Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The benefits of resistance training on blood lipid profile and body composition in Māori men

A thesis presented in partial fulfilment of the requirements for the Degree of Master of Science

In

Exercise and Sport Science

Massey University, Manawatū, New Zealand

Karl William Coley

2014
Abstract

Objectives: The primary objective of this study was to determine whether 12 weeks of resistance training at time periods of three, 30 minute sessions per week would provide enough stimuli to reduce the cardiovascular disease (CVD) risk of blood lipid profile and body composition in sedentary Māori (Indigenous New Zealanders) men.

Methods: The study cohort consisted of a convenience sample of 16 Māori males aged 28 – 60y. Participants completed a resistance training intervention consisting of three 30 minute sessions per week for 12 weeks. Measures of pre- and post-BMI, waist to hip ratio (WHR), body composition and fasting lipids were made. Pre-, mid-, and post-intervention assessments of strength, aerobic fitness, body composition and blood composition were also undertaken. Exercise was controlled five days prior to the testing; whilst diet was restricted -12 hours prior to blood tests.

Results: Percentage body fat was significantly lower after the 12 week resistance training intervention (P<0.001) and lean body mass (LBM) was significantly higher (P<0.015). A reduction in low density lipoprotein cholesterol (LDL-c) occurred (P<0.039), though a high density lipoprotein cholesterol (HDL-c) (P <0.8), body mass index (BMI) (P<0.469), and waist to hip ratio (WHR) (P <0.196) were not significantly different after completion of the intervention.

Conclusions: This was the first study to investigate the effect of half hour resistance training bouts, three times per week on male Māori as a modality to alter their CVD risk profile. These findings support the hypothesis that resistance training can improve CVD risk profile through a change in body composition; namely a reduction in percentage body fat, increase in LBM, and a reduction in LDL-c. Although in this cohort this intervention has proved effective, further studies of larger populations are required to get a stronger level of significance.
Acknowledgements

I would like to thank the following people for their help and guidance throughout the process of completing this thesis.

First and foremost, Mum, without your love, support and encouragement I would have not known my limits; you have always pushed me to go further and achieve more in life and for that I will be forever grateful and cannot express how much your words of wisdom mean to me.

Dr Isaac Warbrick, my supervisor, for your continued belief, guidance, knowledge and understanding as I bombarded you with questions and ideas about this project. You have been a constant source of knowledge and inspiration throughout this project to me.

My co-supervisors, Dr Geoff Kira and Dr Steve Stannard, for their advice and assistance throughout this project.

Acknowledgements are due to Professor Hugh Morton who helped process and organise my statistical analysis, and to Mr Bevan Erueti who taught me to understand some of the more in-depth Māori aspects of the study I conducted.

To the participants (B.R.Os), for all the laughs, good times, and hard work you all put in; without you guys this research could not have taken place.

To Jo, my partner for putting up with my hours of study, and being there for me throughout this process; and for your unwavering support and encouragement when things were overwhelming and I wanted to throw in the towel.

Special thanks are due to Dr’s Matt Barnes, Darryl Cochrane, and Toby Mündel, all of whom have taught and inspired me during my time here at Massey. You all have played a massively influential role in my education and for that I am extremely grateful.
Table of Contents

Abstract .. II
Acknowledgements ... III
Table of Contents ... IV
List of tables ... VII
Explanation of Māori terms .. VIII
Abbreviations .. X
1. Introduction .. 1
 1.1 Hypothesis ... 7
2. Literature review .. 8
 2.1 What is cardiovascular disease ... 8
 2.2 CVD risk factors .. 9
 2.2.1 Non modifiable risk factors ... 10
 2.2.1.1 Age ... 10
 2.2.1.2 Gender .. 10
 2.2.1.3 Family history ... 11
 2.2.1.4 Ethnicity ... 11
 2.2.2 Modifiable risk factors ... 12
 2.2.2.1 Physical inactivity (sedentary lifestyle) .. 12
 2.2.2.2 Obesity ... 13
 2.2.2.3 Hypercholesterolemia ... 15
 2.3 Exercise training adaptation ... 17
 2.3.1 Exercise and CVD ... 18
 2.3.2 Exercise modalities prescribed .. 19
 2.3.2.1 Resistance training and CVD ... 20
 2.4 Kaupapa Māori .. 22
3. Methods ... 24
 3.1 Participants ... 24
 3.2 Study design ... 25
 3.2.1 Kaupapa Māori design ... 26
 3.3 Outcomes ... 26
 3.3.1 Pre experimental protocol ... 27
 3.4 Experimental protocol .. 27
Appendices

Conclusions

5.4 The Application of a Kaupapa Māori approach ... 48
5.5 Considerations/limitations .. 51
5.6 Future research .. 52

6. Conclusions ... 53
7. References ... 54
8. Appendices .. i

Appendix A – Training Programmes .. i
Appendix B – Post Exercise Questionnaire .. iv
List of figures

Figure 4-1 Mean (± SE) of percentage body fat pre intervention, at six weeks and at 12 weeks of the resistance training intervention (n=15).

