Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ERGONOMIC DESIGN
OF A PHYSIOLOGIC
BIRTH-SUPPORT SYSTEM

A Research Thesis
for the Fulfilment of the Degree of
Doctor of Philosophy
by
BOI LEONG YAP

MASSEY UNIVERSITY
NEW ZEALAND

©Boi Leong Yap, 1996
ABSTRACT

The main theme of this study is centred on the design and evaluation of an Obstetric Body-Support System for upright childbirth that is physiologic and biomechanically efficient, besides improving the tasks of the birth attendant in the management of labour and promoting the safety and well-being of the mother and her baby.

Current practices in obstetrics and consumers' expectations are not congruent. Childbirth - a physiological event is increasingly being managed as a pathological process under medical and surgical frameworks. Medicalisation has increased iatrogenic risks to both mothers and babies and is causing profound concerns.

The last two decades have witnessed two major developments in maternity care moving in opposite directions - the growing dependence on obstetric technology and the increasing demand for natural birth and humanised maternity care. Consumers' demands are no longer based simply on the emotive needs for change. They are based on recent research evidence that is indicating that less technological interference in childbirth is better than more.

The posture adopted by the mother during labour is considered to be the most important factor for the safe passage of the foetus through the birth canal. There is Biblical and historical evidence that the natural posture adopted by women during childbirth has always been in some form of the upright position - sitting, squatting, kneeling and standing. The supine position for delivery facilitates the management of labour, but it has no established benefit for the maternal mother and the foetus. Many physiological disadvantages that adversely affect maternal well-being and foetal oxygenation are associated with the supine position.
In contrast, the upright posture for childbirth has been found to be more beneficial to the mother and foetus. The advantages of the upright posture for labour include: taking advantage of gravitational forces to promote foetal descent; preventing compression of the aorta, inferior vena cava and umbilical cord; increasing the size of the pelvic inlet; promoting more effective bearing-down effort and promoting more efficient contraction. In terms of psychological responses, labouring in the seated position has been found to promote active participation, control and emotional satisfaction.

This study examined some of these issues from an ergonomic perspective for the design and evaluation of an Obstetric Body-Support System that is compatible with the physiology of childbirth and the management of labour in current hospital settings. Antenatal and postnatal user trials were conducted to evaluate the new Obstetric Body-Support System. Responses from birth attendants and childbearing women for the new System were both positive and encouraging, indicating acceptance, system compatibility and design viability.

The changing trend in childbirth demands solutions that are difficult to find in traditional maternity care and practice. The answer is in natural birth - where the woman's enormous psychological, physiological and biomechanical capabilities are relied upon to give birth spontaneously - without technological intervention.

Ergodesign - a new hybrid interdisciplinary technology was conceived to design and evaluate the Obstetric Body-Support System that supports and facilitates natural childbirth in the upright position. It is argued that the use of ergonomics and design as separate disciplines militates cohesive design thinking and the creative processes. Besides the symbiotic aspects of ergodesign, the truly interdisciplinary attributes become an effective and synergistic design tool, that is more powerful than conventional approaches of applying ergonomics and design as separate disciplines.
The ergodesigner as a scientist, designer as well as a change-agent played a vital role in solving the intricate human-equipment-environmental problems in the management of labour and childbirth in hospital systems. The application of ergonomics to improve childbirth is a complex task, requiring full participation from childbearing women, midwives and obstetricians. They contributed significantly by enlightening the ergodesigner with an "insight" surrounding labour and childbirth, and were involved in the development of body-support concepts, appraisals of mock-ups and evaluations of the prototype Obstetric Body-Support System.

A programme of further work is planned to evaluate the clinical aspects of the maternal woman and the baby before conclusion can be drawn on the safety of the new Obstetric Body-Support System.
ACKNOWLEDGEMENTS

The inspiration of many individuals has contributed to the outcome of this study. Identifying them all is not possible, but I hope that they can take pride from the fact that their convictions and ideas have helped to shape this study, and in this way played a major role in the extension of knowledge in ergonomics, design and childbirth.

First and foremost I wish to thank the Human Ethics Committee, Massey University for granting me the approval to undertake this important research in Childbirth. Without this confidence and the implied encouragement, this study would not have eventuated.

