Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Evolution of Avian Growth Rates in Variable Environments

A thesis presented in partial fulfillment of the requirements for the degree of Ph.D.

In

Evolutionary Ecology

at Massey University, Palmerston North, New Zealand.

John Clive Ashton

2000
ERRATA

Chapter 1
(i) Page 3, line 9, “glow growers” should be “slow growers”.
(ii) Page 3, lines 30-31 imply that the Fieldfare is a ground nester, whereas it actually has cup nests in trees.
(iii) Page 6, line 10, “that a the” should be “that the”
(iv) Page 9, line 13, “ideals” should be “ideal”

Chapter 2
(i) Equation 2.1 should be:

\[Mt = Ma - (Ma - Mo)\exp\left\{-\ln\left(\frac{Mo}{c.5}\right)\left(\frac{t}{t_{50}}\right)^p\right\} \]

(ii) In regard to the section in the methods that describes the use of phylogenetic contrasts, it should be noted that all regressions were forced through the origin.

Chapter 3
(i) Table 3.3 legend, “all three independent variables. V, FF and PD…” should be “both independent variables. V and FF…”
(ii) Fig. 3.3 legend, last sentence refers to an earlier draft.
(iii) Page 54, second paragraph, reference to Fig. 2.2 should be to Fig. 2.1.

Chapter 4
(i) In Fig. 4.9 Junco hymenalis is classified as a protected nester, whereas nest sites are in fact variable for this species, sometimes cavities and sometimes in the open.
(ii) Page 57, line 20, “it not specify” should be “it does not specify”
(iii) Fig. 4.5, “horizonal” should be “horizontal”.

Chapter 5
(i) Page 82, 3rd paragraph “If energy is...periods of starvation” is a repeat of the previous paragraph.
(ii) Fig. 5.6 legend, “horizonal” should be “horizontal”.
Chapter 6

Page 122, 2nd sentence, should read “With an ideal food supply, as the maximum fat deposition rate increases, GRI increases, and the probability of fledging decreases by a small amount”

Chapter 7

(i) The methods should state the fact that approval from the Massey University Animal Ethics Committee was obtained for the brood swapping and deprivation experiments.
(ii) “Control” chicks in the deprivation experiment are not controls in the sense that conditions are normal for those chicks (e.g., they may have increased food supply during the experiment) and should be referred to as “non-deprived” chicks.
(iii) Table 7.4 legend, “Treatment chicks (C)…” should be “Treatment chicks (T)…”

Chapter 9

Page 179, paragraph 2; this argument applies to case probabilities only. The frequency interpretation of class probabilities is compatible with determinism and is an objective theory of probabilities.

Appendix 1

Parus major, P. Montanus, and *Sturnus vulgarus* are wrongly recorded as unprotected nesters in Table A1.2, whereas in fact they are protected nesters.
Abstract

Tubenoses and swifts develop slowly, and often have a variable food supply. Lack (1968) attributed this to convergent evolution, arguing that slow growth is an adaptation allowing survival in environments with a variable food supply. In this thesis, I test whether there is a general relationship among bird species between slow growth rate and variability in food supply. I analysed data on nestling period, growth rates for mass and wing length, and variability in food supply in birds using phylogenetically independent contrasts.

Variability in food supply may be correlated with feeding frequency, and growth rate is correlated with predation risk. I included these potential confounds in my analysis. Variability in food supply was correlated with nestling period, and negatively correlated with mass and wing growth rate, taking average feeding frequency and predation risk into account. I show that nest site preference is incompletely coadapted with growth rate. The correlations between growth rate and variability in food supply could also be explained by the proximate effect of environmental variability on growth. I therefore tested predictions of Lack’s hypothesis, in comparison to those of growth models assuming facultative growth adjustments in response to variability in food supply. This further supported Lack’s hypothesis.

