THE OCCURRENCE OF GIARDIA IN CATS AND DOGS IN NEW ZEALAND AND SUBSEQUENT ISOLATION AND DIFFERENTIATION OF STRAINS.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Microbiology
Massey University, New Zealand.

Michael Craig Tonks
1988
Massey University Library. Thesis Copyright Form

Title of thesis: The Occurrence of Giardia in Cats and Dogs in New Zealand and Subsequent isolation and differentiation of strains

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ________ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ________ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ________ months.

Signed __________________________

Date 23/2/88

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE
This research and ultimately this thesis was helped by many many people.

Firstly I would like to thank the department of Microbiology and Genetics for providing the opportunity of pursuing this study and the facilities to carry it out. In this regard I especially acknowledge my supervisor Dr. T.J. Brown who not only supervised me but the whole department and for whose interest and help I greatly appreciated.

I would also like to acknowledge the help of the pathology labs and in particular the charge technologists of Blenheim, Hamilton, Hastings, New Plymouth, Palmerston North, Tauranga and Whangarei in sending faecal samples for the excystation experiments.

For the cooperation in the collection of specimens from cats and dogs, I would like to thank the staff of the S.P.C.A. of both Hamilton and Palmerston North; staff at Massey University Vet clinic; Hamilton City Council; Midhurst Animal Shelter; and Newstead Boarding Kennels. To all the private breeders of some of the finest pedigree animals in New Zealand, I say thank you.

Excellent technical assistance was given me by both George and Lawrence whose respective philosophical approaches I truly appreciated.

To Sal, Steve, Rhys, the late Nicky and little Jean, thanks for your truly tremendous friendship.

To my dearly beloved wife and friend, Jacquie, whose readiness to clean test tubes, mice and front lawns, I truly appreciated.

Praise God its done, my faith is now reality.
Giardiasis, a debilitating diarrhoea that affects many people every year is caused by the ubiquitous protozoan parasite Giardia intestinalis (syn lamblia, duodenalis). This parasite infects and causes disease in birds and animals as well as man and has no known host specificity. Dogs and cats are some of the animals infected by Giardia and due to their close association with man, may be carrier sources of human giardiasis.

In an attempt to discover a relationship between man and these animals, a survey of the level of Giardia infection in cats and dogs in both Hamilton and Palmerston North, New Zealand, was undertaken. Percentages of 25% and 8% for dogs and 3% and 7% for cats respectively were obtained. Statistically the level of infection in Hamilton was higher than that of Palmerston North. In both cities the sex and breed of the animals showed no correlation to infection although animals less than 3 years old were more likely to be infected. Clinical manifestations of giardiasis were observed but did not significantly correlate with the presence of Giardia and were not necessarily caused by the Giardia when present.

To further enhance the relationship hypothesized it was attempted to culture the Giardia from the cats and dogs and relate them to cultured human isolates. Our attempts were unsuccessful and from 91 samples only 8 human strains from 5 geographical areas were isolated. These isolations were made by both in vitro and in vivo techniques that both yielded 7% sample to culture success.
The isolated Giardia strains plus a control culture, Bris/83/HEPU/106 supplied by Boreham, Australia, were compared by growth rate and sodium dodecylsphosphate polyacrylamide gel electrophoresis (SDS-PAGE). Both these tests showed the similarity of these strains. The average growth rate was 0.09 ± 0.01 hours$^{-1}$ and no strain varied from the statistical mean. In relation to the total protein banding patterns measured by SDS-PAGE, the isolates varied, at most, by one or two bands.

An isolate of G. muris extracted from a naturally infected mouse and a human isolate that was extracted from an experimentally infected mouse were also compared by SDS-PAGE to a cultured isolate. The results showed many different bands between all three samples and suggests that an adaption, or selection, of the Giardia must take place when it is cultured. If this is so, then perhaps the emphasis put on strain variation of cultured Giardia trophozoites is to be questioned.
CONTENTS.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xiii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1. Historical Perspective of Giardia and Giardiasis.</td>
<td>2</td>
</tr>
<tr>
<td>1.1 The Organism</td>
<td>2</td>
</tr>
<tr>
<td>1.11 Biology</td>
<td>2</td>
</tr>
<tr>
<td>1.12 Taxonomy</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Disease</td>
<td>4</td>
</tr>
<tr>
<td>1.21 History</td>
<td>4</td>
</tr>
<tr>
<td>1.22 Symptomology</td>
<td>6</td>
</tr>
<tr>
<td>1.23 Animal Disease</td>
<td>9</td>
</tr>
<tr>
<td>1.24 Pathogenesis</td>
<td>9</td>
</tr>
<tr>
<td>1.25 Prevalence</td>
<td>13</td>
</tr>
<tr>
<td>1.26 Diagnosis</td>
<td>13</td>
</tr>
<tr>
<td>1.27 Treatment</td>
<td>14</td>
</tr>
</tbody>
</table>
1.3 Transmission

1.31 Direct Transmission

1.32 Indirect Transmission

1.33 Animal Reservoirs and Host Specificity

1.4 In Vitro Cultivation

1.41 Cultivation

1.42 Isolation of Giardia

1.42.1 Duodenal aspirates and Biopsies

1.42.2 Excystment

1.43 Use of Cultures

1.43.1 Giardia Strains

Chapter 2. Survey of the Occurrence of Giardia intestinalis within Cats and Dogs in the Cities of Palmerston North and Hamilton
2.3 Results. 29
 2.31 Sensitivity and Specificity 29
 2.32 Survey Data. 31