I am grateful to all the mothers and childbirth educators of the Wellington North and Mana Parents Centres for allowing me to participate in their seminars and antenatal classes, from which I have gathered invaluable information on birth positions, labour and childbirth, which I have applied in this study. In this respect, I must express my appreciation to Wendy Browne, Dennis Gow, Jan White, Stephanie Drew and Jo Miller who have given me much confidence and encouragement during the initial stages of my research.

I must also thank Dr Larry Jordon, Dr David Robinson, Dr McLennen, Dr Philip White and Dr John Rowland, who have given me much help on obstetrics and the medical aspects of childbirth during the developmental stages of my study.

A special appreciation is bestowed on Dr Peter Stone, formerly Manager of the Wellington Hospital Maternity Unit and currently Professor of Obstetrics of the Wellington School of Medicine, for the time and advice he has given me on the optimum shape and size of the seat of the Active Birth Chair.
It is with considerable gratitude that I thank Ethel England, Manager of the Kenepuru Maternity Unit for her encouragement and advice at the commencement of my research and for her participation and organisation in setting up the Obstetric Body-Support System for evaluation at her Unit. I am also grateful to Lou Costello of the Wellington Maternity Hospital for the insights into natural birth; Liz Brunton and Carey Virtue of "Midwife Domino"; and all midwives of the Kenepuru and Wellington Hospital for their participation in the evaluation of the Obstetric Body-Support System.

I am grateful to Lyn and Lindy Garrett for their participation in the kinestosphere studies and their willingness to act as "subjects" when the configuration of the obstetric system was established during the early stages of system development.

A system of this nature generates many technical and engineering challenges. I owe a special debt to John Wells, Director of Formway Furniture for his help in moulding the seat for the Active Birth Chair in "integral self-skinning foam" and the engineering of the back-support adjustment mechanisms. I am also grateful to Birnie Hiestand for his assistance in fabricating the steel framing for the prototypes used in the evaluation.

My appreciation to Kaye Wilkinson for the excellent work she has done in "desktopping" this entire thesis. Her patience, perseverance and good nature throughout the duration of this study has been greatly admired.

Finally, my gratitude to Professor Tony Vitalis, Dr Stephen Legg and Dr Duncan Joiner for their remarkable guidance and supervision. They are not only great teachers, but they are also excellent mentors and facilitators who have helped to shape the outcome of this study.
GLOSSARY

Anaesthesia: Loss of feeling or sensation. General anaesthesia implies not only a loss of feeling or sensation but also of consciousness and memory. Regional anaesthesia implies a loss of feeling or sensation in a restricted area of the body.

Analgesics: Painkilling agents not inducing unconsciousness.

Anthropometry: The science of measurement of the human body to determine differences in groups, individuals, etc.

Apgar Score: A general test of the baby's wellbeing given immediately after birth to ascertain the heart rate and the tone, respiration, blood circulation and nerve responses.

Asphyxia: Suffocation; state of decreased oxygen and increased carbon dioxide in blood and tissues.

Biomechanics: The application of the principles and techniques of mechanics to the structure, functions and capabilities of the human body.

Bonding: The spontaneous formation of attachment between mothers and their babies in the period immediately following birth.

Caesarean section: Delivery of the baby by surgery, through an incision in the mother's abdomen and uterus.

Cephalopelvic disproportion: A situation in which the head of the unborn baby is too large to pass through the pelvic bones of the mother.
Cervic: The lower end of the uterus, or neck of the womb.

Concept: An idea or impression of a design or theory.

Contraction: The regular tightening of the uterine muscles as they work to dilate the cervic in labour and to press the baby down the birth canal.

Demoral: A frequently used analgesic in hospital delivery.

Design: To analyse and devise a form that serves a particular purpose.

Discipline: A branch of knowledge, field of study or specialty subject.

Dystocia: Slow or prolonged or difficult labour.

Epidural anaesthesia: A regional anaesthesia in which a local anaesthetic agent is injected into the epidural space of the spine.

Episiotomy: A surgical incision into the perineum to enlarge the vagina opening to speed the birth of the baby. Also known as the "unkindest cut".

