Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
KNOWLEDGE CONSTRUCTION IN
HEALTH SUPPORT GROUP ONLINE DISCUSSIONS

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Management Information Systems

School of Management, Massey University, Palmerston North, New Zealand

Achmad Ghazali

2012
ABSTRACT

The ongoing transition to the patient-centred healthcare paradigm suggests that patients adopt an active role in managing their health conditions. As the result, the Internet is becoming an important source of health-related information. Internet-based health support groups allow patients to access diverse information relevant to their particular situation by participating in online discussions. The quality of such information may have effects on the patients’ outcomes.

According to social constructivism, knowledge in online discussions is constructed in interactions between the individuals involved, as recommendations made over the discussion are clarified and scrutinized. Therefore, knowledge construction is likely to affect the quality of health-related information generated in health support group online discussions.

The purpose of the present study was to investigate the effects of knowledge construction in health support group online discussions on perceived information quality, information quality from the perspective of information consumers, and on information integrity, information validity from the point of view of the current state of scientific knowledge. It was hypothesized that knowledge construction results in better perceived information quality and in higher information integrity.

A health support group online discussion site devoted to weight management was used as a source of data. Quantitative content analysis was used, with a discussion thread as a unit of analysis.

Knowledge construction was operationalized as a two-dimensional construct with the dimensions of explicitation (lower level knowledge construction activities) and evaluation (higher level knowledge construction activities). The coding scheme was based on the prior studies of knowledge construction in the field of e-Learning. Perceived information quality was operationalized by adapting an existing measure from survey-based research. Information integrity was operationalized by using a simplified Delphi technique—health-related recommendations were extracted from the discussion content by coders and were assessed by domain experts.
Explicitation was found to affect perceived information quality with a medium effect size. Evaluation did not affect perceived information quality, and information integrity was not affected by any of the dimensions of knowledge construction.

Thus, low level knowledge construction contributed to perceived information quality, resulting in health-related information that is more relevant and useful from the perspective of its consumers. Nonetheless, knowledge construction activities were not found to result in higher prevalence of scientifically sound recommendations.

Based on the findings, the study suggested that moderators of health support group online discussions should promote explicitation by encouraging clarifications and refinements of health-related recommendations. Moreover, participation of qualified health practitioners is desirable to promote health-related behaviours based on evidence-based knowledge and to expose recommendations that have uncertain or even dangerous effects.
Acknowledgments

I thank my supervisors, Dr. Alexei Tretiakov, Dr. Inga Hunter, and Dr. Barbara Crump, who provided valuable insights, suggestions, and encouragements.

I thank the examiners for their comments and constructive critique, which helped me to better understand the implications of my study and to improve the thesis overall.

Two institutions, School of Business and Management at Bandung Institute of Technology (SBM-ITB) and Putera Sampoerna Foundation (PSF), supported my research. I thank SBM-ITB, where I am pursuing my teaching career, for giving me the support and opportunity to continue my study abroad. I am so grateful to PSF for providing me financial support throughout my doctoral studies. I would not have been able to complete my studies without the support of both institutions.

This acknowledgement would be incomplete without mentioning my family: my beloved wife Myrna, my beloved son Haris, my beloved daughter Hanna, my beloved parents, and my beloved parents-in-law for their continuous support, encouragement, and patience. To each one of you, I humbly say thank you.
Table of Contents

Acknowledgment ... iv
List of Figures ... xii
List of Tables ... xiv
List of Abbreviations .. xvi

Chapter 1. Introduction ... 1
 1.1 Background of the Study ... 1
 1.2 Purpose of the Study ... 3
 1.3 Significance of the Study .. 3
 1.3.1 Significance to Theory .. 4
 1.3.2 Significance to Practice 4
 1.4 Definition of Terms ... 5
 1.5 Theoretical Framework ... 6
 1.6 High-Level Hypotheses .. 7
 1.7 Summary of Methods .. 10
 1.8 Organization of the Thesis ... 10