While Lack proposed that slow growth is an adaptation to variability in food supply, he did not explain the underlying mechanism. I examined three possible mechanisms, along with two alternative explanations where slow growth is not an adaptation to a variable food supply, and tested them with comparative data. I developed two of these models using computer simulations which predicted that survival is increased by reducing maximum lean tissue growth rates and increasing maximum fat deposition rates when food supply is variable. I tested predictions from these models using experiments on the Welcome Swallow, corroborating a model that predicts that lean tissue growth is prioritised over fat deposition but that fat deposition is facilitated by reduced lean tissue growth rates. I also tested whether swifts and tubenoses are adapted to an unpredictably, or predictably, variable food supply, and discuss the degree to which chicks of swifts and tubenoses are well designed for survival in environments with a variable food supply.
Acknowledgments

The primary idea in this thesis that slow growth is an adaptation to a variable food supply belongs to Ed Minot. He played a major role in helping me to develop the ideas early on in my study. My doctoral supervisor Doug Armstrong has made more suggestions and provided me with more insights than I can count. I am deeply grateful for the enormous amount of time and effort he has devoted to the role of supervisor. I am also grateful for the confidence he has shown in me, especially in his support for my bid for a scholarship. My wife Louise has read passages of the thesis, helped me with field-work, took the photographs that appear in Chapter 7, and helped me in innumerable other ways. Most importantly I owe to her the opportunity that I have had to undertake a doctoral thesis at all. Her support has been immeasurable. This thesis would also have been impossible if it were not for the financial support I had from a Massey Doctoral Scholarship. Bob Jolly listened patiently to my early ideas and offered helpful advice. He and Aileen Jolly provided me with lodgings free of charge near Massey University, which was a tremendous help. Clare Veltman gave me valuable feedback on my thesis proposal and made numerous helpful suggestions. Ian Jamieson suggested the deprivation experiment that appears in Chapter 7. Discussions with Wayne Linklater ultimately lead to Chapter 3. Conversations with Dave Lambert made me consider more alternative hypotheses and interpretations than I would have otherwise. Many ideas in this thesis are direct responses to criticisms he raised in these discussions. Ian Henderson gave me useful advice on phylogenetic analysis. Suggestions by Brian Springett helped me to select the method that I used to sample insects in Chapter 7. My ideas on adaptation that appear in Chapter 9 have been improved with the help of suggestions and criticisms from G.C. Williams, D.C. Dennett, Richard Dawkins, and John Catalano. Professors Williams and Dawkins took the time to send me important references. Charles Sibley was kind enough to send me up-to-date phylogenies for the tubenoses and other taxa. Thanks are due also to the various orchard-owners of Twyford, Hawkes Bay, who not only tolerated my skulking about under their culverts and bridges in my pursuit of Welcome Swallow data, but also offered me observations on Swallow breeding sites and dates.
Table of Contents

ABSTRACT... i

ACKNOWLEDGEMENTS... ii

CHAPTER 1. INTRODUCTION... 1

CONVERGENT EVOLUTION AND THE INSURANCE HYPOTHESIS ... 2

CHALLENGES AND COMPLEXITIES.. 3

THESIS OUTLINE.. 7

CHAPTER 2. COMPARATIVE TESTS OF LACK'S INSURANCE HYPOTHESIS................................. 11

INTRODUCTION... 11

METHODS.. 13

Parameter Estimation.. 13

Eliminating confounds among parameters.. 22

RESULTS... 24

DISCUSSION... 31

CHAPTER 3. THE PROXIMATE EFFECT OF VARIABILITY IN FOOD SUPPLY ON GROWTH AND NESTLING PERIODS... 34

INTRODUCTION AND METHODS.. 34

Parameters of the intraspecific model.. 35

RESULTS... 45

DISCUSSION... 52

CHAPTER 4. NEST PREDATION AND NESTLING PERIOD: CONFOUNDS, CORRELATIONS, AND COADAPTATION... 57

INTRODUCTION... 57

METHODS.. 59

1. Relationship between nest predation, nestling period, and growth rates................................. 59

II. Coadaptation of nest site preference, nestling period, and variability in food supply.................. 60

III. Partial coadaptation and evolutionary time-lags.. 65

RESULTS... 72

1. Nest predation and growth rate.. 72

II. Coadaptation of nest site preference, nestling period, and variability in food supply.................. 74

III. Partial coadaptation and evolutionary time-lags.. 77

DISCUSSION... 79
CHAPTER 5. EXPLAINING FURTHER THE CORRELATION BETWEEN VARIABILITY IN
FOOD SUPPLY AND PROLONGED NESTLING PERIOD; MECHANISMS OF GROWTH...82

