Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A DESCRIPTOR APPROACH
TO
SINGULAR LQG CONTROL PROBLEMS
USING
WIENER-HOPF METHODS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Production Technology at Massey University.

Ian Harvey Noell

1994
Title of thesis: A Descriptor Approach to Singular LQG Control Problems using Wiener Filter Method

1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.

 (b) I do not wish my thesis to be made available to readers without my written consent for ... months.

2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

 (b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ... months.

3) (a) I agree that my thesis may be copied for Library use.

 (b) I do not wish my thesis to be copied for Library use for ... months.

Signed

Date

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS
Ian Noell
Waunbrook Orchard
Maraekekaheho Rd
RD5 Hastings

DATE
31/1/94

FOR
Reference Only

NOT TO BE REMOVED FROM THE LIBRARY
Errata

Page 53 Line 6:

... the function f(t) must be absolutely integrable over \((-\infty, \infty)\).

Page 116 Section 5.3.1, 2nd line:

... the state-space representations (4.22) and (4.23).

Page 135 Equation (5.76):

\[
J = \frac{1}{2\pi j} \int_{-\infty}^{\infty} \left\{ \text{Tr} \left\{ \Delta \Gamma \Gamma^* \Delta^* - M_0 \Gamma^* T^* \Delta^* - \Delta \Gamma M_0^* - T M_0^* + M_0 T^* \right\} \right\} ds
\]

(5.76)

Page 157 Example 6.1 the state-space representation of \(P_d\) is:

\[
P_d = (sI - A)^{-1} E = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 \end{bmatrix}
\]
Abstract

Wiener-Hopf methods are used in this thesis to solve the output feedback Linear Quadratic Gaussian (LQG) control problem for continuous, linear time-invariant systems where the weighting on the control inputs and the measurement noise intensity may be singular. Some outstanding issues regarding the closed loop stability of Wiener-Hopf solutions and its connection with partial fraction expansion are resolved.

The main tools in this study are state-space representations and Linear Matrix Inequalities. The relationship between Linear Matrix Inequalities and Wiener-Hopf solutions is studied; the role of the Linear Matrix Inequality in determining spectral factors, the partial fraction expansion step, the form of the controller, and the value of the performance index is demonstrated.

One of the main contributions of this thesis is the derivation of some new descriptor forms for singular LQG controllers which depend on the solution to the Linear Matrix Inequalities. These forms are used to establish the separation theorem for singular LQG control problems and to investigate the order of singular LQG controllers.
Acknowledgements

My sincerest thanks to my supervisors Dr Paul Austin and Dr Michael Carter for all their guidance and encouragement during my study.

Dr Clive Marsh is thanked for his assistance with proof reading and constructive criticism of the thesis during its final stages.

The financial assistance for this project, a Massey University Ph.D. Study Award, is gratefully acknowledged.

I wish to thank the postgraduate students in the Department of Production Technology, particularly Heather North and Phil Long, for making the Postgrad room a great place to work in. Finally, my flatmates and my family are thanked for all their support.
He would have been at a loss to explain what was so arresting about this notion; he simply felt stricken to the heart and stood there in a terror that was almost mystical. A moment passed and everything before him seemed to expand; instead of horror - light and gladness, ecstasy; he began to struggle for breath and . . . but the moment passed. Thank God, it wasn't that! He took a deep breath and looked about him.

Fyodor Dostoevsky

The Idiot.
Table of Contents

Abstract .. iii
Acknowledgements ... v
Table of Contents ... ix
List of Figures .. xiii

Chapter 1 - Introduction ... 1
1.1. Background ... 2
1.2. Outline of Thesis .. 6
1.3. Notation .. 8

Chapter 2 - Linear Systems and Controller Configuration 11
2.1. Introduction .. 12
2.2. Representation of Linear Systems ... 12
 2.2.1. State-Space Representations ... 13
 2.2.2. Polynomial Descriptions .. 19
 2.2.3. Fractional Representations .. 20
 2.2.4. Descriptor Forms ... 21
2.3. Stochastic Processes .. 26
 2.3.1. Gaussian White Noise ... 26
 2.3.2. Response of Linear Systems to White Noise ... 27
2.4. Feedback Configuration ... 30
 2.4.1. Open Loop Description ... 30
 2.4.2. Closed Loop Description .. 31
 2.4.3. Closed Loop Stability .. 33
2.5. Summary ... 37

