Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
BULL BEEF SYSTEMS FOR
WAIRARAPA HILL COUNTRY

A Thesis Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Agricultural Science at
Massey University

Philip Ross Journeaux
January 1987
I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

I do not wish my thesis to be made available to readers without my written consent for ________ months.

I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ________ months.

I agree that my thesis may be copied for Library use.

I do not wish my thesis to be copied for Library use for ________ months.

Signed

Date 4/12/87

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

__
ABSTRACT

The purpose of this study was to investigate the viability of a number of bull beef production systems integrated with sheep, within summer dry and summer wet Wairarapa hill country environments.

This was achieved by construction of a spreadsheet feed budget simulation model, based on representative Wairarapa pasture growth and animal production data. The model balanced feed requirements over fortnightly periods, with unconsumed feed transferred between periods subject to allowances for senescence and decay. Gross margin analysis was used to investigate the financial profitability of the systems examined, including the base sheep policies used.

A survey of commercial sheep/bull beef hill country farmers within the Wairarapa was carried out to verify the assumptions made in model construction and to identify practical problems/opportunities. Several off-farm factors were then considered (eg supply of bulls, availability of killing capacity, United States beef market) in terms of their on-farm impact and the outlook for bull beef, over the next 2-3 years. Following analysis of the survey and off-farm data, several farmers were re-visited individually, and then a follow-up group meeting was held, to discuss the results of the model and survey analysis.

The study showed that there are a number of bull beef systems which are viable and profitable on Wairarapa hill country, and that the number of bulls farmed on hill country is likely to increase in the future. While some farmers were achieving levels of production indicated feasible by the model, many were producing below these levels. There is therefore considerable opportunity to increase meat production and profitability on these farms. There is also considerable opportunity, in terms of the supply of bulls, for the bull beef industry to expand within New Zealand, although there are some market uncertainties which could hinder this.

The overall conclusion from this study is that the production of bull beef offers considerable scope to increase the profitability of North Island hill country farming, and that this industry will continue to expand.
ACKNOWLEDGEMENTS

I would like to express my thanks to my supervisors, Mr A McRae and Mr W Parker, for their guidance and assistance throughout this study. I would also like to thank the members of the Department of Agricultural Economics and Business and Department of Agricultural and Horticultural Systems Management who gave willing assistance at various stages of this study, as well as many of my colleagues in the Ministry of Agriculture and Fisheries.

My thanks and gratitude to the Wairarapa farmers for their willing cooperation and hospitality during the farm surveys and meeting.

To my employers, Advisory Services Division of the Ministry of Agriculture and Fisheries, I give my thanks for the study opportunity and their financial support.

Acknowledgement and thanks must also go to Sue Millner and Chris Beech for their skill and efficiency in typing this manuscript.

Finally I would like to thank my wife Linda for her unfailing support and encouragement throughout this study.

Any deficiencies or errors in this report are the sole responsibility of the author.
TABLE OF CONTENTS

Abstract i
Acknowledgements ii
Table of contents iii
List of Maps and Plates vii
List of Figures vii
List of Tables viii

CHAPTER ONE: INTRODUCTION

1.0 Chapter Outline 1
1.1 Motivation for Study 1
1.2 Choice of Wairarapa as Study Region 2
1.3 Objectives of Study 2
1.4 Research Methodology 3
1.5 Thesis Outline 5

CHAPTER TWO: BULL BEEF PRODUCTION

2.0 Chapter Outline 7
2.1 History in New Zealand 7
2.2 Effect of Castration 12
2.3 Breed Comparisons 13
2.4 Bull Grazing Management 14
 2.4.1 Bull Behaviour 14
 2.4.2 Sheep and Bull Interaction 15
2.5 Carcass Grading 16
2.6 Principles of Designing Bull Beef Systems 18
2.7 Conclusions 20
CHAPTER THREE: MODEL CONSTRUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 Chapter Outline</td>
<td>21</td>
</tr>
<tr>
<td>3.1 Feed Budgeting Approach</td>
<td>21</td>
</tr>
<tr>
<td>3.2 Modelling Pasture Growth</td>
<td>21</td>
</tr>
<tr>
<td>3.3 Measuring Pasture Growth</td>
<td></td>
</tr>
<tr>
<td>3.3.1 Sources of Error</td>
<td>22</td>
</tr>
<tr>
<td>3.4 Pasture Growth Rate Data used for Model Construction</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Nutritive Value of Pasture</td>
<td>24</td>
</tr>
<tr>
<td>3.6 Transfer of Pasture between Periods</td>
<td>24</td>
</tr>
<tr>
<td>3.7 Animal Feed Requirements</td>
<td>28</td>
</tr>
<tr>
<td>3.7.1 Sheep Energy Requirements</td>
<td>35</td>
</tr>
<tr>
<td>3.7.2 Bull Energy Requirements</td>
<td>35</td>
</tr>
<tr>
<td>3.8 Pasture Allowance and Feed intake</td>
<td>35</td>
</tr>
<tr>
<td>3.9 Sheep Policies Modelled</td>
<td>38</td>
</tr>
<tr>
<td>3.10 Bull Policies Modelled</td>
<td>41</td>
</tr>
<tr>
<td>3.10.1 Relationship between Bull Liveweight and Carcass Weight</td>
<td>43</td>
</tr>
<tr>
<td>3.11 Summary of Model Operations</td>
<td>45</td>
</tr>
</tbody>
</table>

