Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
AN ANALYSIS OF CONSUMER BELIEFS AND ATTITUDES TOWARDS AGRICHEMICAL USE AND AGRICHEMICAL RESIDUES ON FRESH FRUIT AND VEGETABLES

A thesis presented in partial fulfillment of the requirements for the degree of Master of Agricultural Economics

Massey University
Palmerston North, New Zealand

RUTH WILSON-SALT
1996
ABSTRACT

Agrichemicals have been extensively used to control pests on fresh fruit and vegetables since the Second World War and virtually since this time controversy has surrounded their use. Agrichemicals present an unknown hazard to consumers, one which consumers feel they have little control over.

Agrichemical use and residues are not confined to fresh fruit and vegetables, but this is one product where their use is prominent. Consumers are concerned about agrichemical use for many reasons. One such issue is the safety of the fresh fruit and vegetables they eat, in terms of their health. If a new product is introduced, which addresses this issue, and differs on only the characteristic of food safety, classical demand theory has little to say about the adoption of this new product. In classical demand theory a good is bought for itself.

Goods characteristics theory however considers the good as a bundle of characteristics. The price of a good represents the sum of the marginal values of the characteristics. Goods characteristics theory however, would consider that the consumer is perfectly informed about these characteristics. This study assumes this is not the case. The consumer has a subjective evaluation of the characteristics which is more or less close to the objective reality. This subjective evaluation can be ascertained by asking a consumer about their beliefs and attitudes (considered to be synonymous with the terms perception and concern) and using these variables as explanatory variables in a model of consumer choice.

Respondents to a mail survey in this study were asked if they would consider buying a new product, fresh fruit and vegetables which differed on only one characteristic from currently available fresh produce, the use of agrichemicals in their production. Respondents were asked about their attitude and beliefs about the use of agrichemicals and possible presence of agrichemical residues on fresh fruit and vegetables.

The attitude and belief variables were used as explanatory variables in a logistic regression, with the dependent variable indicating whether or not they would consider buying fresh fruit and vegetables grown using integrated pest management. Results from this study suggest that respondents can be divided into groups (three in this study) which have different probabilities of considering buying the new product at various levels of concern. These groups could be characterised reliably by demographic variables and variables which indicate the respondents level of knowledge or information.
Respondents were also asked if they would be willing to pay more for the new product. A logistic regression model was again used to estimate the probability that these respondents would be willing to pay at least 20% more for fresh produce grown using integrated pest management. The respondents can again be grouped on this basis and the groups characterised in terms of demographic variables and variables which indicate the respondents' level of knowledge or information.

The results indicate that respondents who were employed, non-Maori, could recall information about agrichemical use or residues in the previous six months and who used agrichemicals to control pests and diseases around the outside of the home were more likely to consider buying integrated pest management produce and to consider paying at least 20% more for such produce.

As it is the underlying attitude and beliefs of consumers that explain the probability of considering buying the new product and paying more for it, producers may be interested in changing the beliefs of respondents in the groups with a low probability of considering buying such produce and paying at least 20% more for it, to the beliefs of groups with a higher probability of considering buying such produce and paying at least 20% more for it. Research has shown that people's beliefs are easier to influence than their attitudes. Since it is proposed that beliefs are a function of a person's information as well as demographic variables and this is supported by the research findings, the groups are investigated with regard to the information sources they consider reliable and the channels they obtain information through. For the groups who are least likely to considering buying such produce and to pay at least 20% more for it, the Department of Health, public interest groups, government research agencies and university scientists are considered to be the most reliable sources of information. Respondents were generally most likely to obtain information from television, newspapers and magazines.
ACKNOWLEDGEMENTS

I would like to express my gratitude to the following people and organisations for their assistance;

Professor R.J. Townsley for his extensive supervision and guidance;

Professor A.N. Rae and Professor A.D. Meister for additional guidance with research issues and professional development;

The Massey University Agricultural Research Foundation for financial assistance for this research;

