Estimating the public health risk associated with drinking water in New Zealand

A thesis presented
in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
at Massey University

Bernard Joakim Phiri

Institute of Veterinary, Animal and Biomedical Sciences
Massey University
Palmerston North, New Zealand

2015
(submitted 20 January 2015)
Preamble

It always seems impossible until it’s done.

— Nelson Rolihlahla Mandela (1918–2013)
This thesis is concerned with the application of both epidemiological and molecular tools to assess the drinking water safety in New Zealand. Compromised drinking water safety is commonly manifested as gastrointestinal illness. The studies in this thesis were motivated by the desire to find ways of reducing the burden of such illness in the human population. Although the studies were conducted in the New Zealand setting the methodologies can be readily applied elsewhere.

The first study investigated the factors associated with the presence of microbes in raw water intended for public consumption. Random forest, an established non-parametric statistical method, was used to model data with possible complex interactions and identified variables that were predictive of the presence of microbes in raw drinking water. *E. coli*, which is widely used as a microbial contamination indicator in the water industry, was found to be a better predictor of the presence/absence of *Campylobacter* (bacteria) than protozoan microbes (*Cryptosporidium* and *Giardia*). This suggests that alternative methods of determining the presence/absence of pathogens in water should be developed. In the second study, the relationship between river flow and reports of cases of gastrointestinal illness was described using the distributed lag modelling approach. This revealed a positive relationship that peaked around 10 days after high flow. Further, the river flow-gastrointestinal illness relationship was stronger in small drinking distribution networks than in large ones. The small drinking water distribution networks could be targeted for facility upgrade in order to enhance their ability to deliver microbiologically safer drinking water.

The third study utilised culture-dependent methods to assess the public health risk associated with drinking water supplied at outdoor recreation facilities — campgrounds. Water treatment using methods such as ultra violet and chemical treatment were found to be highly beneficial for the campgrounds to deliver drinking water that was microbiologically safe and compliant with water safety regulations. The profiles and functional factors of drinking water microbial communities are described in the fourth study. Techniques from the fast-growing field of metagenomics were employed for this purpose. The capability of metagenomic techniques to detect multiple pathogens in a single assay was demonstrated. This has the potential to greatly enhance the specificity and sensitivity of microbial water quality testing.
Acknowledgements

I could not have accomplished the research work presented in this thesis without the excellent help and guidance that I received from my PhD supervisors. Thank you Nigel French for inviting me to carry out this research work and for teaching me a great deal of things about science. You always had a suggestion on how to move forward when faced with challenges. To Patrick Biggs, thank you for your kind and enthusiastic support even at short notice. You have been inspirational in my approach to bioinformatics and the presentation of genomic information. Thank you Mark Stevenson for your attention to detail and keeping me reminded of the need to apply the epidemiological principles appropriately in my work. To Deb Prattley, thank you for your unfailing support and kind guidance in presenting my research as a coherent story. To Paul Rainey, you provided that critical suggestion that got things moving again when the metagenomic DNA extraction was stalling, thank you.

Thank you to all my fellow postgraduate students at the Epicentre and Hopkirk Research Institute for being part of my journey and sharing your experiences with me along the way. To Christine Cunningham, Wendy Maharey, Jacque Mackenzie and Simon Verschaffelt, thank you for your administrative and computational support. Thank you to the mEpiLab team that provided me with the much needed laboratory support, in particular Angie Reynolds, Anthony Pita, Niluka Velathanthiri, Julie Collins-Emerson, Ann Midwinter, Neville Haack, Errol Kwan, Rhukshana Akhter, Lynn Rogers and Sarah Moore. Special thanks to the New Zealand Genomic Limited team, Lorraine Berry, Richard Fong and Trish McLenachan, for going beyond the call of duty to help me resolve the metagenomic sequencing issues.

I sincerely thank the Allan Wilson Centre and Massey University for funding this project. Thanks to the Department of Conservation for allowing me to conduct my researcher on their campgrounds. In particular, thanks go to the various campground managers that provided me with campground information and kindly showed me the routes to the water abstraction sites. Thank you to the National Institute of Water and Atmospheric Research as well as the sixteen regional councils that emailed me the river flow data. Thank you to the Institute of Environmental Science and Research Limited for providing me with disease case and drinking water supply data.