INTRODUCTION .. 82
I. The energy savings model .. 82
II. The slow metabolism model ... 83
III. The cell allocation model .. 84
IV. The nutrient limitation model ... 87
V. The developmental coupling and parallel selection models 89

METHODS .. 90
I. The energy savings model .. 90
II. The slow metabolism model ... 91
III. and IV. The cell allocation and nutrient limitation models .. 92
V. The developmental coupling model .. 94

RESULTS ... 96
I. The energy savings model .. 96
II. The slow metabolism model ... 97
III. and IV. The cell allocation and the nutrient limitation models 99
V. The developmental coupling model .. 102

DISCUSSION ... 103

CHAPTER 6. MATHEMATICAL MODELS OF GROWTH IN ENVIRONMENTS WITH A
VARIABLE FOOD SUPPLY ... 109

INTRODUCTION .. 109
Lean-priority model ... 111
Uniform distribution model ... 111
Fat-priority model ... 112

METHODS .. 112
The lean-priority model ... 114
The uniform distribution model .. 117
The fat-priority model .. 118

RESULTS ... 118
Simulations ... 118
The growth models and comparative data ... 123

DISCUSSION ... 127

CHAPTER 7. TESTING GROWTH MODELS USING THE WELCOME SWALLOW AS AN
EXPERIMENTAL SYSTEM... 131

INTRODUCTION .. 131

METHODS .. 133
The Welcome Swallow study population .. 133
Parameter estimation for testing the system model ... 137
Experimental tests of the growth models .. 138

RESULTS .. 143
Testing the system model ... 143
Brood Swapping Experiment .. 145
Deprivation Experiment ... 147

DISCUSSION ... 150

CHAPTER 8. FACULTATIVE AND OBLIGATE STRATEGIES FOR GROWTH IN ENVIROMENTS WITH A VARIABLE FOOD SUPPLY .. 153

INTRODUCTION .. 153
Two tracking strategies; facultative growth prioritisation model and regulation of provisioning .. 155

METHODS .. 158
Facultative growth prioritisation model ... 158
Regulation of provisioning model .. 161

RESULTS .. 162
Facultative growth prioritisation model ... 163
Regulation of provisioning ... 165

DISCUSSION ... 166

CHAPTER 9. THE NATURE OF ADAPTATION AND THE ADAPTEDNESS OF SLOW GROWTH IN ENVIROMENTS WITH A VARIABLE FOOD SUPPLY .. 171

INTRODUCTION .. 171
METHODS FOR STUDYING ADAPTATION .. 171
DESIGN IN BIOLOGY .. 172
Good designs are problem solvers ... 173
Solutions to problems are theories ... 173

THE FORMAL CONCEPT OF INFORMATION CONTENT 175
Theories as algorithms .. 175

THE STATISTICAL NATURE OF ADAPTATIONS AND THEIR INFORMATION CONTENT .. 176
The objectivity of improbability .. 179

THE PROBLEM SOLVING POWER OF ADAPTATIONS AND THEORIES .. 180
The problem solving power of a theory .. 180
The problem solving power of an adaptation ... 181
Two types of comparisons; problems solved and problems faced 183
How useful is it to characterise adaptations as having an information content? .. 184

COMPARATIVE APPROACHES TO STUDYING GOOD DESIGN IN THIS THESIS .. 187
Are the developmental patterns of swifts and Procellariiformes well designed for survival in environments with a variable food supply? .. 189
List of Figures

Fig. 2.1 VARIABILITY IN GROWTH MEASURED FROM ACTUAL SCATTERGRAMS, AND FROM SCATTERGRAMS SIMULATED FROM INDIVIDUAL GROWTH CURVES ... 20