CHAPTER FOUR: MODEL RESULTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 Chapter Outline</td>
<td>47</td>
</tr>
<tr>
<td>4.1 Criteria Used to Evaluate Model Output</td>
<td>47</td>
</tr>
<tr>
<td>4.2 Summer Dry Model Results</td>
<td></td>
</tr>
<tr>
<td>4.2.1 Summary of Summer Dry Model Results</td>
<td>47</td>
</tr>
<tr>
<td>4.3 Summer Wet Model Results</td>
<td></td>
</tr>
<tr>
<td>4.3.1 Summary of Summer Wet Model Results</td>
<td>59</td>
</tr>
<tr>
<td>4.4 Alteration of Sheep:Cattle Ratios</td>
<td></td>
</tr>
<tr>
<td>4.5 Conclusion</td>
<td>73</td>
</tr>
</tbody>
</table>

CHAPTER FIVE: FINANCIAL ANALYSIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 Chapter Outline</td>
<td>78</td>
</tr>
</tbody>
</table>

7.2 Group meeting
 7.2.1 Bull Grazing Management
 7.2.2 Marginal Feeding Costs in the Late Winter-Spring

7.3 Conclusion

CHAPTER EIGHT: EXTERNALITIES

8.0 Chapter Outline

8.1 Supply of Bulls
 8.1.1 Killing Capacity

8.2 Factors Affecting the Bull Beef Schedule

8.3 The Beef Situation in the United States
 8.3.1 Sources of Information and Market Predictors

8.4 Other Markets
 8.4.1 Bull Beef as a Table Meat

8.5 Hedging Strategies

8.6 Conclusion

CHAPTER NINE: EVALUATION AND CONCLUSIONS

9.0 Chapter Outline

9.1 Evaluation of Research Methodology

9.2 Discussion on, and Suggested Improvements to Management of Bull Beef in Hill Country
 9.2.1 Increasing the Number of Bulls on Hill Country
 9.2.2 Grazing Management
 9.2.3 Farm Management - Objective Measurements
 9.2.4 Off-Farm Factors
 9.2.5 Requirements for Further Research and Extension

9.3 Conclusion

APPENDIX I Pasture Growth Rates

APPENDIX IIA Summer Dry Model Output

APPENDIX IIIB Summer Wet Model Output
APPENDIX III Gross Margin Calculations
APPENDIX IV Survey Questionnaire
APPENDIX V Calculation of Marginal Feeding Costs of Ewes and Bulls in the late Winter-early Spring
APPENDIX VI United States Meat Import Trigger Level Formula

BIBLIOGRAPHY

LIST OF PLATES AND MAPS

Map 3.1 Wairarapa Climatic Regions
Map 6.1 Location of Wairarapa and Survey Farms
Plate 6.1 9 month bulls and ewe hoggets rotationally grazed on Wairarapa hill country
Plate 6.2 18 month bulls and breeding ewes rotationally grazed on Wairarapa hill country