Most importantly, many thanks go to my family for being understanding and patient with me as I carried out this work. To my partner Eve, heartfelt thanks for making our home a warm and loving place to live. Completion of this work would have been extremely difficult
without your loving support. To Joe and Sam, thank you for letting your dad complete his PhD research trouble free. It has been a pleasure watching you blossom into fine young men during the four years of my PhD work, I love you very much.
Acronyms

EpiLab molecular epidemiology and public health laboratory. 47, 48, 50, 110, 112, 114, 116, 138, 165

aspa aspartase. 116

glmA glutamine synthetase. 116
gltA citrate synthase. 116

glyA serine hydroxy methyl transferase. 116

pgm phospho glucomutase. 116

tkt transketolase. 116

uncA adenosine triphosphate synthase alpha subunit. 116

BLAST basic local alignment search tool. 143, 161

FLASH fast length adjustment of short reads. 141, 143, 161

MEGAN metagenome analyzer. 143, 161

PAUDA protein alignment using a DNA aligner. 143, 161

QIIME quantitave insights into microbial ecology. 141, 161, 166

AIC Akaike information criterion. 86

ATP adenosine triphosphate. 8

BIOM biological observation matrix. 142

BLUE best linear unbiased estimator. 83

CART classification and regression trees. 53, 54

CCA canonical correspondence analysis. 79, 142, 145, 155, 156, 158

DAF dissolved air floatation. 20

DAPI 4′-6-diamidino-2-phenylindole. 51, 52

dATP deoxyadenosine triphosphate. 5, 25
dCTP deoxycytidine triphosphate. 5, 25
ddATP dideoxyadenosine triphosphate. 5, 6
ddCTP dideoxyctydine triphosphate. 5, 6
ddGTP dideoxyguanosine triphosphate. 6
ddNTP dideoxynucleotide triphosphate. 5, 6
ddTTP dideoxythymidine triphosphate. 6
dGTP deoxyguanosine triphosphate. 5, 25

DLM distributed lag model. 84–86

DLNM distributed lag non-linear model. 85–87, 94, 95, 100–104, 174–180

dNTP deoxyribonucleotide triphosphate. 5, 7, 8, 25

DOC Department of Conservation. 105–107, 121, 127–130, 137, 138, 155, 158, 159

dsDNA double stranded DNA. 6

dTTP deoxythymidine triphosphate. 5, 25

DWSNZ drinking water standards for New Zealand. 17, 28, 33, 41, 115, 120, 122, 128, 129, 160

