Epidemiological Aspects of Feline Hyperthyroidism in New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of Master of Veterinary Science at Massey University, Palmerston North, New Zealand

Joanna Olczak

1999
Abstract

A questionnaire-based case-control study of 375 cats was conducted in New Zealand over a 14-month period from 1996 to 1998 and then used to identify possible risk factors for feline hyperthyroidism. The owners of 125 hyperthyroid cats, 125 age- and sex-matched and 125 random control cats were asked 64 questions, about their cats’ exposure to potential risk factors including: cat and owner demographics, each cat’s medical history, the indoor and outdoor environment, the cat’s diet and feeding practices.

For the clinical cases a questionnaire of 10 questions completed by the attending veterinarian provided the demographic data, the cat’s medical history and clinical signs before, and at the time of diagnosis of hyperthyroidism.

A range of statistical techniques was employed to analyse the data, including univariate odds ratio and chi-squared calculations, stepwise forward unconditional (case-random controls) and conditional (case-matched controls) logistic regression, frequency analyses and Cox regression (proportional hazards model) for case-random status. Kaplan-Meier survival analysis was used for hyperthyroid cats to evaluate the effects of a number of different treatments, including medical, surgical and radioactive iodine treatment, on survival time (months) of the cats after the diagnosis and up to the final date of the study.

Variables that were positively associated with feline hyperthyroidism from the case-random control comparison included age, breed, sex, age at desexing, history of any oral cavity diseases, sleeping predominantly on the floor, regular use of anti-flea products (in particular applied to the cats’
bed/bedding) and eating more than $\frac{1}{2}$ of the daily diet as a commercial canned food.

Older cats were more likely to develop hyperthyroidism. Siamese cats were found to have a lower risk for developing hyperthyroidism. Females were three times as likely to develop the condition as males. With cat’s age at desexing, the category “don’t know”, which indicated either that the cat had had a previous owner or was of unknown origin, was associated with increased risk for developing hyperthyroidism. Although oral cavity diseases were controlled for age, the occurrence of dental disorders was associated with a five-and-a-half-fold higher risk of developing hyperthyroidism. A 6.6-fold increase in risk of developing hyperthyroidism was calculated for cats sleeping predominantly on the floor. Cats eating half or more of their daily food as a canned commercial cat food were shown to have twice the risk of developing hyperthyroidism as those cats whose diets excluded canned food.

In order to focus on factors which might influence occurrence of the disease in cats at similar constitutional risk of feline hyperthyroidism a second investigation was conducted in which each case was compared with a control animal matched on sex and age (± 1.5 years) for the case. In this comparison, cats with episodes of diarrhoea were seven times more likely to have hyperthyroidism. The use of fly sprays in the cat’s indoor territory was also associated with an increased risk of developing this disorder. Cats eating a variety of flavours of commercial canned cat food had 3.8-fold increased risk of developing hyperthyroidism compared with cats whose diets consisted of a single flavour of canned food. The interaction between drinking water from puddles and the regular use of animal/plant origin fertilisers (sheep manure, compost, commercial blood
and bone fertiliser) in the cat’s outdoor territory was associated with a 5.3-fold higher risk of developing disease.

Other variables that appeared to have some protective effects included “more than one cat in the household” (from the case-matched model) and the previously mentioned protective effect of breed, for Siamese cats only, from the case-random control comparison.

The questionnaire completed by veterinarians provided information on history and clinical findings in affected cats. The frequencies for the clinical signs weight loss, polyphagia, hyperactivity, tachycardia and palpable thyroid gland(s) were 92%, 68%, 34%, 62% and 56% respectively. Skin changes, episodes of vomiting and decreased activity had the following frequencies: 49%, 26% and 11% respectively.

The increased number of feline hyperthyroidism diagnoses in the warmer six months of the year, from October until March, indicates seasonality of recognition of disease, but may not represent true date of onset.