LIST OF FIGURES

1.1 Thesis Research Methodology
2.1 NZ Beef Grading Classification for Steers and Heifers
2.2 Dry Matter Required to Grow a Bull from 100 kg to 430 kg LW
3.1 Model Pasture Rate of Growth kg DM/ha/day
4.1 Feed Demand and Supply and the Resultant Pasture Cover for Bull Policy 1 in a Summer Dry Environment
4.2 A Summary of Average Pasture Covers for all Bull Policies in the Summer Dry Environment
4.3 A Summary of Bull Beef Liveweight Profiles in the Summer Dry Environment
4.4 Summary of the Proportion of Green and Dead Material in Model Generated Pasture Covers.
4.5 A Summary of Average Pasture covers for All Bull Policies in the Summer Wet Environment
4.6 A Summary of Bull Liveweight Profiles in the Summer Wet Environment 75
4.7 Average Pasture Covers Generated by Increasing the Proportion of Bulls in Policy 1, Summer Dry Environment 76
4.8 Pasture Covers Generated by Altering the Proportion of Bulls in Policy 1, and combining 70% of Policy 1 and 30% Policy 3 in the Summer Dry Environment 77
7.1 An Example of Integrated Grazing 148
8.1 Average Weighted New Zealand Bull Schedule as % of New York Bull Manufacturing Price 157
8.2 Monthly Movements in the New Zealand Average Weighted Schedule 1982-1986. 160
8.3 Comparative Movements in New York Bull Manufacturing Prices in terms of US ¢/lb: NZ ¢/kg 169
8.4 Movements in American Beef prices 1982-1985 172

LIST OF TABLES

2.1 Bobby Calf Slaughterings, Dairy Beef Retention, Bull Slaughtering Patterns 1970-1985 8
2.2 National Cattle Slaughter by Stock Type 9
2.3 Manufacturing Beef Export Production 1976-1985 10
2.4 Relative Profitability of Pastoral Farming 1977/78-1985/86 11
2.5 New Zealand Bull Schedule as at September 15 1986, showing the Marginal value of the last kilogram of Carcass Weight between weight ranges 17
3.1 Fortnightly Pasture Rates of Growth (kg DM/ha/day) and Seasonal Proportions of Growth for Representative Summer Dry and Summer Wet Regions 26
3.2 Fortnightly Nutritive Value of Pasture Production (MJ ME) for Representative Regions 29
3.3 Senescence Rates Used in the Model 31
3.4 Decay Rates Used in the Model 31
3.5 Bull Energy Requirements (MJ ME)