ELISA enzyme-linked immunosorbet assay. 24–26, 42

emPCR emulsion polymerase chain reaction. 8

ESR Institute of Environmental Science and Research Limited. 17, 78

ESRI Environmental Systems Research Institute. 53, 108

FC faecal coliform. 34

FISH fluorescence in situ hybridisation. 25, 42

GDH glutamate dehydrogenase. 114

GDP gross domestic product. 105

GLM generalised linear model. 119, 120, 125, 127

GLMM generalised linear mixed model. 57, 58, 67, 68, 71, 73, 119, 120, 127, 128

gp60 60-kDa glycoprotein. 26

GPS global positioning system. 84, 107, 108, 110, 162, 163, 166

HACCP hazard analysis critical control point. 4

HAdV human adenovirus. 22

HPyV human polyomavirus. 22

HSP heat-shock protein. 35

IMS immunomagnetic separation. 51

ISFET ion-sensitive field-effect transistors. 8

LAMP loop-mediated isothermal amplification. 26, 42, 43

LDA linear discriminant analysis. 79

LSU large subunit. 34
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANOVA</td>
<td>multivariate analysis of variance. 79</td>
</tr>
<tr>
<td>MAV</td>
<td>maximum acceptable value. 115, 120, 122</td>
</tr>
<tr>
<td>mCCDA</td>
<td>modified charcoal ceferazone deoxycholate agar. 50, 51, 112, 164</td>
</tr>
<tr>
<td>MIE</td>
<td>Ministry for the Environment. 1</td>
</tr>
<tr>
<td>MFT</td>
<td>membrane filter technique. 23, 42</td>
</tr>
<tr>
<td>MLST</td>
<td>multilocus sequence typing. 110, 115, 124, 128, 160, 194, 201</td>
</tr>
<tr>
<td>MoH</td>
<td>Ministry of Health. 16, 17, 46, 78</td>
</tr>
<tr>
<td>MPN</td>
<td>most probable number. 23, 33, 53, 60, 106, 116, 122</td>
</tr>
<tr>
<td>MST</td>
<td>microbial source tracking. 29, 30, 42</td>
</tr>
<tr>
<td>MTF</td>
<td>multiple-tube fermentation. 23, 42</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information. 143, 149, 156</td>
</tr>
<tr>
<td>NGS</td>
<td>next-generation sequencing. 5, 11, 36, 140</td>
</tr>
<tr>
<td>NIWA</td>
<td>National Institute of Water and Atmospheric Research. 78, 165</td>
</tr>
<tr>
<td>NZGL</td>
<td>New Zealand Genomics Limited. 138, 165</td>
</tr>
<tr>
<td>OD</td>
<td>optical density. 138</td>
</tr>
<tr>
<td>OOB</td>
<td>out-of-bag. 55</td>
</tr>
<tr>
<td>OTU</td>
<td>operational taxonomic unit. 141, 142</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline. 51, 114, 198, 199</td>
</tr>
<tr>
<td>PCA</td>
<td>principal component analysis. 46, 79, 80, 90, 94, 95</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction. 5, 9, 25, 26, 29, 35, 42, 51, 110, 112, 114, 115, 120, 122–124, 128, 139, 140, 156, 165, 167, 194</td>
</tr>
<tr>
<td>PSI</td>
<td>proportional similarity index. 142, 143, 149, 155</td>
</tr>
<tr>
<td>QMRa</td>
<td>quantitative microbiological risk assessment. 22</td>
</tr>
<tr>
<td>qPCR</td>
<td>quantitative real-time polymerase chain reaction. 22, 26, 43</td>
</tr>
<tr>
<td>RAM</td>
<td>random-access memory. 166</td>
</tr>
<tr>
<td>rDNA</td>
<td>ribosomal deoxyribonucleic acid. 34</td>
</tr>
<tr>
<td>REC</td>
<td>river environment classification. 53</td>
</tr>
<tr>
<td>RF</td>
<td>random forest. 46, 53–57, 65, 70–74</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid. 25, 40, 138</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal ribonucleic acid. 25, 26, 30, 34–37, 112, 136–140, 145, 155, 165</td>
</tr>
<tr>
<td>SMRT</td>
<td>single molecule real-time. 9</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism. 136</td>
</tr>
<tr>
<td>SPInDel</td>
<td>species identification by insertions/deletions. 35</td>
</tr>
<tr>
<td>ssDNA</td>
<td>single stranded deoxyribonucleic acid. 5, 6, 9</td>
</tr>
<tr>
<td>SSU</td>
<td>small subunit. 34</td>
</tr>
<tr>
<td>ST</td>
<td>sequence type. 110, 112, 117, 124, 125</td>
</tr>
<tr>
<td>STEC</td>
<td>shiga toxin-producing E. coli. 16, 72</td>
</tr>
<tr>
<td>TC</td>
<td>total coliform. 34</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom. 37</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America. 16, 37, 45, 46, 75, 76</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency. 51, 114</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet. 17, 21, 97, 120, 121, 127, 129, 130, 159</td>
</tr>
<tr>
<td>VTEC</td>
<td>verocytotoxin-producing E. coli. 16, 72</td>
</tr>
<tr>
<td>WGS</td>
<td>whole genome shotgun. 34, 136, 137, 139, 140, 143, 145, 149, 155, 157, 165, 166</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization. 13, 15, 31, 41, 142, 149, 157</td>
</tr>
<tr>
<td>YLL</td>
<td>years of life lost. 75</td>
</tr>
<tr>
<td>ZMW</td>
<td>zero-mode waveguide. 9</td>
</tr>
</tbody>
</table>
Contents

Preamble iii
Abstract v
Acknowledgements vii
Acronyms ix

General introduction
1.1 Background 1
1.2 Water quality 1
1.2.1 The chemical aspect of water quality 2
1.2.2 The physical aspect of water quality 2
1.2.3 The biological aspect of water quality 3
1.2.4 Genomic sequencing 5
1.3 The structure of this thesis 10

