Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
QUANTIFICATION OF GALLIUM, INDIUM AND THALLIUM IN METEORITES AND OTHER GEOLOGICAL MATERIALS BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy at Massey University

MASSEY UNIVERSITY
NEW ZEALAND

Xun Guo

1993
ABSTRACT

Methods of solvent extraction have been developed for the determination of gallium, indium, and thallium in meteorites and other geological materials. The extraction of gallium is based on forming a chloro complex in HCl solution and extraction into MIBK. Indium was extracted into the same solvent as an iodo complex in an HBr + KI medium to which KOH had been added. Thallium was also extracted as an iodo complex from a H2SO4 + KI medium with addition of K2HPO4 as a salting out agent. Serious interference from iron(III) was eliminated by adding KI to reduce this element to its divalent state that was not extractable into the organic phase.

Graphite furnace atomic absorption spectrometric techniques were employed to determine these three elements in the MIBK phase after extraction from the aqueous phase. Very low limits of detection (l.o.d.) were obtained with these methods. It was possible to lower the l.o.d for these elements either by increasing the aqueous/organic phase ratio before extraction, or by multiple loading injections.

Using the developed methodology, gallium, indium, and thallium were quantified in iron and chondritic meteorites as well as in Cretaceous/Tertiary boundary clays, and some volcanic emissions.

The data for thallium abundances in 49 iron meteorites were the first ever recorded for this type of meteorite and allowed for taxonomic separation of the various groups of irons.

Indium abundances were only recorded in six chondrites because of the very low concentrations in iron meteorites.

My data for thallium and other elements were used to classify the previously non-studied Manitouwabing iron meteorite.

All three Group IIIA elements were determined in Cretaceous/Tertiary boundary clays and it was shown that these and other chalcophile elements have an abundance greater than that which would have been expected from either a volcanic or impact-derived source. Possible sources of this enrichment are discussed.
ACKNOWLEDGEMENTS

I would like to acknowledge the following persons:

Grateful thanks are due to my supervisors, Professor Robert R. Brooks and Associate Professor Roger D. Reeves, for accepting me as a PhD student in 1990. I appreciate their advice, assistance, and encouragement during all my studies. I shall never forget their kind help, particularly with my English that was deficient in the earlier stages of the work.

I thank Dr. T.N.M. Waters, Vice-Chancellor of Massey University, for his encouragement, assistance and his kind help since I arrived in New Zealand, particularly in providing me with a Vice-Chancellor's PhD research Scholarship to enable me to complete this project.

My thanks are also due to members of my family: my wife, Xiaohong Fan and my son, Tony F. Guo for their continual moral support in every way. I am also grateful to my parents, Linying Zhou and Zishong Guo, as well as my sister Chun Guo for their encouragement and support, particularly for initially taking care of my son when my wife and I first left China.

Finally I would like to thank all the people I have worked with for their friendship and encouragement.
LIST OF TABLES