Mrs K.J. Fisher for assistance with administrative issues;

friends and colleagues in the Department of Agricultural Economics and Business, Massey University;

Associate Professor S. Haslett and Dr S. Ganesalingam in the Department of Statistics, Massey University, for advice on the statistical issues in this study;

and especially to Ian M'Kenzie for his patience, support and encouragement.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER 1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2.</td>
<td>BACKGROUND</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Agrichemical use</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2.2 Residues as an externality</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2.3 Residues as a private good</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2.4 The role of government</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2.5 Agrichemical regulation in New Zealand</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2.6 The agrichemical industry's response to consumer concerns</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.7 Producers' response to consumer concerns</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.8 Consumer concern about agrichemical residues in the food supply</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER 3.</td>
<td>LITERATURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td>3.1 Perception, concern or attitude?</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>3.2 Empirical analyses of consumer concerns</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>3.3 The research question</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>CHAPTER 4.</td>
<td>DATA MEASUREMENT</td>
<td>26</td>
</tr>
<tr>
<td>4.1 Measurement</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>4.2 Reliability and validity</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>4.3 General issues in question design</td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>
CHAPTER 5 DATA COLLECTION
 5.1 Defining the population 36
 5.2 Sample size 37
 5.3 Selecting respondents 37
 5.4 Carrying out the mail survey 39

CHAPTER 6 DESCRIPTIVE RESULTS
 6.1 Introduction 42
 6.2 Treatment of missing values 42
 6.3 Summary of survey responses 43
 6.3.1 Sample Profile 43
 6.3.2 How do respondents rank food issues? 46
 6.3.3 Respondents’ level of concern about agrichemical use 47
 6.3.4 Respondents’ beliefs about agrichemical use 49
 6.3.5 Will respondents consider buying fresh produce grown using integrated pest management and how much will they pay? 50
 6.3.6 Responses to information questions 51
 6.3.7 Responses to other questions 53

CHAPTER 7 MODEL FORMULATION AND RESULTS 54
 7.1 Introduction 54
 7.2 A model of consumer choice 54
 7.3 Explaining consumer choice 68
 7.4 Are respondents willing to pay more for IPM produce? 79
 7.5 Explaining willingness to pay 83

CHAPTER 8 DISCUSSION 89
 8.1 Introduction 89
 8.2 Consumer ranking of food issues 89
 8.3 Consumers’ level of concern 91
 8.4 Other concerns 92
 8.5 Respondent beliefs about the benefits of agrichemicals 93
8.6 Reasons for not buying IPM fresh produce
8.7 Will respondents consider buying IPM fresh produce?
8.8 An alternative approach
8.9 Will respondents pay more for IPM fresh produce?
8.10 Will consumers change behaviour based on information?
8.11 Conclusion