Literature review
2.1 Background 13
2.2 Drinking water sources and supply in New Zealand 16
2.2.1 Drinking water sources 16
2.2.2 Drinking Water supply system 16
2.3 Drinking water treatment processes 20
2.4 Common methods for detecting indicator organisms in drinking water 21
2.4.1 Organism isolation-based methods 23
2.4.2 Immunological methods 24
2.4.3 Gene sequence-based methods 25
2.4.4 Microbial compliance criteria for New Zealand 28
2.5 Microbial source tracking 29
2.6 Indicator organism detection in recreational water 30
2.7 Pathogens in drinking water — New Zealand 31
2.8 Metagenomics 34
2.8.1 Metagenomics in drinking water 36
2.8.2 Metagenomic research trends 36
2.8.3 Microbial community profiles 39
2.8.4 Microbial community functional genes 39
2.9 Summary 40

Factors associated with the presence of pathogens in drinking water sources of New Zealand
3.1 Background 45
3.2 Materials and methods 47
3.2.1 Study sites 47
3.2.2 Sample collection 47
List of Figures

2.1 The Waitakere and Waikato public drinking water catchments ... 18
2.2 Schematic representation of the Wellington area drinking water distribution network 19
2.3 Schematic diagrams showing the three major parts of a nucleotide 27
2.4 Schematic representation of the polymerase chain reaction process. 28
2.5 Number of 16S and metagenomic publications per calendar year ... 37
2.6 Number of 16S and metagenomic publications in the top fifteen countries 38
2.7 Top twenty peer-reviewed journals publishing articles on 16S and metagenomics articles 38

3.1 Location of the twenty study drinking water sources ... 49
3.2 Schematic representation of a basic decision tree ... 54
3.3 Drinking water catchments with high E. coli concentrations ... 61
3.4 Concentrations of Cryptosporidium and Giardia in study catchment samples 62
3.5 Percentage of positive samples for the four study microbes for each season 63
3.6 Variable importance scores for drinking water catchment geospatial attributes 65
3.7 Random effects for the generalised linear mixed models ... 68

4.1 Water distribution zones and abstraction points ... 78
4.2 Number of gastrointestinal cases 1997–2006, New Zealand .. 88
4.3 Twenty zones with the highest incidence rates during the study period 90
4.4 Location of water distribution zones with the highest gastroenteritis incidence rates 91
4.5 PCA biplot of gastrointestinal illness annual incidence rates ... 92
4.6 Median annual gastrointestinal illness case incidence rates, 1997–2006, New Zealand 98
4.7 Kriged median annual gastrointestinal illness case incidence rates ... 99
4.8 Relationship between distributed lag river flow and gastrointestinal illness, New Zealand 100
4.9 Relationship between distributed lag river flow and gastrointestinal illness, S00079 101
4.10 Relationship between distributed lag river flow and gastrointestinal illness, S00118 102
4.11 Relationship between distributed lag river flow and gastrointestinal illness, S00217 103
4.12 Relationship between distributed lag river flow and gastrointestinal illness, S00735 104

5.1 Map showing the location of study campgrounds in New Zealand .. 109
5.2 Types of samples collected from the study campgrounds .. 111
5.3 Flow diagram showing the Campylobacter taxonomic designation process 113
5.4 Median most probable number of E. coli in campground water samples 124
5.5 Minimum spanning tree of campground Campylobacter jejuni and C. coli 126

6.1 Flow diagram showing how 16S rRNA gene metagenomes were analysed 144
6.2 Flow diagram showing how whole genome shotgun metagenomes were analysed 144
6.3 Taxa richness indices for 16S metagenomes ... 146
6.4 Canonical correspondence plot of 16S metagenomes .. 148
6.5 Campylobacteraceae phylogenetic tree constructed using 16S metagenomes 150
6.6 NeighborNet trees illustrating divergence of metagenome sources 152
6.7 Bubble plot showing the abundance of virulence factors found in WGS metagenomes 153
6.8 Bubble plot showing the abundance of resistance factors found in WGS metagenomes 153
6.9 NeighborNet tree illustrating divergence of virulence factors found in WGS metagenomes 154
6.10 NeighborNet tree illustrating divergence of resistance factors found in WGS metagenomes 154