Fig. 2.2 ALLOMETRIC RELATIONSHIP BETWEEN NESTLING PERIOD AND ADULT MASS 25

Fig. 2.3 RELATIONSHIP BETWEEN FAMILY MEANS FOR RELATIVE NESTLING PERIOD AND FEEDING FREQUENCY, AND RELATIVE NESTLING PERIOD AND VARIABILITY IN FOOD SUPPLY 26

Fig. 2.4 RELATIONSHIP AMONG SPECIES BETWEEN RELATIVE NESTLING PERIOD AND VARIABILITY IN FOOD SUPPLY, AND RELATIVE NESTLING PERIOD AND FEEDING FREQUENCY 28

Fig. 2.5 RELATIONSHIP AMONG SPECIES BETWEEN RELATIVE MASS GROWTH PERIOD AND VARIABILITY IN FOOD SUPPLY, AND RELATIVE MASS GROWTH PERIOD AND FEEDING FREQUENCY 28

Fig. 2.6 RELATIONSHIP AMONG SPECIES BETWEEN RELATIVE WING GROWTH PERIOD AND VARIABILITY IN FOOD SUPPLY, AND RELATIVE WING GROWTH PERIOD AND FEEDING FREQUENCY 29

Fig. 2.7 VARIABILITY IN FOOD SUPPLY AND RELATIVE NESTLING PERIOD IN FOUR HABITAT TYPES 30

Fig. 2.8 RELATIONSHIP BETWEEN FAMILY MEANS FOR FEEDING INTERVAL AND VARIABILITY IN FOOD SUPPLY ... 31

Fig. 3.1 MODEL OF THE PROXIMATE EFFECT OF FOOD SUPPLY ON GROWTH RATE AND NESTLING PERIOD ... 35

Fig. 3.2 CALCULATING MINIMUM GROWTH PERIODS WHEN ASYMPTOTIC MASS IS HIGHER FOR FAST GROWING CHICKS ... 37

Fig. 3.3 THE PROXIMATE EFFECT EXPLANATION FOR INTERSPECIFIC CORRELATIONS BETWEEN GROWTH RATE AND \(V \) .. 38

Fig. 3.4 PROXIMATE EFFECT HYPOTHESIS AND LACK'S INSURANCE HYPOTHESIS EXPLANATIONS OF A CORRELATION BETWEEN VARIABILITY IN FOOD SUPPLY AND NESTLING PERIOD 40

Fig. 3.5 MODELS OF THE RELATIONSHIPS BETWEEN LEAN TISSUE GROWTH RATE AND MASS GROWTH RATE IN BIRDS .. 43

Fig. 3.6 FLEXIBILITY IN LEAN TISSUE GROWTH RATE IN RELATION TO VARIABILITY IN FOOD SUPPLY 45

Fig. 3.7 RELATIONSHIP AMONG SPECIES BETWEEN RELATIVE MINIMUM NESTLING PERIOD AND VARIABILITY IN FOOD SUPPLY, AND RELATIVE MINIMUM NESTLING PERIOD AND FEEDING FREQUENCY 47

Fig. 3.8 RELATIONSHIP AMONG SPECIES BETWEEN RELATIVE MINIMUM MASS GROWTH PERIOD AND VARIABILITY IN FOOD SUPPLY, AND RELATIVE MINIMUM MASS GROWTH PERIOD AND FEEDING FREQUENCY ... 48

Fig. 3.9 RELATIONSHIP AMONG SPECIES BETWEEN RELATIVE MINIMUM WING GROWTH PERIOD AND VARIABILITY IN FOOD SUPPLY, AND RELATIVE MINIMUM WING GROWTH PERIOD AND FEEDING FREQUENCY ... 48