REFERENCES

APPENDIX 1 SURVEY INSTRUMENT
 COVER LETTER
 SURVEY
 REMINDER LETTER

APPENDIX 2 MODELS COMPARED IN SECTION 8.9
 MODEL A
 MODEL B
 MODEL C
LIST OF FIGURES

Figure 3.1	A model of behavioural intention (Fishbein and Ajzen, 1975)	12
Figure 3.2	Fishbein and Ajzen's attitude variable	13
Figure 3.3	Consumer choice in goods' characteristics theory	14
Figure 3.4	Consumers' subjective beliefs differ	17
Figure 3.5	Differing consumer preferences	18
Figure 3.6	The potential behavioural modes tested by Huang (1993)	21
Figure 3.7	Relationships tested between variables	22
Figure 3.8	Relationships tested between the dependent variables in Ott's analysis	22
Figure 3.9	A possible model using variables in Ott's analysis	23
Figure 3.10	Respondent values for IPM produce in relation to conventional produce	24
Figure 3.11	The model to be tested	25
Figure 4.1	Statements of concern used by Ott	26
Figure 4.2	Attitude question (level of concern)	28
Figure 4.3	Semantic differential question (level of concern)	28
Figure 4.4	Information on integrated pest management used in the survey	29
Figure 4.5	Semantic differential question (level of concern)	30
Figure 4.6	Alternative measure of consumer concern about agrichemicals (rank)	32
Figure 4.7	Alternative measure of consumer beliefs about agrichemicals (use)	33
Figure 4.8	Some open-ended questions in the survey	35
Figure 6.1	Information about GROWSAFE	53
Figure 7.1	Numbers of respondents by X_1, X_2, X_3 categories	59
Figure 7.2	Cell frequencies in the nine cell model	60
Figure 7.3	Possible four cell models	62
Figure 7.4	Cell frequencies in the four cell model	62
Figure 7.5	Probability that respondents in each group will consider buying IPM produce, as a function of their level of concern (Model 4)	63
Figure 7.6	Frequencies in the three cell model	64
Figure 7.7	Probability that respondents in each group will consider buying IPM produce, as a function of their level of concern (Model 5)	65
Figure 7.8	Models to be compared	71
Figure 7.9	Plot of canonical function 1 by canonical function 2 by group	76
Figure 7. 10	Cell frequencies in the four cell model	81
Figure 7. 11	Probability that respondents in each group will pay at least 20% more for IPM fresh produce, as a function of their level of concern (Model 4)	82
Figure 7. 12	Models to be compared	83
Figure 7. 13	Plot of canonical function 1 by canonical function 2 by group	86
Figure 8. 1	Probability that respondents in each group will consider buying IPM produce, as a function of their level of concern	96
Figure 8. 2	Results of the model by Huang (1993)	98
Figure 8. 3	Probability that respondents in each group will consider paying at least 20% more for IPM produce, as a function of their level of concern	101
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.1</td>
<td>Evaluation of techniques developed to improve response rates to mail surveys</td>
<td>41</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Location, sex, ethnicity and age</td>
<td>44</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Income</td>
<td>45</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Survey results for education</td>
<td>45</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Respondent ranking of food issues</td>
<td>46</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Respondents ranking of other health risks compared with eating fresh fruit and vegetables grown with agrichemicals</td>
<td>47</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Concerns other than food safety</td>
<td>48</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Concerns about specific fruit and vegetables</td>
<td>48</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Beliefs about the use of agrichemicals on fresh fruit and vegetables</td>
<td>49</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Responses to statements about the safety of conventional and IPM fresh produce</td>
<td>50</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>Why respondents would not buy fresh produce grown using IPM</td>
<td>51</td>
</tr>
<tr>
<td>Table 6.11</td>
<td>Number of sources of information</td>
<td>52</td>
</tr>
<tr>
<td>Table 6.12</td>