Chapter 2. Literature Review .. 12
 2.1 Introduction .. 12
 2.2 Method Used to Conduct the Literature Review 12
 2.3 Patient-Centered Care and Online Health Support Groups 15
 2.4 Lurkers ... 18
 2.5 Constructivism and Knowledge Construction 19
 2.5.1 Individual Constructivism 19
 2.5.2 Social Constructivism ... 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Conceptualizations and Measures of Knowledge Construction in Online Discussions</td>
<td>20</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Henri (1992)—Learning Process Framework</td>
<td>21</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Gunawardena, Lowe, and Anderson (1997)—Knowledge Construction in CMC Environments</td>
<td>25</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Veerman, Andriessen, and Kanselaar (1999)—Collaborative Learning and Argumentation</td>
<td>28</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Garrison (1991)—Cycle of Learning</td>
<td>36</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Other Studies</td>
<td>41</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Summary and Comparison of the Measures of Knowledge Construction</td>
<td>43</td>
</tr>
<tr>
<td>2.7</td>
<td>Knowledge Construction in KM</td>
<td>50</td>
</tr>
<tr>
<td>2.7.1</td>
<td>McAdam and McCreedy Model of the Role of Knowledge Construction in KM</td>
<td>51</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Enhancing Knowledge Construction at Organizations</td>
<td>52</td>
</tr>
<tr>
<td>2.7.3</td>
<td>An Empirical Study of Online Discussions Conducted From a KM Perspective</td>
<td>53</td>
</tr>
<tr>
<td>2.8</td>
<td>Perceived Information Quality and Information Integrity</td>
<td>54</td>
</tr>
<tr>
<td>2.9</td>
<td>Information Integrity and Evidence-Based Medicine</td>
<td>59</td>
</tr>
<tr>
<td>2.10</td>
<td>Knowledge Gap</td>
<td>62</td>
</tr>
<tr>
<td>2.11</td>
<td>Health Literacy</td>
<td>63</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Conceptualization of Health Literacy</td>
<td>63</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Health Support Online Discussions as an Antecedent of Health Literacy</td>
<td>64</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Health Literacy as an Antecedent of Knowledge Construction</td>
<td>67</td>
</tr>
</tbody>
</table>
2.11.4 Health Literacy and the Purpose of the Present Study67

2.12 Summary ..69

Chapter 3. Model Development and Hypotheses ..72

3.1 Introduction ...72

3.2 Conceptualization of Constructs ...72

3.2.1 Knowledge Construction ..73

3.2.2 Perceived Information Quality ...75

3.2.3 Information Integrity ..78

3.3 Structural Model and Detailed Hypotheses ...78

3.3.1 Knowledge Construction Results in Better Perceived Information Quality (H1) ...79

3.3.2 Knowledge Construction Results in Better Information Integrity (H2) ..81

3.4 Summary ...82

Chapter 4. Research Methodology ...83

4.1 Introduction ...83

4.2 Overview of Research Procedures ..84

4.3 Overall Approach to Research ...84

4.3.1 Positivism Versus Interpretivism ...84

4.3.2 Quantitative Research Versus Qualitative Research87

4.3.3 Explanatory Research Versus Exploratory Research87

4.3.4 Approach to Data Collection ...88

4.4 Approach to Content Analysis ...89

4.4.1 Reaffirming the Suitability of Content Analysis89
4.4.2 Framework for Content Analysis ... 91
4.4.3 Data Making ... 91
4.4.4 Defining the Semantics of Data .. 92
4.4.5 Operationalization as Data Language .. 93
4.5 Choice of Content Source .. 94
4.6 Unitizing ... 95
4.7 Sampling and Screening .. 96
4.8 Coding .. 102
 4.8.1 Overview of Coding Procedures .. 102
 4.8.2 Coder Qualifications .. 103
 4.8.3 Coding Scheme Development, Coder Training, and Coding Procedures .. 105
 4.8.4 Operationalization of Knowledge Construction 107
 4.8.5 Operationalization of the Dimensions of Perceived Information Quality .. 108
 4.8.6 Operationalization of Information Integrity ... 109
 4.8.7 Identification of Task Related Threads and Coding Procedures for Information Integrity .. 110
4.9 Overall Approach to Data Analysis .. 111
4.10 Reliability .. 112
 4.10.1 Reliability of Coding ... 112
 4.10.2 Reliability of Measures of Latent Constructs 113
4.11 Validity .. 113
 4.11.1 Face Validity ... 113
E.1 A Model With Both Knowledge Construction and Perceived Information Quality Treated as One-Dimensional Constructs—The Details of Measurement Model Analysis ...219

E.2 A Model With Explicitation and Evaluation as Separate Constructs and With Perceived Information Quality Treated as a One-Dimensional Construct—The Details of Measurement Model Analysis222