Table I-1 Melting and Boiling Points of Ga, In and Tl 10
Table I-2 Distribution Coefficients of Group IIIB Elements
 in Mineral Acid Media on Strongly Acidic Cation
 Exchangers .. 16
Table II-1 Periodic Table Positions of Hydride Forming Elements that
 Can be Quantified by HGAAS 28
Table II-2 The Melting and Boiling Points of Hydrides of
 Gallium, Indium and Thallium 30
Table II-3 Operating Conditions for Hollow Cathode Lamps 32
Table II-4 HCl Acid Molarities for Generating Hydrides of Gallium,
 Indium and thallium .. 36
Table II-5 Precision and Accuracy for Indium Determinations as
 Established by Analysis of a Standard Reference Rock 40
Table III-1 Comparison of Gallium Absorbances in the MIBK phase
 after Manual and Mechanical Shaking 61
Table III-2 Extraction of Chloro Complexes of Gallium 61
Table III-3 Absorbances of Gallium Standard Solutions 63
Table III-4 Precision and Accuracy of GFAAS Gallium
 Determinations as Obtained by Analysis of
 Standard Reference Materials 65
Table III-5 Maximum Amounts of Elements that Do Not Interfere with the
 Determination of Gallium by GFAAS 66
Table III-6 Instrumental Parameters for GFAAS Determination
 of Gallium in MIBK Extracts 67
Table III-7 Precision and Accuracy for the Indium Method as
 Determined by Analysis of Standard Reference
 Rock (MP-1a) .. 75
Table III-8 Instrumental Parameters for GFAAS Determination
 of Indium in MIBK Extracts 76
Table III-9 The Physical Properties of Thallium Halides.................. 79
Table III-10 Comparison of Standard Addition and Conventional Calibration
 Methods for Quantification of Thallium in the Toluca Iron
 Meteorite .. 84
Table III-11 Precision and Accuracy of Method for Quantification
 of Thallium in Geological Samples as Determined
 from Analysis of Standard Rocks 85
Table IV-1 Meteorite Classes and Numbers 88
Table IV-2 Chondrite Classes and Mean Properties 90
Table IV-3 Structural Classification of Iron Meteorites 92
Table IV-4 Comparison Between the Structural and Chemical
Classifications of Iron Meteorites ... 93
Table IV-5 Chemical Classification of Iron Meteorites 93
Table IV-6 Comparison of Different Treatment Methods for Quantification
of Gallium in the Cañon Diablo Iron Meteorite 96
Table IV-7 Gallium Abundances (µg/g) in Iron Meteorites as
Determined by GFAAS and Other Methods 100
Table IV-8 Indium Abundances in Some Iron Meteorites 102
Table IV-9 Indium Abundances in Chondritic Meteorites 102
Table IV-10 Thallium and Nickel Abundances in Iron Meteorites 107
Table IV-11 Thallium Abundances in Chondritic Meteorites 108
Table IV-12 Elemental Concentrations in the Manitouwabing and Madoc Irons 110
Table V-1 Elemental Abundances (ng/g)[ppb] for In and Ir and µg/g[ppm]
for Ga and Tl) in K/T Boundary and Other Geological Samples . 123
Table V-2 Mass Balance for Chalcophiles in the Flaxbourne River
and Woodside Creek K/T Boundaries, New Zealand 124
LIST OF FIGURES