Fig. 3.10 RANGE OF NESTLING PERIODS AS A PERCENTAGE OF THAT EXPECTED BY MASS IN RELATION TO VARIABILITY IN FOOD SUPPLY ... 49
FIG. 6.1	FIG. 6.2	FIG. 6.3	FIG. 6.4	FIG. 6.5	FIG. 6.6	FIG. 7.1	FIG. 7.2	FIG. 7.3	FIG. 7.4	FIG. 7.5	FIG. 7.6	FIG. 8.1	FIG. 8.2	FIG. 8.3	FIG. 8.4	FIG. 8.5	FIG. 8.6	FIG. 8.7	FIG. 9.1	FIG. A3	FIG. A7.1	FIG. A7.2																							
FIG. 6.1	FLOWCHART OF GROWTH MODELS	FIG. 6.2	PROBABILITY OF FLEDGING IN LEAN-PRIORITY GROWTH MODELS IN RELATION TO MAXIMUM LEAN TISSUE GROWTH RATE	FIG. 6.3	LEAN TISSUE GROWTH RATE AND GRI IN RELATION TO THE LEAN-PRIORITY MODEL	FIG. 6.4	PROBABILITY OF FLEDGING AND GRI IN THE UNIFORM DISTRIBUTION MODEL IN RELATION TO THE FRACTION OF ENERGY INTAKE DISTRIBUTED TO LEAN TISSUE GROWTH	FIG. 6.5	PROBABILITY OF FLEDGING, AND GRI IN THE FAT-PRIORITY MODEL IN RELATION TO MAXIMUM FAT DEPOSITION RATE AK	FIG. 6.6	DEVELOPMENTAL AND ENVIRONMENTAL REGULATION OF LEAN TISSUE GROWTH	FIG. 7.1	MODEL OF RELATIONSHIPS OF ENVIRONMENTAL VARIABLES TO NESTLING GROWTH IN WELCOME SWallows	FIG. 7.2	THE EFFECT OF FOOD DEPRIVATION ON MASS AND WING GROWTH RATES IN THREE GROWTH MODELS	FIG. 7.3	THE EXPERIMENTAL DESIGN FOR THE DEPRIVATION EXPERIMENT	FIG. 7.4	PATH DIAGRAM SHOWING THE EFFECTS OF ENVIRONMENTAL VARIABLES ON MASS GROWTH RATE IN 1997/1998	FIG. 7.5	EFFECTS OF ENVIRONMENTAL VARIABLES ON MASS GROWTH RATE IN 1998/1999	FIG. 7.6	GROWTH OF MEAN MASS AND WING-LENGTH IN ENLARGED AND REDUCED BROODS	FIG. 8.1	PREDICTABLE AND UNPREDICTABLE ENVIRONMENTAL VARIANCE	FIG. 8.2	ADAPTIVE STRATEGIES IN A VARIABLE ENVIRONMENT	FIG. 8.3	WING-LENGTH GROWTH IN RELATION TO CHICK BODY CONDITION IN THREE SWIFT CHICKS	FIG. 8.4	GROWTH STRATEGIES OF SPECIES IN RELATION TO VARIABILITY AND PREDICTABILITY IN FOOD SUPPLY	FIG. 8.5	PREDICTABILITY OF THE FOOD SUPPLY IN FIVE HABITATS	FIG. 8.6	THE RELATIONSHIP BETWEEN PREDICTABILITY OF CHICK CONDITION, AVERAGE FEEDING INTERVAL, AND REGULATION OF PROVISIONING	FIG. 8.7	INITIAL VALUES AND SUBSEQUENT EVOLUTION IN A VARIABLE ENVIRONMENT	FIG. 9.1	SCHEMATIC REPRESENTATION OF ADAPTATIONS AS COMPARATIVELY GOOD DESIGNS	FIG. A3	HYPOTHETICAL DAILY ENERGY REQUIREMENTS FOR BLACKBIRD AND STORM-PETREL CHICKS	FIG. A7.1	PROBABILITY OF FLEDGING AND GRI IN THE SUPPLY TISSUE MODEL IN RELATION TO MAXIMUM LEAN TISSUE GROWTH RATE	FIG. A7.2	PROBABILITY OF FLEDGING AND GRI IN THE FACULTATIVE FAT-PRIORITY MODEL IN RELATION TO THE FAT PRIORITISATION PARAMETER P
