Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Effect of application times of urease inhibitor (Agrotain®) on NH₃ emissions from urine patches

A thesis presented in partial fulfilment of the requirements for the degree of

Masters of Soil Science

at Massey University, Manawatu, New Zealand.

MASSEY UNIVERSITY

Maria Jimena Rodriguez Gelos

2014
Abstract

In grazed pastures about 80% of urine nitrogen (N) in the form of urea is rapidly hydrolysed and is subjected to ammonia (NH₃) losses. The use of urease inhibitors (UI) has been used as a mitigation tool to decrease the rate of NH₃ volatilization from fertilizer urea and animal urine. In previous New Zealand trials the UI effect in reducing NH₃ emissions from urine has been measured by applying urine mixed with the urease inhibitor to the pasture soil thus increasing the chance to better inhibit the urease enzyme. However, these trials do not represent a realistic grazing scenario where only urine is deposited onto the soil.

This current research aimed to identify the best time to spray the Agrotain® above soil pasture to reduce NH₃ losses from urine patches. A field experiment was carried out on dairy farm # 4 at Massey University, Palmerston North, New Zealand. The treatments were: a control (without urine and Agrotain®), urine alone at 530 kg N ha⁻¹ and urine plus Agrotain®. The UI was applied to the chambers and soil plots 5 and 3 days prior to urine deposition, on the same day and 1, 3 and 5 after urine deposition in autumn (April 2013). NH₃ losses were measured using the dynamic chamber method. After the application of the treatments, NH₃(g) volatilization was determined in the acid traps, and soil mineral N (NH₄⁺-N and NO₃⁻-N) and pH were measured from soil plots at different times over a period of 30 days.

The application of the inhibitor prior to urine deposition reduced NH₃ losses with reductions of 27.6% and 17.5% achieved for UAgr-5 and UAgr-3, respectively; and there was also a reduction in both soil NH₄⁺-N concentration and soil pH in comparison with urine alone or with the treatments where Agrotain® was applied after urine deposition. Application of Agrotain® on the same day as urine reduced NH₃ losses by 9.6% but this was not statistically significant from treatments when Agrotain® was applied after urine. The application of Agrotain® after urine deposition had no effect on NH₃ losses from urine.
Acknowledgements

I would like to express my gratitude to my supervisor Surinder Saggar for his patience, support and constructive critical comments. Thanks to Ballance Agri-Nutrients for funding this experiment and Landcare for providing analytical facilities. Thank also to NZAID for providing me with my scholarship.

I would also like to thank Thilak Palmada and Peter Berben for their help and technical expertise in the laboratory and field work. I really appreciate all of your help and the hours spent with me in the field in the rain. My thanks also to Ian Furkert and Glenys Wallace for their technical support in the Massey Laboratory. Thanks also to Nicolas Lopez-Villalobos for his help with the statistical analysis of the results and Anne Austin for editing this thesis.

Thank you to all the wonderful people who I have met and spent my time with in Massey University and Palmerston North throughout my thesis. Thanks to Jeya Jeyakumar, Helen Walker, Mike Bretherton and Kate Synge for all the fun times in the office and the long talks. An especially huge thanks to my friend Helen Walker for all your support over the last months and for the hours that you have spent reading this manuscript.

I have been fortunate to come across good friends in New Zealand; without whom my life would be bleak: Ana Mar, Rafael Orozco, Javier Agustin Flores, Natalia Pardo, Gabriela Gomez, Marcela Humphrey, Angela Denes and Gabor Kereszturi. An especially huge thanks to my friends Shirli Notcovich, Diego Fragelli and little Camila who made us feel closer to home.

I am deeply indebted to my dad and brother, for supporting me throughout my career. Thanks for your love and friendship. Thanks to my friends back home, Ana Laura Sanchez, Valentina Macchiavello and Veronica Rodriguez. A special thanks to Ana
Laura for our fortnight Skype session during these two and a half years. I would also like to thank my ex-boss, Monica Barbazan, who encouraged me to study abroad.

All this work would not be possible without the unconditional support and love of my husband Adimar - thank you for being there every time that I needed you.

Finally, I dedicate this thesis to the memory of my mum, Ana. She was the one who encouraged me to study since I was a little girl. I also learnt from her to not give up in difficult situations.