E.3 A Model With Explicitation Hypothesized to Affect Evaluation—The Details of Measurement Model Analysis ...225

E.4 A Model of Coder’s Conceptions—The Details of Measurement Model Analysis ...228

Appendix F. Mplus Code for the EFA Analysis Discussed in Section 5.5, With the Number of Factors Set to Four ...238

Appendix G. Mplus Code for Linear Regression Analysis Discussed in Section 5.8.5 ..239

References ..240
List of Figures

Figure 1. Knowledge construction in an online discussion..7

Figure 2. High-level research model..8

Figure 3. Mapping between Veerman and Veldhuis-Diermanse (2001) and
Gunawardena et al. (1997) schemes..33

Figure 4. Mapping between Veerman and Veldhuis-Diermanse (2001) and Fahy et al.
(2000) schemes...35

Figure 5. Cycle of learning model of knowledge construction by Garrison, based on

Figure 6. Knowledge construction in knowledge management—A model by McAdam
and McCreedy (1999) (p. 103). ..52

Figure 7. The focus of the present study and health literacy. The constructs and the
hypothesis falling within the scope of the present study are shown with bold lines.....68

Figure 8. Research model from section 1.6 (Figure 2) with knowledge construction
represented by explicitation and evaluation, and perceived information quality—by
relevance, understandability, and usefulness..78

Figure 9. The main steps of this study...84

Figure 10. Definition of “typical” threads (given by the shaded area).97

Figure 11. Distribution of threads by the number of messages in a thread. Bins
corresponding to typical threads are shown in grey...98

Figure 12. Distribution of threads by the number of contributors. Bins corresponding to
typical threads are shown in grey..99

Figure 13. Distribution of task related threads by the number of messages in a thread.
..101

Figure 14. Distribution of task related threads by the number of contributors............101

Figure 15. Coding procedures ...103

Figure 16. Coding information integrity ...110

Figure 17. Scree test plot for the indicators of explicitation, evaluation, relevance, and
usefulness...131

Figure 18. Scree test plot for the indicators of the dimensions of knowledge
construction: explicitation and evaluation..135

Figure 19. Scree test plot for the indicators of the dimensions of perceived information
quality: relevance and usefulness...136
Figure 20. Structural model for PLS analysis ... 138

Figure 21. The results of testing the structural model. The values of path coefficients are given next to the corresponding hypotheses labels, with the corresponding p values shown in parentheses. Paths found to be statistically significant at alpha protection level 0.05 are shown as continuous lines; paths not found to be statistically significant are shown as dashed lines... 144

Figure 22. Structural model with both knowledge construction and perceived information quality treated as one-dimensional constructs ... 145

Figure 23. The results of testing the structural model. The values of path coefficients are given next to the corresponding hypotheses labels, with the corresponding p values shown in parentheses. Paths found to be statistically significant at alpha protection level 0.05 are shown as continuous lines; paths not found to be statistically significant are shown as dashed lines............................ 146

Figure 24. Structural model with perceived information quality treated as a one-dimensional construct ... 148

Figure 25. The results of testing the structural model. The values of path coefficients are given next to the corresponding hypotheses labels, with the corresponding p values shown in parentheses. Paths found to be statistically significant at alpha protection level 0.05 are shown as continuous lines; paths not found to be statistically significant are shown as dashed lines... 149

Figure 26. Structural model with the hypothesis that explicitation affects evaluation. ... 150

Figure 27. The results of testing the structural model. The values of path coefficients are given next to the corresponding hypotheses labels, with the corresponding p values shown in parentheses. Paths found to be statistically significant at alpha protection level 0.05 are shown as continuous lines; paths not found to be statistically significant are shown as dashed lines... 151

Figure 28. Structural model accounting for coders’ conceptions .. 153

Figure 29. The results of testing the structural model. The values of path coefficients are given next to the corresponding hypotheses labels, with the corresponding p values shown in parentheses. For paths between higher-level constructs and their coder’s conceptions, all p values were below 0.001, and are not shown in the figure. Paths found to be statistically significant at alpha protection level 0.05 are shown as continuous lines; paths not found to be statistically significant are shown as dashed lines... 154

Figure 30. Nomological framework around knowledge construction in online discussions. The part of the framework addressed by the present study is shown in a box with a dashed border... 176
List of Tables