TABLE 2.1 CORRELATION MATRIX FOR POPULATION AND INDIVIDUAL GROWTH VARIABILITY INDICES...19
TABLE 2.2 SUMMARY OF DEFINITIONS OF PARAMETERS USED IN CHAPTER 2.............................25
TABLE 2.3 EFFECT OF VARIABILITY IN FOOD SUPPLY AND FEEDING FREQUENCY ON RELATIVE NESTLING PERIOD AND GROWTH PERIODS..26
TABLE 2.4 EFFECT OF VARIABILITY IN FOOD SUPPLY AND FEEDING FREQUENCY ON RELATIVE NESTLING PERIOD AND GROWTH PERIODS..27
TABLE 3.1 GROWTH MODELS IN CHAPTER 3 AND THEIR TESTS...44
TABLE 3.2 DEFINITIONS OF THE PARAMETERS USED IN TESTING THE PROXIMATE EFFECT HYPOTHESIS WITH RESPECT TO THE GROWTH MODELS IN CHAPTER 3..........................46
TABLE 3.3 EFFECT OF VARIABILITY IN FOOD SUPPLY AND FEEDING FREQUENCY ON MINIMUM NESTLING PERIOD AND MINIMUM GROWTH PERIODS...47
TABLE 3.4 EFFECT OF VARIABILITY IN FOOD SUPPLY ON GROWTH RATIO INDEX, GROWTH ADJUSTMENT INDEX, AND NESTLING PERIOD ADJUSTMENT INDEX...............................52
TABLE 4.1 PHYLOGENETICALLY INDEPENDENT CONTRASTS IN MEAN AND MINIMUM NESTLING AND GROWTH PERIODS FOR CONTRASTS THAT HAD EVOLVED AND INCREASED DEGREE OF NEST PROTECTION AND CONTRASTS THAT HAD EVOLVED A DECREASED DEGREE OF NEST PROTECTION...73
TABLE 4.2 EFFECT OF VARIABILITY IN FOOD SUPPLY, FEEDING FREQUENCY, AND DEGREE OF NEST PROTECTION ON NESTLING PERIOD AND GROWTH PERIODS...............................74
TABLE 5.1 SUMMARY OF MODELS IN CHAPTER 5 AND THEIR PREDICTIONS..96
TABLE 5.2 EFFECT OF RELATIVE INCUBATION PERIOD AND RELATIVE NESTLING PERIOD ON DEGREE OF NEST PROTECTION...103
TABLE 6.1 SUMMARY OF THE GROWTH MODELS IN CHAPTER 6...111
TABLE 6.2 SUMMARY OF PARAMETERS USED IN THE GROWTH MODELS IN CHAPTER 6........................114
TABLE 6.3 REGRESSION ANALYSIS OF DAILY MASS AND WING GROWTH RATES IN FIVE SPECIES........126
TABLE 7.1 PREDICTED EFFECTS OF FOOD DEPRIVATION FROM THE THREE GROWTH MODELS IN CHAPTER 7...140
TABLE 7.2 TWO-WAY ANOVA OF STANDARDISED GROWTH INCREMENTS IN 1997/1998................144
TABLE 7.3 THE EFFECT ON GROWTH PARAMETERS FOR NESTLINGS BY ARTIFICIAL BROOD ENLARGEMENT...146
TABLE 7.4 GROWTH INCREMENTS FOR MASS AND WING-LENGTH IN TREATMENT (DEPRIVED) AND CONTROL CHICKS IN 19 BROODS...149
TABLE 7.5 GROWTH INCREMENTS FOR MASS AND WING-LENGTH IN TREATMENT (DEPRIVED) AND CONTROL CHICKS IN 8 NEST SITES...150
TABLE 8.1 MODELS OF EVOLUTION OF FACULTATIVE AND OBLIGATE ADAPTATIONS TO A VARIABLE FOOD SUPPLY..158
TABLE 8.2 PARAMETERS USED TO TEST THE MODELS IN CHAPTER 8 AND METHODS FOR CALCULATING THEM ... 162