2.4 Discussion. 45
 2.41 Sensitivity and Specificity 45
 2.42 Survey of Cats and Dogs 46

2.5 Conclusion. 47

Chapter 3. Isolation and Cultivation of *Giardia intestinalis* 48

3.1 Introduction. 48

3.2 Materials and Methods. 48
 3.21 Materials. 48
 3.21.1. TY1-S-33 Growth Medium. 48
 3.21.2. Hanks Balanced Salt Solution (HBSS). 50
 3.22 Isolation of Giardia. 51
 3.22.1 *In vivo* excystation using suckling mice. 51
 3.22.2 *In Vitro* Excystation. 52
 3.23 Development of a new excystment medium. 54
 3.24 Determination of excystation percentage. 54
 3.25 Culture of Isolates. 55
 3.26 Cryopreservation of cultures. 56
Chapter 3. Comparison of *Giardia intestinalis* Isolates by Growth Rate, and Total Protein Analysis by SDS-PAGE

4.1 Introduction

4.2 Materials and Methods

- **4.21 Materials**
 - **4.21.1** Phosphate Buffered Saline (PBS)
 - **4.21.2** Preparation of Coomasie Brilliant Blue Protein Reagent
 - **4.21.3** Preparation of SDS-PAGE Solutions
- **4.22 Growth Rates**
- **4.23 SDS-PAGE Comparison of Total Proteins**

4.3 Results

- **4.31 Growth Rates**
- **4.32 SDS-PAGE Comparison of Total Proteins**
4.4 Discussion... 96
4.5 Conclusion.. 98

Chapter 5. General Discussion...................... 99

Bibliography... 108
LIST of TABLES.

Table 1.1 Percentage of confirmed cases of giardiasis showing the major signs and symptoms. 7

Table 1.2 Prevalence of *Giardia intestinalis* in human populations. 12

Table 2.1 Analysis of Sensitivity and Specificity results of Sucrose Floatation Method of Faecal examination. Part I. 29

Table 2.2 Analysis of Sensitivity and Specificity results of Sucrose Floatation Method of Faecal examination. Part II 30

Table 2.3 Distribution of *Giardia* within dogs in Palmerston North according to age, sex and subpopulation. 32

Table 2.4 Distribution of *Giardia* within cats in Palmerston North according to age, sex and subpopulation. 33

Table 2.5 Distribution of *Giardia* within dogs in Hamilton according to age, sex and subpopulation. 34

Table 2.6 Distribution of *Giardia* within cats in Hamilton according to age, sex and subpopulation. 35

Table 2.7 Occurrence of *Giardia* in dogs according to Sex, Area and Sample population. 37

Table 2.8 Occurrence of *Giardia* in cats according to Sex, Area and Sample population. 38
Table 2.9 Occurrence of *Giardia* in dogs according to Age, Area and Sample population... 39

Table 2.10 Occurrence of *Giardia* in cats according to Age, Area and Sample population... 40

Table 2.11 Distribution of *Giardia* within Dog Breeds... 41

Table 2.12 Relationship of faecal form and *Giardia* infection... 42

Table 2.13 Other pathogens found and their relationship to infection with *Giardia*... 43

Table 3.1 *In vivo* excystment of *Giardia intestinalis* using suckling mice... 60

Table 3.2 *In vitro* excystment of *Giardia intestinalis*... 61

Table 3.3 Effect of Bovine and Foetal calf serum upon excystation. 66

Table 3.4 Summary of excystment of *Giardia intestinalis*... 67

Table 3.5 Result of excystment and culture of *Giardia intestinalis* 70

Table 4.1 Growth rate and Generation time among 7 isolates of *Giardia*. 84
LIST of FIGURES.

Figure 2.1 Method of Sucrose Floatation. ... 27

Figure 2.2 Map of Palmerston North showing location of dogs and cats sampled including those which are positive for Giardia. ... 45a

Figure 3.1 Graph of cyst excretion per milligram of faeces versus time in days after a single dose of 10^5 trophozoites of axenically grown Giardia intestinalis strain P.Nth/86/MUGU/3 in five mice of the same litter. ... 58

Figure 3.1 Graph of average cyst excretion per milligram of faeces versus time in days after a single dose of 10^5 trophozoites of axenically grown Giardia intestinalis strain P.Nth/86/MUGU/3 in five mice of the same litter. ... 59

Figure 4.1 Graph of growth of 7 isolates of Giardia intestinalis over 7 days in TY1-S-33 medium. .. 86
LIST of PLATES.

Plates 3.1 - 3.6 Photographs of *in vitro* excystment of *Giardia*.

Plate 3.1 15 minutes after resuspension in excystment medium. ... 62
Plate 3.2 20 minutes after resuspension in excystment medium. ... 62
Plate 3.3 25 minutes after resuspension in excystment medium. ... 63
Plate 3.4 30 minutes after resuspension in excystment medium. ... 63
Plate 3.5 35 minutes after resuspension in excystment medium. ... 64
Plate 3.6 35 minutes after resuspension in excystment medium. ... 64

Plates 4.1 - 4.8 SDS-PAGE Total Protein Analysis.

Plate 4.1 10% acrylamide gel concentration... 88
Plate 4.2 15% acrylamide gel concentration with glycerol... 89
Plate 4.3 15% acrylamide gel concentration without glycerol... ... 90
Plate 4.4 12.5% acrylamide gel concentration without glycerol... ... 91
Plate 4.5 12.5% acrylamide gel concentration without glycerol.
Comparison between strain Bris/83/HEPU/106 and Whan/87/MUGU/48... 92
Plate 4.6. 12.5 % acrylamide gel concentration without glycerol.
Comparison of isolates of Giardia intestinalis. 93

Plate 4.7. 12.5 % acrylamide gel concentration without glycerol.
Comparison of in vivo, in vitro Giardia intestinalis and Giardia muris... 94

Plate 4.8. 12.5 % acrylamide gel concentration without glycerol.
Comparison of cysts and trophozoites... 95