3.6 DM Intake as a Percentage of Bull Liveweight

3.7 Summary of Bull Systems Modelled

4.1 Average Liveweight Gains (kg/day) on a Seasonal Basis for Summer Dry Bull Policies

4.2 Model Output for Bull Policy 1 on Summer Dry Wairarapa Hill Country

4.3 Model Output for Bull Policy 2 on Summer Dry Wairarapa Hill Country

4.4 Model Output for Bull Policy 3 on Summer Dry Wairarapa Hill Country

4.5 Model Output for Bull Policy 4 on Summer Dry Wairarapa Hill Country

4.6 Model Output for Bull Policy 5 on Summer Dry Wairarapa Hill Country

4.7 Model Output for Bull Policy 6 on Summer Dry Wairarapa Hill Country

4.8 Model Output for Bull Policy 7 on Summer Dry Wairarapa Hill Country

4.9 Average Liveweight Gain (kg/day) on a Seasonal basis for Summer Wet Bull Policies

4.10 Model Output for Bull Policy 1 on Summer Wet Wairarapa Hill Country

4.11 Model Output for Bull Policy 2 on Summer Wet Wairarapa Hill Country

4.12 Model Output for Bull Policy 3 on Summer Wet Wairarapa Hill Country

4.13 Model Output for Bull Policy 4 on Summer Wet Wairarapa Hill Country

4.14 Model Output for Bull Policy 5 on Summer Wet Wairarapa Hill Country

4.15 Model Output for Bull Policy 6 on Summer Wet Wairarapa Hill Country

4.16 Model Output for Bull Policy 7 on Summer Wet Wairarapa Hill Country
5.1 Gross Margin Analysis for Bull Policy 1 82
5.2 Summary of Gross Margin Analysis of Bull and Sheep Systems Modelled 82
5.3 Sensitivity Analysis of Bull and Base Sheep Policies to Varying Bull Purchase, Meat Schedule and Wool Prices 83
5.4 Maximum Price for Replacement Bulls in Policy 4 in order to return the same GM as for Policy 2, under different schedule prices, and varying weaner prices for Policy 2 86
5.5 Sensitivity of Bull Policy 1 to Final Carcass Weight and Weaner Price 86
5.6 Return per Bull to Differing Urea and Schedule Prices 92
5.7 Profit (Loss) per Bull to Differing Hay and Schedule Prices 93
5.8 Profit (Loss) per Bull to Differing Silage and Schedule Prices 95
5.9 Profit (Loss) per Bull to Differing Meal and Schedule Prices 96
6.1 Farmer Details 105
6.2 1985 Winter (June 30) Stock Numbers and Stocking Rates 107
6.3 Summary of Stocking Rates and Sheep:Cattle Ratios on the Survey Farms during the period 1983/1985 108
6.4 Change in Stock Numbers over the Next Two Years 109
6.5 Lambing Percentages 1983-1985 110
6.6 Mating Dates on the Survey Farms (1983-1985) 111
6.7 Autumn Bodyweight of Sheep (kg) 113
6.9 Lamb Carcass Weights (kg) 116
6.10 Wool Production per Sheep Stock Unit Wintered (kg) 116
6.11 Ranking of Importance When Buying Bulls 117
6.12 Ranking of Factors Affecting Selling Decisions 119
6.13 Crosstabulation of Farmers following the Bull Schedule and the NZ $ Exchange 120
6.14 Average Liveweight Gains of Bulls (kg/day) 122
<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.15 Other Bull Animal Health Problems</td>
<td>123</td>
</tr>
<tr>
<td>6.16 Evaluation of the Effectiveness of Ralgro</td>
<td>124</td>
</tr>
<tr>
<td>6.17 Months of Most Severe Shortage of Pasture</td>
<td>126</td>
</tr>
<tr>
<td>6.18 Priority Ranking for Feed in a Dry Summer</td>
<td>128</td>
</tr>
<tr>
<td>6.19 Priority Ranking for Feed in a Wet Winter</td>
<td>128</td>
</tr>
<tr>
<td>6.20 Feeding Levels - Length of Pasture not grazed below by Young (Weaner-1yr) Bulls</td>
<td>130</td>
</tr>
<tr>
<td>6.21 Feeding Levels - Length of Pasture not grazed below by Older (>1yr) Bulls</td>
<td>130</td>
</tr>
<tr>
<td>6.22 Use of Nitrogen Fertiliser 1983-1985</td>
<td>131</td>
</tr>
<tr>
<td>6.23 Ranking of Seriousness of Bull problems</td>
<td>132</td>
</tr>
<tr>
<td>6.24 Labour Requirements for Bull Beef</td>
<td>133</td>
</tr>
<tr>
<td>6.25 Sources of Information on Bull Beef Farming used by Survey Farmers</td>
<td>134</td>
</tr>
<tr>
<td>6.26 Bull Beef Topics More Information is Required on</td>
<td>135</td>
</tr>
<tr>
<td>6.27 Other Concerns for the Future of Bull Beef</td>
<td>136</td>
</tr>
<tr>
<td>7.1 Model Output for Bull Policy 1 (80 kg Weaner) on Summer Dry Wairarapa Hill Country</td>
<td>142</td>
</tr>
<tr>
<td>7.2 Comparison of Average Liveweight Gain (kg/day) of 80 kg Weaner to 100 kg Weaner, grown through to 220 kg carcass weight</td>
<td>143</td>
</tr>
<tr>
<td>7.3 Residual Dry Matter Levels and Rotation Lengths for Bull Policy 1</td>
<td>145</td>
</tr>
<tr>
<td>7.4 Residual Dry Matter Levels and Rotation Lengths for Bull Policy 3</td>
<td>145</td>
</tr>
<tr>
<td>8.1 Proportion of Dairy Breeds in New Zealand</td>
<td>151</td>
</tr>
<tr>
<td>8.2 Cattle Slaughter: Days Required at Capacity. Wellington, East/Coast Hawkes Bay Regions</td>
<td>155</td>
</tr>
<tr>
<td>8.3 Background Assumptions to Bull Beef Schedule</td>
<td>158</td>
</tr>
<tr>
<td>8.4 Derived Bull Beef Schedule for 220.5-245 Carcass Weight Range</td>
<td>159</td>
</tr>
<tr>
<td>8.5 US National Cattle Herd 1969-1987</td>
<td>162</td>
</tr>
</tbody>
</table>
8.6 Per Capita Consumption of Meat in the US
8.7 Selected US Cattle Sector Impacts of a 25% Drop in Feed Grain Prices 1987-1990
8.8 Biological Time Lag before Cheaper Feed is Reflected in Livestock Production
8.9 Number of Bulls Slaughtered for Domestic Use in New Zealand