The relevance of the identified risk factors to the aetiology of feline hyperthyroidism is discussed, bearing in mind that some of the potential risk variables mentioned earlier could be the result of the disease itself. The analysis of this study suggested that further investigations should be undertaken into the molecular basis of the disease, into dietary factors and other potentially important risk factors such as insecticides, breed and sex susceptibility.
Acknowledgements

I thank Professors Boyd Jones and Roger Morris for their leadership, encouragement and enthusiasm despite their heavy work commitments. There was always time for discussion and correcting my English.

I especially thank Doctor Dirk Pfeiffer who provided the epidemiological and statistical assistance that I required to complete the study. I hope that the many hours of discussion and questioning have provided some reciprocal benefits.

I extend my thanks to Doctor Richard Squires for his help as I adjusted to the changes after Professor Boyd Jones left New Zealand to take a challenging position in Ireland.

I thank all veterinarians in New Zealand who participated in this feline hyperthyroidism study. This study would not have been possible without the co-operation of veterinarians whose efforts I greatly appreciate.

The only financial support for the study was from the Waltham Centre for Pet Nutrition, Waltham-on-the-Wolds, United Kingdom which was essential for the completion of the project. The financial assistance of the Waltham Centre for Pet Nutrition, and the support of Peter Markwell in particular is gratefully acknowledged.

The donation of small cat food parcels by Effem Foods New Zealand Limited to the owners of the cats participating in the survey was warmly welcome and appreciated by the cats' owners.
The support of my colleagues in the Institute of Veterinary, Animal and Biomedical Sciences and from other departments within Massey University was greatly appreciated especially at the stage of the design of the questionnaire, in particular Tony Charleston, Frazer Allan, Jeff Wichtel, Vicki Douglas, Siva Ganesh, Arnold Chamove, Don Esslemont, Glennis Wallbutton, Mary-Helen Ward and Andrew Chambers. Special thanks to Doctor Charles Randriamasimanana from Linguistics for providing excellent English grammar support.

I also would like to thank all cats' owners participating in the survey, for their good response rate, interest in the study and for their time and effort in filling in the long questionnaire forms.

Finally, very special thanks are due to Mariusz Skorupski for his support and for providing access to a computer.

I again acknowledge Professors Boyd Jones and Roger Morris and Doctors Dirk Pfeiffer and Richard Squires for being my supervisors. I thank them for enduring the task of reviewing initial drafts and publications in detail and offering constructive suggestions and comments.
Dedication

This thesis is dedicated to all the cats of the world, small and big, domestic and wild, in particular to the late Mimusia, Spust and Simon
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>5</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>7</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>8</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>11</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td>14</td>
</tr>
<tr>
<td>General Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Introduction to epidemiological studies</td>
<td>20</td>
</tr>
<tr>
<td>CHAPTER 2. LITERATURE REVIEW</td>
<td>23</td>
</tr>
<tr>
<td>Introduction</td>
<td>24</td>
</tr>
<tr>
<td>Aetiology, pathology and molecular aspects</td>
<td>25</td>
</tr>
<tr>
<td>History and clinical findings</td>
<td>32</td>
</tr>
<tr>
<td>Epidemiology of thyrotoxicosis due to nodular goitre in men and cats</td>
<td>34</td>
</tr>
<tr>
<td>CHAPTER 3. MATERIALS AND METHODS</td>
<td>47</td>
</tr>
<tr>
<td>Study design</td>
<td>48</td>
</tr>
<tr>
<td>Practices</td>
<td>48</td>
</tr>
<tr>
<td>Cases</td>
<td>49</td>
</tr>
<tr>
<td>Controls</td>
<td>49</td>
</tr>
<tr>
<td>Data collection</td>
<td>50</td>
</tr>
<tr>
<td>Questionnaire</td>
<td>50</td>
</tr>
<tr>
<td>Data storage</td>
<td>52</td>
</tr>
<tr>
<td>Data analysis</td>
<td>52</td>
</tr>
<tr>
<td>CHAPTER 4. STATISTICAL ANALYSES</td>
<td>55</td>
</tr>
<tr>
<td>General outline of approach to data analysis</td>
<td>56</td>
</tr>
<tr>
<td>Methods used in the multivariable analysis</td>
<td>58</td>
</tr>
<tr>
<td>Forward stepwise multiple unconditional logistic regression</td>
<td>59</td>
</tr>
<tr>
<td>Forward stepwise multiple conditional logistic regression</td>
<td>59</td>
</tr>
<tr>
<td>Cox regression</td>
<td>61</td>
</tr>
<tr>
<td>Kaplan-Meier survival analysis</td>
<td>61</td>
</tr>
</tbody>
</table>
CHAPTER 5. RESULTS ... 63