Jimena
February 2014
Table of Contents

Abstract ... i

Acknowledgements .. iii

Table of contents ... v

List of Figures .. ix

List of Tables ... xi

Chapter 1 Introduction .. 1

1.1 Introduction .. 1

1.2 Research objectives .. 2

1.3 Thesis structure ... 2

Chapter 2 Literature review .. 3

2.1 Introduction .. 3

2.2 Ammonia volatilization ... 4

2.2.1 Factors that affect NH$_3$ volatilization .. 6

2.2.1.1 Climatic drivers ... 6

2.2.1.2 Soil drivers ... 10

2.2.2 Environmental implications of NH$_3$ volatilization .. 14

2.2.3 Methodology to measure NH$_3$ emission .. 15

2.2.4 NH$_3$ volatilization from N fertilizer ... 26

2.2.5 NH$_3$ volatilization from urine patches ... 27

2.2.6 Technologies to reduce NH$_3$ emissions ... 30

2.3 Conclusions ... 39

Chapter 3 Effect of application times of urease inhibitor (Agrotain®) on NH$_3$ emissions from urine patches ... 41

3.1 Introduction ... 41

3.2 Materials and methods ... 43
 3.2.1 Site description ... 43
 3.2.2 Experimental design ... 44
 3.2.3 Urine collection and analyses ... 45
 3.2.4 Ammonia emission measurement .. 46
 3.2.5 Analysis ... 47
 3.2.5.1 Soil sampling ... 47
 3.2.5.2 Soil analyses .. 47
 3.2.6 Statistical analyses ... 48

3.3 Results ... 49
 3.3.1 Urine composition .. 49
 3.3.2 Meteorological data ... 49
 3.3.3 Ammonia emissions .. 52
 3.3.4 Soil results ... 58
 3.3.4.1 Soil pH ... 58
 3.3.4.2 Mineral N .. 59

3.4 Discussion .. 62
 3.4.1 Ammonia emission from applied urine .. 62
 3.4.2 Effect of Agrotain® spray on reducing ammonia emission from urine 64
 3.4.2.1 Effect of Agrotain® spray before urine application on reducing ammonia emissions .. 64
3.4.2.2 Effect of Agrotain® spray after urine application on reducing ammonia emissions .. 66

3.5 Conclusions and future research ... 68

References .. 71
List of Figures

Figure 2.1. Nitrogen cycle .. 4
Figure 2.2. Diagram of a wind tunnel .. 22
Figure 2.3. Wind tunnels used in a field work ... 22
Figure 2.4. Schematic diagram of the chamber used to measure NH₃ volatilization .. 24
Figure 2.5. Gear used in the present study to measure NH₃ losses from urine applied 24
Figure 3.1. Experimental set up including chambers and soil plots .. 45
Figure 3.2. Meteorological data during the experimental period ... 50
Figure 3.3. Relationship between temperature inside and outside the chamber during part of the experiment .. 51
Figure 3.4. Daily ammonia emissions from the treatments where Agrotain® was applied before urine deposition .. 54
Figure 3.5. Daily ammonia emissions from the treatments where Agrotain® was applied after urine deposition .. 55
Figure 3.6. Cumulative NH₃ emissions following urine deposition before, on the same day and after Agrotain® application .. 56
Figure 3.7. Bar graph of the cumulative NH₃ emissions following urine deposition before, on the same day, and after Agrotain® application .. 57
Figure 3.8. Soil pH at 0-10 cm depth following urine deposition before, on the same day, and after Agrotain® application .. 59
Figure 3.9. Soil mineral N concentrations at 0-10 cm depth following urine deposition before, on the same day, and after Agrotain® application .. 61
List of Tables

Table 2. 1. International and National References using the different methodology to determine NH$_3$ volatilization from different N sources .. 16
Table 2. 2. NH$_3$ volatilization from urea fertilizer .. 27
Table 2. 3. NH$_3$ volatilization from urine applied to pasture: New Zealand data 29
Table 2. 4. NH$_3$ reductions with application of nBTPT from urea fertilizer in New Zealand and overseas .. 37
Table 2. 5. NH$_3$ reductions with application of nBTPT from animal urine in New Zealand .. 38
Table 3. 1. Physical and Chemical Characteristics of the Tokomaru Silt Loam 43
Table 3. 2. Description of the Treatments .. 46
Table 3. 3. Chemical Composition of Urine .. 49
Table 3. 4. Total NH$_3$ Losses by Treatment .. 57