Table 2-1 Numbers of Citations of Articles Introducing Approaches to Conducting a Literature Review ... 15
Table 2-2 Henri’s (1992) Dimensions of Learning .. 21
Table 2-3 Bullen’s (1998) Scale for Critical Thinking ... 22
Table 2-4 Inter-Rater Reliability in Hara et al. (2000) .. 23
Table 2-5 Categories Retained by Pena-Shaff and Nicholls’ (2004) That Matched Levels and Categories in the Henri’s (1992) Model ... 24
Table 2-6 Gunawardena et al.’s Phases of Knowledge Construction 26
Table 2-7 Veerman et al.’s (1999) Dimensions ... 28
Table 2-8 Veerman et al.’s (1999) Inter-Rater Reliability .. 29
Table 2-9 Veerman and Veldhuis-Diermanse’s (2001) Dimensions 30
Table 2-10 The Numbers of Discussions and Messages Used for Analysis in Each Study ... 31
Table 2-11 Garrison et al.’s (1999) Dimension of Cognitive Presence 37
Table 2-12 The Structure of the Newman, Johnson, Webb, and Cochrane (1997) Model of the Quality of Learning .. 38
Table 2-13 Transcripts Used in Garrison et al. (2001) Study 39
Table 2-14 Inter-Rater Reliability in Garrison et al. (2001) Study 40
Table 2-15 Knowledge Construction Scales Used by Schrire (2004) 40
Table 2-16 Coding Scheme by Järvelä and Häkkinen (2002) 41
Table 2-17 Coding Scheme for Shared Understanding (Puntambekar, 2006) 43
Table 2-18 Synthesis of Measures of Knowledge Construction 46
Table 2-19 Inter-Rater Reliability in Studies of Knowledge Construction 48
Table 3-1 The Content of the Explicitation Construct ... 74
Table 3-2 The Content of the Evaluation Construct ... 75
Table 3-3 Dimensions of Perceived Information Quality .. 77
Table 4-1 Approach to Content Analysis in the Present Study in Terms of Krippendorff’s (2004) Framework for Content Analysis ... 92
Table 4-2 Screening of Threads ...100
Table 4-3 Coders ..105
Table 4-4 Operationalization of the Dimensions of Knowledge Construction107
Table 4-5 Operationalization of the Dimensions of Perceived Information Quality ...108
Table 5-1 Descriptive Statistics for Knowledge Construction124
Table 5-2 Descriptive Statistics for Perceived Information Quality125
Table 5-3 Descriptive Statistics for Information Integrity126
Table 5-4 Inter-Rater Reliability for the Indicators of the Dimensions of Knowledge Construction ...127
Table 5-5 Inter-Rater Reliability for the Indicators of the Dimensions of Perceived Information Quality ...128
Table 5-6 Inter-Rater Reliability for Information Integrity129
Table 5-7 Kurtosis and Skewness ..130
Table 5-8 Factor Loadings in EFA for all Indicators of Explicitation, Evaluation, Relevance, and Usefulness, with the Number of Factors Set to Four132
Table 5-9 Factor Loadings in EFA for all Indicators of Explicitation, Evaluation, Relevance, and Usefulness, with the Number of Factors Set to Two134
Table 5-10 Factor Loadings in EFA for Indicators of Explicitation and Evaluation, with the Number of Factors Set to Two ...136
Table 5-11 Factor Loadings in EFA for Indicators of Relevance and Usefulness, with the Number of Factors Set to Two ...137
Table 5-12 Indicator Loadings on Dimensions of Knowledge Construction139
Table 5-13 Indicator Loadings on Dimensions of Perceived Information Quality139
Table 5-14 Indicator Loadings on Information Integrity140
Table 5-15 Internal Consistency Indices ..140
Table 5-16 Average Variance Extracted ..141
Table 5-17 Latent Variables Correlation Matrix ...143
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE</td>
<td>Average Variance Extracted</td>
</tr>
<tr>
<td>CMC</td>
<td>Computer Mediated Communication</td>
</tr>
<tr>
<td>CR</td>
<td>Coefficient of Reliability</td>
</tr>
<tr>
<td>CSCL</td>
<td>Computer Supported Collaborated Learning</td>
</tr>
<tr>
<td>EFA</td>
<td>Exploratory Factor Analysis</td>
</tr>
<tr>
<td>KM</td>
<td>Knowledge Management</td>
</tr>
<tr>
<td>KMS</td>
<td>Knowledge Management System</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial Least Squares</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Modelling</td>
</tr>
</tbody>
</table>