Electronic-foetal monitoring: The continuous monitoring of the foetal's heart by a transducer placed on the mother's abdomen over the area of the foetal heart, or an electrode inserted through the cervic and clipped to the baby's scalp.

Ergodesign: An integrated ergonomics and design approach used in equipment and system design.
Ergonomics: A technology that seeks to improve mental and physical well-being by optimising the function of human-machine-environment systems.

Evaluation: Appraisal or test to ascertain the "fit", usability, safety, etc of a piece of equipment or system.

Fontanel, fontanelle: Spaces in the skull of the foetus and young infant where the skull bones have not yet grown together.

Forceps: An instrument with two blades and handles for forcibly pulling the foetus, by the head, through the birth canal.

Haemorrhage: Excessive bleeding.

Iatrogenic: Produced or caused by a physician.

Interface: The point of contact between the human being and the equipment.

Intervention: In obstetrics, an invasive procedure that literally intervenes or interferes with the natural process of birth. The term denotes active interference and implies meddling with Mother Nature.

Ischial Tuberosity: The rounded portion of the bone of the pelvis on which the body rests when sitting.

Kinetosphere: A large cubical structure used for the study and measurement of the biospace or work-envelope.
Labour: Contraction of the uterus resulting in the birth of a baby.

Lacerations: A tear in the perineum.

Lamaze Method: A set of techniques, including complex breathing patterns, devised by Fernand Lamaze, as an alternative to drugs in reducing a woman's awareness of pain in labour.

Lithotomy position: Horizontal, supine or recumbent position. A woman giving birth in this position is flat on her back with legs spread in stirrups.

Low-risk pregnancy: The probability that pregnancy and childbirth will be uncomplicated or normal.

Mock-up: A full-size model of equipment for research, study or testing.

Multigravida: A woman in her second or subsequent pregnancy.

Multipara: A woman who has given birth to more than one child.

Multiparous: Bearing or having borne more than one child.

Optimisation: An effort to achieve the best system outcome.

Oxytocin: A drug that causes the uterus to contract. As a uterine stimulant, it is used to induce labour or to accelerate existing labour.
Parturient: A woman in the process of giving birth. Giving birth; pertaining to birth.

Perineum: The area surrounding the vagina and between the vagina and the rectum.

Phenomenon: Any sensations that can be perceived by the senses.

Placenta: The organ which develops on the inner wall of the uterus and supplies the foetus with its life-supporting requirements and carries waste products to the mother's system.

Postpartum: After the delivery or following childbirth.

Primipara: A woman who has given birth to one child.

Primiporous: Bearing or having borne only one child.

Primigravida: A woman having her first pregnancy.

Prototype: An original model from which other improved models can be made.

Sedentary Anthropometer: A device used for the study and measurement of the sitting postures.
Sociotechnical System: A system approach that takes into account and optimises both the social sub-system and the technical sub-system.

Symbiosis: A close association between two interdependent subjects.

Synergy: Efficiency achieved by a combined action.

System: A group or combination of interrelated, interdependent or interacting elements forming a collective entity.

Uterus: The sac of muscle in which the foetus develops and that contracts during labour to push the foetus out; also called "womb".

Vacuum extractor: A suction device affixed to the unborn baby's head to pull the baby out.
CONTENTS

Abstract	i
Acknowledgements	iv
Glossary	vi
Contents	xii
List of Figures	xvii
List of Tables	xix

CHAPTER ONE: GENESIS OF THE STUDY

1. Introduction
 1.1 The Aim
 1.2 Changing Practices in Childbirth
 1.3 The Ergonomic Approach
 1.4 Background to the Study
 1.5 Scope of the Study
 1.6 Structure of the Thesis

CHAPTER TWO: OBSTETRICS AND CHILDBIRTH

2. Current Obstetric Culture - Review of the Relevant Literature
 2.1 Frequency of Obstetric Interventions and Risks
 2.2 Some Long-Term Effects of Drugs
 2.3 Scientific Management of Labour
 2.4 Delivery Positions
 2.5 Psychoprophylaxis
 2.6 Humanising Birth
 2.7 The Birth Process as Design Criteria
 2.7.1 Design Considerations
 2.7.2 Physiological Postures for the Expulsion of the
 Foetus and the After-Birth
 2.8 The Body-Support System
 2.8.1 Postural Variations
 2.8.2 Pelvic-Support
 2.9 Psychological Considerations
 2.10 Familiarisation Programme