DESCRIPTIVE ANALYSES ... 64
 Cats' age distribution at time of hyperthyroidism diagnosis 65
 Monthly diagnosis of all cases throughout the study 66
 Clinical signs frequency in hyperthyroid cats 66

UNIVARIATE LOGISTIC REGRESSION ANALYSES OF THE CASE-RANDOM CONTROL COMPARISON 67
 Cat owner factors ... 67
 Cat factors including medical history ... 67
 Cat's indoor and outdoor environment .. 68
 Cat's diet and feeding practices ... 69

FORWARD STEPWISE MULTIPLE UNCONDITIONAL LOGISTIC REGRESSION ANALYSES OF THE CASE-RANDOM CONTROL COMPARISON 70
 Final model for case-random control comparison 71

FORWARD STEPWISE MULTIPLE CONDITIONAL LOGISTIC REGRESSION ANALYSES OF THE CASE-MATCHED CONTROL COMPARISON 74
 Final model for case-matched control comparison 75

COX REGRESSION (PROPORTIONAL HAZARDS MODEL) FOR CASE-RANDOM STATUS 78
KAPLAN-MEIER SURVIVAL ANALYSIS OF HYPERthyROID CATS SUBJECTED TO DIFFERENT METHODS OF TREATMENT .. 84

CHAPTER 6. GENERAL DISCUSSION ... 88

INTRODUCTION TO GENERAL DISCUSSION 89

CAT AND OWNER FACTORS .. 91
 Cat age .. 91
 Cat breed .. 92
 Cat sex .. 93
 Cat age at desexing .. 94

CAT MEDICAL HISTORY .. 95
 Diseases ... 95
 Preventative medicine ... 98

INDOOR AND OUTDOOR ENVIRONMENT .. 99
 Multi-cat households .. 99
 Floor as cat bedding ... 102
 Regular use of anti-flea products on cat's bed/bedding and regular use of fly sprays at home 104
 Regular use of animal and plant origin fertilisers (manure/organic fertilisers) on cat's outdoor territory and drinking water from puddles .. 105

DIET ... 107
 Daily canned food proportion and feeding a variety of canned food flavours 107

HISTORY AND CLINICAL FINDINGS IN NEW ZEALAND HYPERthyROID CATS .. 115

SEASONALITY OF FELINE HYPERthyROIDISM DIAGNOSIS ... 117
List of Figures

Figure 1. Age distribution at time of hyperthyroidism diagnosis (months) (125 cases; mean = 157 months; median = 155 months; standard deviation = 27.81) .. 66

Figure 2. Cumulative survival functions for four breeds of cats from case-random comparison (Other PB = other pure breeds; DLH = domestic long hair; DSH = domestic short hair) .. 79

Figure 3. Cumulative hazard functions for four breeds of cats from case-random comparison (Other PB = other pure breeds; DLH = domestic long hair; DSH = domestic short hair) .. 79

Figure 4. Cumulative survival functions for three categories of cat age at desexing for cats from case-random comparison .. 80

Figure 5. Cumulative hazard functions for three categories of cat age at desexing for cats from case-random comparison .. 80

Figure 6. Cumulative survival functions for two categories of cats bedding for cats from case-random comparison .. 81

Figure 7. Cumulative hazard functions for two categories of cats bedding for cats from case-random comparison .. 81