<td>Who should be responsible for information and who is a reliable source of information</td>
<td>53</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Parameter results for four cell model</td>
<td>63</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Parameter results for Model 5</td>
<td>65</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Loglikelihood ratio between successive models</td>
<td>65</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>Likelihood ratio statistic for all models</td>
<td>66</td>
</tr>
<tr>
<td>Table 7.5</td>
<td>Loglikelihood ratio for alternative models compared with Model 5</td>
<td>67</td>
</tr>
<tr>
<td>Table 7.6</td>
<td>Explanatory variables used in the analysis</td>
<td>69</td>
</tr>
<tr>
<td>Table 7.7</td>
<td>Variables in each analysis</td>
<td>70</td>
</tr>
<tr>
<td>Table 7.8</td>
<td>Univariate F statistics for explanatory variables included in the models</td>
<td>72</td>
</tr>
<tr>
<td>Table 7.9</td>
<td>Statistics for model comparison</td>
<td>72</td>
</tr>
<tr>
<td>Table 7.10</td>
<td>Pooled within canonical structure</td>
<td>74</td>
</tr>
<tr>
<td>Table 7.11</td>
<td>Total sample correlation coefficients</td>
<td>74</td>
</tr>
<tr>
<td>Table 7.12</td>
<td>Pooled within-group standardized canonical coefficients</td>
<td>74</td>
</tr>
<tr>
<td>Table 7.13</td>
<td>Group means</td>
<td>75</td>
</tr>
<tr>
<td>Table 7.14</td>
<td>Ranking of group means</td>
<td>77</td>
</tr>
<tr>
<td>Table 7.15</td>
<td>Sample statistics for the predictors</td>
<td>77</td>
</tr>
<tr>
<td>Table 7. 16</td>
<td>Respondents' willingness to pay to buy IPM produce</td>
<td></td>
</tr>
<tr>
<td>Table 7. 17</td>
<td>Loglikelihood ratio between successive models</td>
<td></td>
</tr>
<tr>
<td>Table 7. 18</td>
<td>Likelihood ratio statistic between all models</td>
<td></td>
</tr>
<tr>
<td>Table 7. 19</td>
<td>Parameters for the four cell model</td>
<td></td>
</tr>
<tr>
<td>Table 7. 20</td>
<td>Variables in each analysis</td>
<td></td>
</tr>
<tr>
<td>Table 7. 21</td>
<td>Univariate F-statistics of variables included in the models</td>
<td></td>
</tr>
<tr>
<td>Table 7. 22</td>
<td>Percent of between groups variability explained by function 1</td>
<td></td>
</tr>
<tr>
<td>Table 7. 23</td>
<td>Pooled within canonical structure</td>
<td></td>
</tr>
<tr>
<td>Table 7. 24</td>
<td>Total sample canonical coefficients</td>
<td></td>
</tr>
<tr>
<td>Table 7. 25</td>
<td>Pooled within-group standardized canonical coefficients</td>
<td></td>
</tr>
<tr>
<td>Table 7. 26</td>
<td>Group centroids</td>
<td></td>
</tr>
<tr>
<td>Table 7. 27</td>
<td>Ranking of group means</td>
<td></td>
</tr>
<tr>
<td>Table 7. 28</td>
<td>Sample statistics for the predictors</td>
<td></td>
</tr>
<tr>
<td>Table 8. 1</td>
<td>Comparison between food concern rankings for different questions in the study</td>
<td></td>
</tr>
<tr>
<td>Table 8. 2</td>
<td>Respondent level of concern</td>
<td></td>
</tr>
<tr>
<td>Table 8. 3</td>
<td>Respondent concerns about the use of agrichemicals</td>
<td></td>
</tr>
<tr>
<td>Table 8. 4</td>
<td>Respondent beliefs about the benefits of agrichemicals</td>
<td></td>
</tr>
<tr>
<td>Table 8. 5</td>
<td>Reasons for not buying certified pesticide residue free produce (Weaver et al. 1992)</td>
<td></td>
</tr>
<tr>
<td>Table 8. 6</td>
<td>Why respondents would not buy fresh produce grown using IPM</td>
<td></td>
</tr>
<tr>
<td>Table 8. 7</td>
<td>Sources of information considered reliable</td>
<td></td>
</tr>
<tr>
<td>Table 8. 8</td>
<td>Media channels recalled</td>
<td></td>
</tr>
<tr>
<td>Table 8. 9</td>
<td>Belief and attitude parameter results</td>
<td></td>
</tr>
<tr>
<td>Table 8. 10</td>
<td>$-2 \log L$ statistic for models</td>
<td></td>
</tr>
<tr>
<td>Table 8. 11</td>
<td>Likelihood ratio statistic between models</td>
<td></td>
</tr>
<tr>
<td>Table 8. 12</td>
<td>Sources of information considered reliable</td>
<td></td>
</tr>
<tr>
<td>Table 8. 13</td>
<td>Media channels recalled</td>
<td></td>
</tr>
<tr>
<td>Table 8. 14</td>
<td>Changes in purchase habits for fresh fruit and vegetables, as a result of information seen or heard in previous six months</td>
<td></td>
</tr>
</tbody>
</table>