CHAPTER THREE: BIRTH POSTURES

3. Ergonomics of Birthing Postures - Review of the Relevant Literature
 3.1 History of Birth Postures
 3.2 Some Advantages and Disadvantages of Upright Postures vs Supine Postures
 3.3 Anthropometrical, Anatomical and Biomechanical Aspects
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>53</td>
</tr>
<tr>
<td>3.8</td>
<td>55</td>
</tr>
<tr>
<td>3.9</td>
<td>56</td>
</tr>
<tr>
<td>3.10</td>
<td>58</td>
</tr>
<tr>
<td>4.10.1</td>
<td>59</td>
</tr>
<tr>
<td>3.11</td>
<td>64</td>
</tr>
<tr>
<td>3.12</td>
<td>68</td>
</tr>
<tr>
<td>3.13</td>
<td>70</td>
</tr>
<tr>
<td>3.14</td>
<td>71</td>
</tr>
<tr>
<td>3.15</td>
<td>74</td>
</tr>
<tr>
<td>3.16</td>
<td>76</td>
</tr>
<tr>
<td>3.17</td>
<td>79</td>
</tr>
<tr>
<td>3.18</td>
<td>82</td>
</tr>
</tbody>
</table>

CHAPTER FOUR : ERGODESIGN

4. Ergodesign Approach and the Acquisition of Data - The Optimisation of Ergonomics and Design Technologies

4.1 Ergonomic Theory to Design Practice

4.1.1 Ergodesign : Its Synergy and Symbiosis

4.1.2 Ergodesign Approach

4.1.3 Ergonomics and Design Criteria

4.2 Development of User and System Data

4.2.1 Acquisition of Data : Its Challenges and Problems

4.3 Childbirth and Work : A Comparison of "Physical Loads"

CHAPTER FIVE : SYSTEM DESIGN AND DEVELOPMENT

5. Development of an Obstetric Body-Support System

5.1 Some Traditional Design Models and Methods

5.2 The Seven Ergodesign Phases

5.2.1 Rapport Building Phase

5.2.2 Feasibility Studies Phase

5.2.3 Concept Design Phase

5.2.3.1 Exploring Different Birth Postures

5.2.3.2 Development of the Pelvic-Support

5.2.3.3 Sedentary Anthropometer and Kinestosphere Studies

5.2.3.4 Development of the Back- and Head-Supports

5.2.3.5 Development of the Upper Body-Supports

5.2.3.6 Development of the Foot-Supports

5.3 Flashes of Insight

5.4 The Spirit of Birth

xiii
6.5.5.1 Independent Midwife 195
6.5.5.2 Wellington Hospital Midwife 196
6.5.5.3 Wellington Hospital Midwife 196
6.5.5.4 Wellington Hospital Midwife 196
6.5.5.5 Wellington Hospital Midwife 197

6.6 Prenatal Evaluation of Active Birth Chair by Expectant Mothers 197
6.6.1 Part A - Personal Information 197
6.6.2 Part B - Feelings and Perceptions of Trials 198
6.6.3 Detailed Analysis of Expectant Mothers Responses 198
6.6.4 Part C - General Postural Comfort Rating 199
6.6.5 Part D - Body Parts Comfort Assessment 199
6.6.6 Part E - Active Birth Chair Features Evaluation 201
6.6.7 Part F - Multiparous Mother's Preference for Birthing Devices 201

6.7 Analysis of Expectant Mothers Comments on Active Birth Chair 203
6.7.1 Mother One 203
6.7.2 Mother Two 203

6.8 Postnatal Evaluations 204

6.9 Analysis of System Questionnaire 206
6.9.1 Part A - General Outcome of the Birth and Delivery 206
6.9.2 Part B - Evaluation of Active Birth Chair Features 207
6.9.3 Part C - Evaluation of Delivery Seat-Kneeler Features 209