Fig. I-1 Plot Showing the Distribution of the Three Isotopes of O in Meteorites ... 25
Fig. I-2 Logarithmic Plot of Ni vs. Ge in Iron Meteorite Groups 25
Fig. II-1 Reaction Apparatus for Generation of Hydride 31
Fig. II-2 Design of Silica Tube for Atomisation of Hydrides 34
Fig. II-3 Flow Rates of Flame Gases for Quantification of Indium 34
Fig. II-4 Effect of Carrier Gas Flow Rate for Hydride Generation
Quantification of Indium ... 35
Fig. II-5 Effect of Acidity for Hydride Generation of Gallium,
Indium and Thallium .. 37
Fig. II-6 Effect of Volume of Sample Solution, Acid, and Sodium Borohydride on Absorbance of Indium Solution 37
Fig. II-7 Effect of Concentrations of Sodium Borohydride on
Generation of Indium Hydride .. 37
Fig. II-8 Effect of Volume of Sodium Borohydride on Formation
of Indium Hydrides ... 38
Fig. II-9 Effect of Temperature on Hydride Generation of Indium 38
Fig. II-10 Design of Connecting Tube between the Burner and
Generator for Hydride Generation ... 39
Fig. II-11 Typical Absorbance Signals for Hydrides of Gallium,
Indium and Thallium .. 39
Fig. III-1 GF 1000 Workhead .. 48
Fig. III-2 Sample Injection Probe Geometries 48
Fig. III-3 A Typical Furnace Cycle ... 53
Fig. III-4 Typical GFAAS Absorbance Signals for Gallium, Indium
and Thallium ... 53
Fig. III-5 GFAAS Absorbance of Ga Extracted into MIBK from
5M HCl in the Presence of Various Concentrations
of Iron(III) ... 56
Fig. III-6 Effect of the Ascorbic Acid Concentration on
the GFAAS Absorbance Signal for Gallium with and
without the Presence of Iron .. 57
Fig. III-7 Effect of Sodium Borohydride on the GFAAS Absorption
Signal for 1 µg/mL Gallium in the Presence of Iron 57
Fig. III-8 Effect of the KI Concentration on the Extraction of
Iron and Gallium from 5M HCl into MIBK 58
Fig. III-9 Effect of Molarity of Several Acids on the Extraction
of Gallium into MIBK .. 59
Fig. III-10 Stability of the Gallium Chloro Complex in
the Organic Phase after Separation from the
Aqueous Phase ... 60
Fig. III-11 Effect of Shaking Time on the Extraction of Gallium
from 5M HCl into MIBK ... 60
Fig. III-12 Effect of Acidity on the Extraction of Indium
into MIBK ... 70
Fig. III-13 Effect of KI Concentration on the Extraction of
Indium in the Presence of Iron 71
Fig. III-14 Effect on Addition of Salts and Electrolytes on
Extraction of Indium into MIBK 72
Fig. III-15 Effect of the Concentration of KOH on Extraction
of Indium into MIBK ... 72
Fig. III-16 Effect of Shaking Time on Extraction of Indium
into MIBK ... 73
Fig. III-17 Stability of the Indium Iodo Complex in the Organic
Phase after Separation from the Aqueous Phase 73
Fig. III-18 Analytical Curves for Indium 74
Fig. III-19 Effect of Varying Iodide Concentration on the
Extraction into MIBK of Thallium 79
Fig. III-20 Effect of the H₂SO₄ Concentration on Extraction
of Thallium into MIBK .. 80
Fig. III-21 Effects of Various Agents on Extraction of Thallium 80
Fig. III-22 Effect of Varying K₂HPO₄ Concentrations on the
Extraction of Thallium into MIBK 80
Fig. III-23 Effect of Shaking Time on the Extraction of Thallium
into MIBK ... 81
Fig. III-24 Stability of Thallium Iodo Complex in the Organic
Phase after Separation from the Aqueous Phase 81
Fig. III-25 Calibration Curve for GFAAS Absorbance of Thallium 82
Fig. IV-1 Effect of Different Acid Mixtures and Sample Digestions
on the Dissolution of Gallium from the Allende Chondritic
Meteorite ... 97
Fig. IV-2 Comparative Absorbance Data for Gallium in Iron
Meteorites as Determined by NAA and GFAAS 99
Fig. IV-3 Group Separations of Iron Meteorites from a Thallium
vs. Nickel Abundance Plot 105
Fig. V-1 Location Map Showing the Flaxbourne River and Woodside
Creek K/T Boundary Sites in Relation to Other Similar
Sites in New Zealand .. 116
Fig. V-2 Elemental Ratios in K/T Boundary Clays Compared with
those in Volcanic Emissions .. 122
CONTENTS

PART ONE
GENERAL INTRODUCTION

I-1 INTRODUCTION 8
I-1-1 Discovery of Group IIIB Elements 8
I-1-2 Chemistry of Group IIIB Elements 9
I-1-3 Geochemistry of Group IIIB Elements 12

I-2 REVIEW OF ANALYTICAL METHODS 14
I-2-1 Separation and Enrichment 14
 i. Coprecipitation 15
 ii. Ion Exchange 15
 a. Separation by Cation Exchange 15
 b. Separation by Anion Exchange 17
 iii. Other Chromatographic Methods 17
 iv. Extraction 18
I-2-2 Gravimetric Methods 18
I-2-3 Titrimetric Methods 19
I-2-4 Spectrophotometric Methods 20
I-2-5 Electrochemical Methods 20
I-2-6 Spectrofluorimetric Methods 21
I-2-7 Atomic Spectrometric Methods 22
I-2-8 Neutron Activation Analysis 23
I-2-9 Mass Spectrometric Methods 23
I-2-10 X-ray Fluorescence Spectrometric Methods 24
I-2-11 Conclusions 24

I-3 AIMS OF THIS WORK 25
I-3-1 Classification of Meteorites 25
I-3-2 The Use of Group IIIB Elemental Abundances to
 Evaluate the Impact Theory of Mass Extinctions
 at the Terminal Cretaceous 26
I-3-3 Development of an Analytical Procedure to
 Determine Group IIIB Elements 27
PART TWO
DETERMINATION OF GROUP IIIIB ELEMENTS BY HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY

II-1 INTRODUCTION 28

II-2 EQUIPMENT AND REAGENTS 31
 II-2-1 Hydride Generator 31
 II-2-2 Instrumentation 32
 II-2-3 Atomisation 33
 i. Direct Flame Atomisation 33
 ii. Heated Silica Tube Atomisation 33
 II-2-4 Collecting Unit 34
 II-2-5 Flame Flow Rates 34
 II-2-6 Carrier Gas Flow Rates 35
 II-2-7 Reagents ... 35

II-3 EXPERIMENTAL 35
 II-3-1 Effect of Acids on Hydride Generation 36
 II-3-2 Effect of the Total Reaction Volume 37
 II-3-3 The Optimum Amount of Sodium Borohydride 37
 II-3-4 The Optimum Reaction Temperature 38
 II-3-5 Design of the Connecting Tube 38
 II-3-6 Final Analytical Procedures 39
 II-3-7 The Form and Magnitude of Analyte Signals 39
 II-3-8 Precision and Accuracy 39

II-4 DISCUSSION AND CONCLUSIONS 40
PART THREE
DEVELOPMENT OF SOLVENT EXTRACTION PROCEDURES FOR
ATOMIC ABSORPTION SPECTROMETRIC QUANTIFICATION OF
GROUP IIIB ELEMENTS

III-1 INTRODUCTION
III-1-1 Principles of Solvent Extraction 43
III-1-2 Classification of Extraction Systems 44
III-1-3 Choice of Solvent 45
III-1-4 Solvent Extraction in Trace Analysis 46

III-2 INSTRUMENTATION
III-2-1 Equipment .. 48
III-2-2 Glassware ... 48
III-2-3 Reagents ... 48
III-2-4 Hollow Cathode Lamps 49
III-2-5 Graphite Furnace 50
III-2-6 Sample Injection Tip Alignment 51
III-2-7 The Sample Vial 51
III-2-8 Multiple Loadings 52
III-2-9 Furnace Heating Programmes 52
III-2-10 Absorption Signals and Background Noise 53

SECTION III-1 GALLIUM

III-3 DEVELOPMENT OF A PROCEDURE FOR QUANTIFICATION OF
GALLIUM

III-3-1 Experimental 55
i. Sample Purification and Reduction of Interferences 55
a. Use of Ascorbic Acid 56
b. Use of Sodium Borohydride 57
c. Use of Other Reductants 57
d. Reduction of Iron(III) with Potassium Iodide 58
ii. Acid Type and Concentration 59
SECTION III-2 INDIUM

III-4 DEVELOPMENT OF A PROCEDURE FOR THE QUANTIFICATION OF
OF INDIUM

III-4-1 Experimental ... 70
i. Acids and Their Concentrations 70
ii. Effect of Iodide on Extraction of Indium
 from Hydrobromic Acid Solution 71
iii. Effect of Addition of Potassium Hydroxide
 and the Acidity of the Solution 72
iv. Shaking Time .. 73
v. The Distribution Ratio 73
vi. Stability of the Indium Complex in the
 Organic Phase .. 73
vii. Limit of Detection 74

III-4-2 Choice of Analytical Method for
 Determining Indium 74

III-4-3 Precision and Accuracy 74

III-4-4 Final Analytical Procedure 75

III-4-5 Conclusions 76
SECTIO N III-3 THALLIUM

III-5 DEVELOPMENT OF A PROCEDURE FOR QUANTIFICATION OF THALLIUM

III-5-1 Experimental ... 78
 i. Solvent Extraction Systems 78
 ii. Effect of the Amount of Iodide Added 79
 iii. Effect of Acids and Their Concentrations 80
 iv. Effect of Salting Out 80
 v. Extraction Shaking Time 81
 vi. Stability of the Iodo Thallium(I) Complex 81
 vii. The Distribution Ratio for Extraction of Thallium .. 81
 viii. Effect of Other Elements 81

