224
 D.4.1 Proof.. 225
 D.4.2 Example... 225
D.5 Summary.. 226
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>ITS development problems</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Common ITS model</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Semantic network example, a knowledge representation method</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>The Cardiac Tutor</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Geometer's Sketchpad and a tutoring agent for geometric construction</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>MOBIT Architecture</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Defining the behaviour of simulated objects in Rides</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>CALVIN screen display</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>ITS development environment overview</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Domain knowledge and representation technique separation</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Components with domain dependence and independence</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Sharing of independent domain knowledge</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Two approaches to interface development</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>ITS interface separation</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>Separating ITS components</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Transition network example</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Example POP table</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Example maintenance static axiom</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Modified POP table and standard static axiom</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Further static axiom examples</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>Procedural net for painting</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Basic plan net structure</td>
<td>64</td>
</tr>
<tr>
<td>4.8</td>
<td>Plan net and POP table</td>
<td>64</td>
</tr>
<tr>
<td>4.9</td>
<td>Condition types</td>
<td>65</td>
</tr>
<tr>
<td>4.10</td>
<td>Graphical standard static axioms</td>
<td>65</td>
</tr>
<tr>
<td>4.11</td>
<td>Graphical maintenance static axioms</td>
<td>65</td>
</tr>
<tr>
<td>4.12</td>
<td>Static axiom rules</td>
<td>66</td>
</tr>
<tr>
<td>4.13</td>
<td>Graphical POP with inessential conditions</td>
<td>66</td>
</tr>
<tr>
<td>4.14</td>
<td>Graphical POP using maintenance rules</td>
<td>66</td>
</tr>
<tr>
<td>4.15</td>
<td>Task overlays on the domain model</td>
<td>69</td>
</tr>
<tr>
<td>4.16</td>
<td>Example projection graph for a microwave domain</td>
<td>70</td>
</tr>
<tr>
<td>4.17</td>
<td>Preferred path through the projection graph</td>
<td>71</td>
</tr>
<tr>
<td>4.18</td>
<td>Indicating encouraged paths through the projection graph</td>
<td>72</td>
</tr>
</tbody>
</table>
Figure 6.18 Sub-domain separation...122
Figure 6.19 POP table definition using plan nets..................................122
Figure 6.20 Initial situation definition..123
Figure 6.21 Standard static and maintenance axiom definition...............123
Figure 6.22 Testing the domain model..124
Figure 6.23 Building a task definition..125
Figure 6.24 Displaying the task hierarchy..126
Figure 6.25 Constructing a projection network.....................................126
Figure 6.26 Path selection within a projection network..........................127
Figure 6.27 Displaying the SCRs..128
Figure 6.28 Plan net to POP table conversion.......................................129
Figure 6.29 Graphical task to task model to STM.................................130
Figure 6.30 DCE save dialog...132
Figure 6.31 The GDI in TANDEM...134
Figure 6.32 The GDI session process flow..135
Figure 6.33 The initial GDI dialog for a Power Macintosh......................135
Figure 6.34 Pre-tutoring session teaching strategy selection..................136
Figure 6.35 GDI and domain interface separation..................................137
Figure 6.36 Insulating the GDI...138
Figure 6.37 Domain and platform layers in TANDEM.........................138
Figure 6.38 GDI and domain interaction example..................................139
Figure 6.39 GDI independence model..140
Figure 7.1 Keeping the GDI domain independent..................................144
Figure 7.2 GDI session manager dialog box..145
Figure 7.3 Teaching strategy selection..145
Figure 7.4 Teaching strategy summary..146
Figure 7.5 Default text based interface..146
Figure 7.6 Panafax UF-V40 fax machine..148
Figure 7.7 Fax domain definition example..148
Figure 7.8 Task hierarchy for Cleaning the scanning area.....................149
Figure 7.9 Fax machine domain dialogue windows..............................149
Figure 7.10 Fax machine domain session example................................150
Figure 7.11 Car maintenance domain definition example.......................151
Figure 7.12 Basic task hierarchy for the car domain.............................152
Figure 7.13 Car maintenance interface...153
Figure 7.14 Car jack used while under the car....................................153
Figure 7.15 Interface to GDI code...154
Figure 7.16a Car maintenance domain example session........................155
Figure 7.16b Car maintenance domain example session........................156
Figure D.3 The original graphs............................... 221
Figure D.4 Duplication of DE.............................. 221
Figure D.5 The preserved transitions from G1............. 222
Figure D.6 Graph of part of a VCR domain................ 225
Figure D.7 Comparison of representations.................. 226