6.10 Analysis of Birth Attendants Comments on the System 210
6.10.1 Principal Midwife 210
6.10.2 Assistant Midwife 211
6.10.3 Independent Obstetrician 211

6.11 Analysis of Birth Attendants Comments on Active Birth Chair 212
6.11.1 Principal Midwife 212

6.12 Analysis of Birth Attendants Comments on Delivery Seat-Kneeler 213
6.12.1 Principal Midwife 213
6.12.2 Assistant Midwife 214

6.13 Postnatal Evaluation of Active Birth Chair by Mothers 215
6.13.1 Part A - Personal Information 215
6.13.2 Part B - Childbirth Feelings and Perceptions 215
6.13.3 Detailed Responses on Childbirth "Feelings" and "Perceptions" of the Two Mothers 216
6.13.4 Part C - General Postural Comfort Rating 217
6.13.5 Part D - Body Parts Comfort Assessment 217
6.13.5.1 Summary of Responses to Body-Parts Comfort by Postnatal Mothers 219
6.13.6 Part E - Active Birth Chair Features Evaluation 219
6.13.7 Part F - Comparison of Active Birth Chair with Other Birth Devices 219
6.14 Analysis of Postnatal Mothers Comments on Active Birth Chair
 6.14.1 Mother One
 6.14.2 Mother Two
6.15 Summary of the Results and Discussion

CHAPTER SEVEN: DISCUSSION
7. Discussion
 7.1 System Planning and Implementation
 7.2 Research, Scholarship and Development

CHAPTER EIGHT: CONCLUSIONS AND FURTHER STUDIES
8. Conclusions
 8.1 Modification to the Active Birth Chair
 8.2 Further Study