III-5-2 Limit of Detection ... 82
III-5-3 Choice of Analytical Calibration Method 83
III-5-4 Precision and Accuracy 84
III-5-5 Discussion .. 85

III-6 CONCLUSIONS AND DISCUSSION 86

PART FOUR
GROUP IIIB ELEMENTS IN METEORITES

IV-1 INTRODUCTION .. 87
 IV-1-1 Chondrites ... 89
 IV-1-2 Iron Meteorites .. 91

IV-2 QUANTIFICATION OF GROUP IIIB ELEMENTS IN METEORITES 94
 IV-2-1 Treatment of Sample 94
 i. Iron Meteorites .. 94
 ii. Chondrites .. 96
 IV-2-2 Quantification of Group IIIB Elements in Meteorites 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-3</td>
<td>DISTRIBUTION OF GROUP IIIB ELEMENTS IN METEORITES</td>
<td>98</td>
</tr>
<tr>
<td>IV-3-1</td>
<td>Introduction</td>
<td>98</td>
</tr>
<tr>
<td>IV-3-2</td>
<td>Gallium in Meteorites</td>
<td>99</td>
</tr>
<tr>
<td>IV-3-3</td>
<td>Indium in Meteorites</td>
<td>101</td>
</tr>
<tr>
<td>IV-3-4</td>
<td>Thallium in Meteorites</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>i. Correlation Analysis</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>ii. Thallium as a Taxonomic Determinant of Iron Meteorites</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>iii. Conclusions and Discussion</td>
<td>106</td>
</tr>
<tr>
<td>IV-4</td>
<td>THE MANITOUWABING IRON METEORITE</td>
<td>108</td>
</tr>
<tr>
<td>IV-4-1</td>
<td>Analytical Methods</td>
<td>109</td>
</tr>
<tr>
<td>IV-4-2</td>
<td>Results and Discussion</td>
<td>109</td>
</tr>
<tr>
<td>IV-5</td>
<td>GENERAL CONCLUSIONS</td>
<td>110</td>
</tr>
<tr>
<td>V-1</td>
<td>INTRODUCTION</td>
<td>111</td>
</tr>
<tr>
<td>V-1-1</td>
<td>The Cretaceous-Tertiary Boundary</td>
<td>111</td>
</tr>
<tr>
<td>V-1-2</td>
<td>Quantification of Elements in K/T Boundary Clays</td>
<td>115</td>
</tr>
<tr>
<td>V-2</td>
<td>SITE LOCATIONS, GEOLOGY, GEOCHEMISTRY AND BIOSTRATIGRAPHY</td>
<td></td>
</tr>
<tr>
<td>V-2-1</td>
<td>Woodside Creek</td>
<td>116</td>
</tr>
<tr>
<td>V-2-2</td>
<td>Flaxbourne River</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>i. Lithology</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>ii. Biostratigraphy</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>iii. Previous Geochemistry</td>
<td>120</td>
</tr>
<tr>
<td>V-3</td>
<td>MATERIALS AND METHODS</td>
<td>120</td>
</tr>
<tr>
<td>V-3-1</td>
<td>Sample Collection</td>
<td>120</td>
</tr>
<tr>
<td>V-3-2</td>
<td>Sample Dissolution</td>
<td>121</td>
</tr>
<tr>
<td>V-3-3</td>
<td>Analytical Procedures</td>
<td>121</td>
</tr>
<tr>
<td>V-4</td>
<td>RESULTS AND DISCUSSION</td>
<td>121</td>
</tr>
</tbody>
</table>

PART FIVE
GROUP IIIB ELEMENTS IN CRETACEOUS-TERTIARY BOUNDARY CLAYS
PART SIX
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER WORK

VI-1 ANALYTICAL PROCEDURES 125a
VI-2 ANALYSIS OF METEORITES 127
VI-3 ANALYSIS OF CRETACEOUS/TERTIARY BOUNDARY CLAYS 128
VI-4 CLASSIFICATION OF THE MANITOUWABING IRON METEORITE 128
VI-5 RECOMMENDATIONS FOR FURTHER WORK 128

REFERENCES 129