Chapter 3 - Wiener-Hopf Methods for the LQG Control Problem 39
3.1. Introduction ... 40
3.2. LQG Controller Design Specification .. 40
3.3. A Frequency Domain Expression for the LQG Performance Index 43
 3.3.1. Spectral Factors ... 46
 3.3.2. Completing the Square in the Frequency Domain 49
 3.3.3. Outputs-Weighted LQG Problems ... 50
3.4. Stable Solutions to LQG Problems using Wiener-Hopf Techniques 51
3.4.1. Causality and Wiener-Hopf Problems .. 51
3.4.2. A General Transfer Function Method .. 55
3.4.3. The Modern Wiener-Hopf Method ... 63
3.4.4. A Polynomial Approach ... 70
3.4.5. Comparison of Different Methods ... 74
3.5. Summary .. 76

Chapter 4 - State-Space Techniques for Wiener-Hopf Methods 77
4.1. Introduction ... 78
4.2. The Order of a Rational Function .. 78
 4.2.1. Row and Column Reduced Forms ... 79
 4.2.2. The Order of some Wiener-Hopf Transfer Functions 81
4.3. The Sylvester Equation ... 82
 4.3.1. Nonunique Solutions to Sylvester Equations 83
4.4. Partial Fraction Expansion ... 84
 4.4.1. Sylvester Equation Method for Partial Fraction Expansion 85
 4.4.2. Nonunique Partial Fraction Expansion 87
 4.4.3. Partial Fraction Expansion in Wiener-Hopf Methods 88
4.5. Contour Integration .. 94
4.6. Some Useful Descriptor Forms .. 97
4.7. Summary .. 100

Chapter 5 - The Linear Matrix Inequality and the Wiener-Hopf Solution 103
5.1. Introduction ... 104
5.2. Spectral Factors and the Linear Matrix Inequality 105
 5.2.1. State-Space Representations of Spectral Factors 105
 5.2.2. Fractional Representations of Spectral Factors 110
 5.2.3. The Linear Matrix Inequality and the Riccati Equation 112
 5.2.4. Disturbance Spectral Factor .. 113
 5.2.5. Further Results on the Linear Matrix Inequality 114
5.3. Partial Fraction Expansion and Closed Loop Stability 116
 5.3.1. Partial Fraction Expansion and the Linear Matrix Inequality 116
 5.3.2. Minimum Fuel LQG Problems ... 119
 5.3.3. Stability of the Closed Loop System 120
5.4. The Performance Index ... 123
 5.4.1. Equivalent LQG Problems .. 124
 5.4.2. Evaluation of the Performance Index 127
 5.4.3. Summary ... 134

5.5. Nonunique Solutions to Wiener-Hopf Problems 134
 5.5.1. The Singular Linear Quadratic State Control Problem 138

5.6. The Minimum Variance Estimator .. 141

5.7. Summary .. 143

Chapter 6 - A Descriptor Approach to Singular LQG Controller Design 145

6.1. Introduction ... 146

6.2. Calculation of the Controller from the Wiener-Hopf Solution 147

6.3. Nonsingular LQG Controllers .. 149

6.4. Descriptor Forms for LQG Controllers 151
 6.4.1. Descriptor Forms for LQ State Feedback Controllers 156
 6.4.2. Descriptor Forms for Minimum Variance Estimators 162
 6.4.3. The Separation Structure of LQG Controllers 165

6.5. Order of the Controller .. 173
 6.5.1. Proper LQG Controllers ... 175
 6.5.2. The Order of the Controller and Multivariable Zeros 181
 6.5.3. Minimality of the Controller ... 182

6.6. Some Design Issues for Singular LQG Controllers 185
 6.6.1. Admissibility of LQG Controllers 185
 6.6.2. Loop Transfer Recovery Techniques 187

6.7. Nonunique Controllers .. 190

6.8. Summary .. 193

Chapter 7 - Conclusions and Future Work 195

7.1. Conclusions ... 196

7.2. Summary of the Descriptor Method for Calculating LQG Controllers 197

7.3. Future Work .. 199

Appendix .. 201

References ... 207
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Regulator Controller Configuration</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Block Diagram for Theorem 2.24</td>
<td>35</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Squared-Down Controller Configuration</td>
<td>137</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Structure of Nonsingular LQG Controllers</td>
<td>151</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Structure of Singular State Feedback LQG Controllers</td>
<td>160</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Structure of the Fractional Form for Singular State Feedback LQG Controllers</td>
<td>161</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Structure of Minimum Variance Estimators</td>
<td>164</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Structure of the Fractional Form for Minimum Variance Estimators</td>
<td>164</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>Structure of Singular LQG Controllers</td>
<td>167</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>Structure of Fractional Form of Singular LQG Controllers</td>
<td>167</td>
</tr>
<tr>
<td>Figure 6.8</td>
<td>Breakpoints for Loop Transfer Recovery</td>
<td>189</td>
</tr>
</tbody>
</table>