REFERENCES

APPENDICES
Appendix A - Obstetric Body-Support System Evaluation Questionnaire Used in Postnatal Evaluation
Appendix B - Active Birth Chair Evaluation Questionnaire Used in Postnatal Evaluation
Appendix C - Further Study
Appendix D - Conferences and Publications
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Lithotomy-Drug-Surgical Syndrome</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Aorto-Caval Compression in the Supine Position</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Mechanical Disadvantage of the Horizontal Position for Childbirth and the Use of Forceps</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Consequences of the Dorsal Position</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Consequences of the Valsalva Manoeuvre</td>
<td>73</td>
</tr>
<tr>
<td>5.1</td>
<td>Concept Proposal: A Body-Harness System</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>Concept Proposal: A Body-Support System for Underwater Birth</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Concept Proposal: A Two Person Body-Support System</td>
<td>109</td>
</tr>
<tr>
<td>5.4</td>
<td>Concept Proposal: A Simple Manually Adjustable and Articulate Body-Support System</td>
<td>110</td>
</tr>
<tr>
<td>5.5</td>
<td>Concept Proposal: A Fully Adjustable and Articulate Body-Support System with Electric Controls</td>
<td>111</td>
</tr>
<tr>
<td>5.6</td>
<td>Passage, Direction and Turning of Foetus from the Mother's Pelvic Inlet to the Pelvic Outlet, to the Birth Canal and to the Outside World</td>
<td>115</td>
</tr>
<tr>
<td>5.7</td>
<td>Design and Development of Pelvic-Support</td>
<td>117</td>
</tr>
<tr>
<td>5.8</td>
<td>Design and Development of Pelvic-Support</td>
<td>118</td>
</tr>
<tr>
<td>5.9</td>
<td>Design and Development of Full-Size 3D Models of the Pelvic-Support - Using Cadaver Female Pelvis</td>
<td>119</td>
</tr>
<tr>
<td>5.10</td>
<td>Design and Development of Full-Size 3D Models of the Pelvic-Support - Using Cadaver Female Pelvis</td>
<td>119</td>
</tr>
<tr>
<td>5.11</td>
<td>Development of Pelvic-Support</td>
<td>120</td>
</tr>
<tr>
<td>5.12</td>
<td>Construction of Mould for Pelvic-Support</td>
<td>120</td>
</tr>
<tr>
<td>5.13</td>
<td>Analysis of Birth Positions on Sedentary Anthropometer (top)</td>
<td>122</td>
</tr>
<tr>
<td>5.14</td>
<td>Analysis of Delivery and Birth Postures on Sedentary Anthropometer (bottom)</td>
<td>122</td>
</tr>
<tr>
<td>5.15</td>
<td>Posture and Biospace Analysis in the Kinetosphere</td>
<td>123</td>
</tr>
<tr>
<td>5.16</td>
<td>Posture Analysis of Birth Attendant in the Squat-Sit Delivery Position</td>
<td>123</td>
</tr>
<tr>
<td>5.17</td>
<td>Side Elevation of Maternal Body-Support System: The Active Birth Chair</td>
<td>134</td>
</tr>
<tr>
<td>5.18</td>
<td>Plan View of Maternal Body-Support System: The Active Birth Chair</td>
<td>135</td>
</tr>
<tr>
<td>5.19</td>
<td>Front Elevation of Maternal Body-Support System: The Active Birth Chair</td>
<td>136</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>5.20</td>
<td>Back Elevation of Maternal Body-Support System: The Active Birth Chair</td>
<td>137</td>
</tr>
<tr>
<td>5.21</td>
<td>Development of the Platform</td>
<td>138</td>
</tr>
<tr>
<td>5.22</td>
<td>Development of Adjustment Mechanisms for the Back-Support</td>
<td>138</td>
</tr>
<tr>
<td>5.23</td>
<td>Plan View of Caregiver's Body-Support System: The Delivery Seat-Kneeler</td>
<td>141</td>
</tr>
<tr>
<td>5.24</td>
<td>Side Elevation of Caregiver's Body-Support System: The Delivery Seat-Kneeler</td>
<td>142</td>
</tr>
<tr>
<td>5.25</td>
<td>Front Elevation of Caregiver's Body-Support System: The Delivery Seat-Kneeler</td>
<td>143</td>
</tr>
<tr>
<td>5.26</td>
<td>The Active Birth Chair</td>
<td>144</td>
</tr>
<tr>
<td>5.27</td>
<td>The Delivery Seat-Kneeler</td>
<td>144</td>
</tr>
<tr>
<td>5.28</td>
<td>The Obstetric Body-Support System with Armrests</td>
<td>145</td>
</tr>
<tr>
<td>5.29</td>
<td>The Obstetric Body-Support System Without Armrests</td>
<td>145</td>
</tr>
<tr>
<td>6.1</td>
<td>Expectant Mothers Evaluating the Active Birth Chair During the Prenatal Test</td>
<td>150</td>
</tr>
<tr>
<td>6.2</td>
<td>with Independent Midwives and the Ergodesigner</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Ergodesigner Briefing "Domino" Midwives During Prenatal Test</td>
<td>151</td>
</tr>
<tr>
<td>6.4</td>
<td>Ergodesigner Briefing Manager of Maternity Unit, Kenepuru Hospital</td>
<td>151</td>
</tr>
<tr>
<td>6.5</td>
<td>and Details for Postnatal Test</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Manager of Maternity Unit, Kenepuru Hospital and Staff Midwife Evaluating</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>the System with Ergodesigner</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>"Domino" Independent Midwives Testing the System with Ergodesigner</td>
<td>152</td>
</tr>
<tr>
<td>6.8</td>
<td>Body Parts Assessed</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Body Parts Assessed</td>
<td>218</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Matched Home and Hospital Samples</td>
<td>18</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Length of Second Stage for Primiparae 1981-84</td>
<td>77</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Rates of Spontaneous Delivery in Primiparae by Length of Second Stage 1981-84</td>
<td>77</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Responses of Nine Midwives to Questions About the Obstetric Body-Support System</td>
<td>181</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Combined Responses of 10 Midwives and 3 Prenatal Mothers on 15 Active Chair Features</td>
<td>183</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Responses of 10 Midwives on 9 Delivery Seat-Kneeler Features</td>
<td>193</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Body Parts Comfort Assessment by M1, M2, M3 at Prenatal Test</td>
<td>200</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Users Responses to Active Birth Chair Features</td>
<td>208</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Users Responses to Seat-Kneeler Features</td>
<td>209</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Body Parts Comfort Assessment by M01 and M02 at Postnatal Test</td>
<td>218</td>
</tr>
</tbody>
</table>