List of tables

Table 4.1 Change in LBM, total body fat, LDL and HDL cholesterol at pre, 6wk and 12wk (mean ±SD).

Table 4.2 Change in LDL-c from pre training to 12 weeks of resistance training (mean ±SD).
Explanation of Māori terms

Hauora – Wellness, health.

Hinengaro – Mind, thoughts; in context of Māori health, hinengaro represents mental health and wellbeing.

Hui – Meeting.

Kai – Food.

Karakia – Prayer.

Kaumātua – Respected elders in the Māori community that have been involved with their whānau for many years.

Kaupapa Māori Research – Research methodology based on Māori ideology, values.

Mana – Authority, influence prestige, honour.

Marae – Meeting place.

Matauranga – Knowledge, comprehension or understanding of everything visible and invisible.

Mauri – Life force/spirit.

Mauriora – Access to te ao Māori (As expressed in Te Pae Mahutonga).

Patu – Traditional Māori club weapon.

Taiaha – Traditional Māori staff-like weapon used for striking and thrusting in combat.

Te Oranga – Participation in society (As expressed in Te Pae Mahutonga).

Te Pae Mahutonga – Māori model of health designed by Mason Durie, which underpins the Te Whare Tapa Whā.

Te Wheke – A Māori model of health also known as the Octopus model.

Tinana – Physical body; in context of Māori health, tinana represents physical wellbeing.
Toiora – Healthy lifestyles (As expressed in Te Pae Mahutonga).

Waiora – Environmental protection (As expressed in Te Pae Mahutonga).

Wairua – Spirit, soul, represents spiritual wellbeing in the context of Māori health.

Whakatau – Welcome used to begin a hui.

Whānau – Extended family, family group.

Whanaungatanga – Kinship, family connection. Relationship through shared experience.

Wharenui – Meeting house.

Whare Tapa Whā – A Māori model of health with four facets of health.
Abbreviations

1RM – 1 Repetition Maximum
ACSM - American College of Sports Medicine
AHA – American Heart Association
ANOVA – Analysis of Variance
BMD – Bone Mineral Density
BMI – Body Mass Index
BMR – Basal Metabolic Rate
CAD – Coronary Artery Disease
CHD – Coronary Heart Disease
CI – Confidence Interval
CO₂ – Carbon Dioxide
CVD – Cardiovascular Disease
DVT – Deep Vein Thrombosis
DXA – Dual-Energy X-Ray Absorptiometry
FFA – Free Fatty Acids
FM – Fat Mass
FT – Fasting Triglycerides
HDL – High Density Lipoprotein
HDL-c - High Density Lipoprotein Cholesterol
HPL – Human Performance Laboratory
HR – Heart Rate
IFNHH – Institute of Food Nutrition and Human Health
IHD – Ischemic Heart Disease
L - Litres
LBM – Lean Body Mass
LDL – Low Density Lipoprotein
LDL-c – Low Density Lipoprotein Cholesterol
MI – Myocardial Infarction
MLC – Med Lab Central
MPH – Miles per Hour
n – Number of Participants
O₂ – Oxygen
PARQ – Physical Activity Readiness Questionnaire
PASW – Predictive Analytics SoftWare (formerly SPSS)
QDR – Quantitative Digital Radiography
RER – Respiratory Exchange Ratio
SD – Standard Deviation
SE – Standard Error
SNZ – Sport New Zealand
SPARC – Sport and Recreation New Zealand
SRI – Sport and Rugby Institute
SST – Serum Separator Tubes
STPD – Standard Temperature Pressure Dry
TC – Total Cholesterol
VCO₂ – Carbon Dioxide Production
VO₂ – Oxygen Uptake
VO₂ max – Maximal aerobic capacity
WHO – World Health Organisation
WHR – Waist to Hip Ratio
Y – Years