A.1 Schematic representation of table connections in a MySQL relational database 172
A.2 Bubble plots of gastrointestinal illness cases, 1997–2006, New Zealand 173
A.3 Relationship between distributed lag river flow and gastrointestinal illness, S00041 174
A.4 Relationship between distributed lag river flow and gastrointestinal illness, S00082 175
A.5 Relationship between distributed lag river flow and gastrointestinal illness, S00106 176
A.6 Relationship between distributed lag river flow and gastrointestinal illness, S00123 177
A.7 Relationship between distributed lag river flow and gastrointestinal illness, S00200 178
A.8 Relationship between distributed lag river flow and gastrointestinal illness, S00233 179
A.9 Relationship between distributed lag river flow and gastrointestinal illness, S00268 180
A.10 Location of drinking water abstraction sites used in the distributed lag analysis 181
A.11 Percentage of positive samples for the four study pathogens for each calendar month 185
A.12 Land cover for the first six study catchments supplying surface raw water 186
A.13 Land cover for the second six study catchments supplying surface raw water 187
A.14 Land cover for the last four study catchments supplying surface raw water 188
A.15 Lithology for the first six study catchments supplying surface raw water 189
A.16 Lithology for the second six study catchments supplying surface raw water 190
A.17 Lithology for the last four study catchments supplying surface raw water 191
A.18 Land cover for study campground catchments located in the North Island, New Zealand . 192
A.19 Land cover for study campground catchments located in the South Island, New Zealand . 193
A.20 Phred scores for 16S sequences . 205
A.21 Phred scores for WGS sequences . 205
List of Tables

2.1 Bacterial pathogens associated with drinking water .. 14
3.1 Description of the twenty study drinking water sources 48
3.2 Description of variables used in both RF and regression analyses 57
3.3 Percentage of positive samples from the twenty study drinking water sources 59
3.4 Number of sampling occasions and positive samples for each drinking water source 60
3.5 Random Forest predictions ... 66
3.6 GLMM estimating the presence/absence of *Campylobacter* in raw water 67
3.7 GLMM estimating the *E. coli* concentrations in raw water 67
3.8 GLMM estimating the presence/absence of *Cryptosporidium* in raw water 69
3.9 GLMM estimating the presence/absence of *Giardia* in raw water 69
4.1 Gastrointestinal illness annual incidence rates per 100 000 population for New Zealand and countries of similar socioeconomic status, 2013. 75
4.2 Description of variables used in a principal correspondence analysis 89
4.3 Median drinking water distribution zone populations and median annual cases reported 92
4.4 Drinking water abstraction sites used in distributed lag non-linear modelling 93
5.1 Description of study campgrounds operated by DOC 121
5.2 Number of water samples collected from DOC campgrounds 123
5.3 Number of faecal samples, stratified by animal source, collected from DOC campgrounds 125
5.4 Multilocus sequence types for faecal and water *Campylobacter* isolates 131
5.5 Multilocus sequence types for *Campylobacter* isolated from water 132
5.6 GLMM estimating the presence of *Campylobacter* in campground faecal samples 132
5.7 GLMM estimating the concentration of *E. coli* in campground tap water 132
5.8 GLM estimating the concentration of *E. coli* in campground intake water 133
6.1 Number of samples sequenced for 16S rRNA gene and whole genome shotgun 147
6.2 Bacterial species deposited in the NCBI database matched with metagenome taxa 151
7.1 Computer software used for data processing, data analysis and thesis compilation. 161
A.1 A description of shapefiles used for geospatial data and their sources. 182
A.2 Geospatial data for sixteen surface water sources monitored for microbial contamination 183
A.3 Geospatial data for four groundwater sources monitored for microbial contamination. 184
A.4 Constituents of the *Campylobacter* and *Giardia* polymerase chain reaction master mixes 202
A.5 PCR conditions for selected *Campylobacter* and *Giardia* 203
A.6 Encoding for the four bases (A, C, T, G) and ambiguous DNA sequences. 204
A.7 The 1-proportional similarity index values used for *Campylobacteraceae* taxa divergence 206
A.8 The 1-proportional similarity index values used for WHO-recognised pathogen taxa divergence 206