TABLE 8.3 EFFECT OF PREDICTABILITY OF BODY CONDITION AND VARIABILITY IN FOOD SUPPLY ON DEGREE OF REGULATION OF PROVISIONING ... 166

TABLE 9.1 ANALOGIES BETWEEN ADAPTATIONS AND THEORIES ... 182

TABLE A1.1 SPECIES MEANS 1 ... 198

TABLE A1.2 SPECIES MEANS 2 ... 200

TABLE A1.3 SPECIES MEANS 3 ... 202

TABLE A1.4 SOURCES FOR SPECIES MEANS IN TABLES A1.1-3 .. 203

TABLE A7.1 SUMMARY OF PARAMETERS USED IN THE SUPPLY TISSUE AND FACULTATIVE FAT-PRIORITY MODELS .. 226
List of Equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Janoschek growth equation</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Equation for calculating the percentage of the asymptotic value at which</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>point of inflection occurs (U^*) in the Janoschek equation</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Intraspecific response of nestling period to proximate variability in food</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>supply</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>The slope of the intraspecific response of nestling period to proximate</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>variability in food supply</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>The probability of switching to open nesting from cavity nesting</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>Allometric regression of nestling period on mass for "old" cavity nesters</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>Allometric regression of nestling period on mass for "old" open nesters</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>Logistic growth equation</td>
<td>92</td>
</tr>
<tr>
<td>5.2</td>
<td>Calculation for incremental K using the logistic growth equation</td>
<td>92</td>
</tr>
<tr>
<td>6.1</td>
<td>Logistic growth equation for dry lean tissue</td>
<td>115</td>
</tr>
<tr>
<td>6.2</td>
<td>Allometric regression of metabolic rate on mass</td>
<td>115</td>
</tr>
<tr>
<td>6.3</td>
<td>Logistic growth equation for fat</td>
<td>116</td>
</tr>
<tr>
<td>6.4</td>
<td>Trade-off in lean tissue growth rate and fat deposition rate</td>
<td>117</td>
</tr>
<tr>
<td>6.5</td>
<td>Expected lean mass for chicks growing under ideal conditions</td>
<td>117</td>
</tr>
<tr>
<td>6.6</td>
<td>Energy distribution to lean tissue and fat growth in the uniform distribution model</td>
<td>118</td>
</tr>
<tr>
<td>8.1</td>
<td>Calculation for index of chick body condition</td>
<td>159</td>
</tr>
<tr>
<td>8.2</td>
<td>Mass expected for a given wing-length</td>
<td>160</td>
</tr>
<tr>
<td>A7.1</td>
<td>Allometric regression of energy intake on mass</td>
<td>226</td>
</tr>
<tr>
<td>A7.2</td>
<td>Allometric regression of energy intake on lean wet mass</td>
<td>226</td>
</tr>
<tr>
<td>A7.3</td>
<td>Fraction of lean wet mass that is digestive tissue</td>
<td>226</td>
</tr>
<tr>
<td>A7.4</td>
<td>Modified allometric regression of energy intake on lean wet mass</td>
<td>227</td>
</tr>
<tr>
<td>A7.5</td>
<td>Ratio of maximum digestive tissue growth rate to maximum lean dry tissue</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>growth rate</td>
<td></td>
</tr>
<tr>
<td>A7.6</td>
<td>Trade-off in lean tissue growth rate and digestive tissue growth rate</td>
<td>228</td>
</tr>
<tr>
<td>A7.7</td>
<td>Trade-off in Df and lean tissue growth rate</td>
<td>228</td>
</tr>
<tr>
<td>A7.8</td>
<td>Body condition in the facultative fat-priority model</td>
<td>230</td>
</tr>
<tr>
<td>A7.9</td>
<td>Relationship of fat deposition rate to chick body condition in the facultative fat-priority model</td>
<td>231</td>
</tr>
</tbody>
</table>
List of Plates

PLATE 1 WELCOME SWALLOW CHICKS AT 3 DAYS AFTER HATCHING, FROM THE RAUPARE ROAD NEST SITE
134

PLATE 2 THE NEST SITE AT TYWFOR ROAD, A TYPICAL NEST SET SITE FOR WELCOME SWALLOWS' IN THE HERETAUNGA PLAINS POPULATION 134