Figure 8. Cumulative survival functions for two places where anti-flea treatment is applied for cats from case-random comparison .. 82

Figure 9. Cumulative hazard functions for two places where anti-flea treatment is applied for cats from case-random comparison .. 82

Figure 10. Cumulative survival functions for daily proportions of commercial cat canned food for cats from case-random comparison (prn = proportion) .. 83

Figure 11. Cumulative hazard functions for daily proportions of commercial cat canned food for cats from case-random comparison (prn = proportion) .. 83

Figure 12. Kaplan-Meier survival curve for hyperthyroid cats treated with any method (trtd) and not treated at all (ntrtd) (125 cases) .. 86

Figure 13. Kaplan-Meier survival curve for hyperthyroid cats treated (trtd med) and not treated (ntrtd med) medically (125 cases) .. 86

Figure 14. Kaplan-Meier survival curve for hyperthyroid cats treated (trtd sur) and not treated (ntrtd sur) surgically (125 cases) .. 87

Figure 15. Kaplan-Meier survival curve for hyperthyroid cats treated (trtd 1131) and not treated (ntrtd 1131) with radioactive iodine (113I) (125 cases) .. 87

Figure 16. Pooled frequency of diagnosing hyperthyroid cats in New Zealand by month (125 cases) 117
List of Tables

Table 1. Sex profiles of cases, matched and random control groups ..64
Table 2. Age profiles of cases, matched and random control groups ...64
Table 3. Breed profiles of cases, matched and random control groups ..65
Table 4. Final multivariable forward stepwise unconditional logistic regression model based on all case and random control data, showing level of significance (p) for the variables and their categories, odds ratios (OR) and 95% confidence intervals around the OR ...73
Table 5. Final multivariable forward stepwise conditional logistic regression model based on all case and matched control data, showing level of significance (p) for the variables, their categories and interaction, odds ratios (OR) and 95% confidence intervals around the OR ..77
Table 6. Other hyperthyroid cats profiles allocated to households of cases, matched and random control groups; their blood relationship to hyperthyroid cat under survey and number of cats in that household ...100
Table 7. Human thyroid disorders profiles allocated to households of cases, matched and random control cat groups ...100
Table 8. History and clinical findings in six independent series of cases of feline hyperthyroidism (NS=not specified; a includes powerful apex beat, gallop rhythm and arrhythmias; b includes tachypnoea, dyspnoea, coughing and sneezing) ..116
Table 9. Univariate analysis results showing significant variables (p<0.1) and their categories for case and random control animals, displaying level of significance (p) for the variable, odds ratios (OR), 90% confidence intervals around the OR, and level of significance (p) for chi-squared test. Variables “*” were submitted to multivariable logistic regression analysis ..139
Table 10. Results of pre-final forward stepwise multiple unconditional logistic regression analysis of all significant variables (“*” from univariate analysis) for case and random control animals, showing level of significance (p) for the variable, odds ratios (OR) and 95% confidence intervals around the OR. Variable “#” was excluded from the final multivariable forward stepwise unconditional logistic regression analysis ..150
Table 11. Pre-final forward stepwise multiple conditional logistic regression model for case and matched control animals, showing level of significance (p) for the variable, odds ratios (OR) and 95% confidence intervals around the OR. Variable “#” was excluded from the final multivariable forward stepwise conditional logistic regression analysis ...153
Table 12. List of the rest of the variables and their categories which were found significant (p < 0.1) when subjected to univariate analysis for case-random control animals. These variables were not included in the multivariable forward stepwise logistic regression analysis because of a very high number of missing data points or a very low number of observations. First category of all variables was used as a reference category. (GIT = gastrointestinal tract) ...156
Table 13. List of all variables which were found not to be significant when subjected to univariate analyses from cases, random and matched controls cats. All other variables are shown in
Tables 9a to 9j and Table 12. First category of all variables was used as a reference category.

(GIT = gastrointestinal tract). ..158