Studies on the epidemiology of
Nematodirus spathiger and *Nematodirus filicollis*
in New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Animal Science

At Massey University, Manawatu,
New Zealand

Anne-Maree Bridget Oliver

2015
Abstract

This thesis studies aspects of the epidemiology of *Nematodirus spathiger* and *Nematodirus filicollis*, both are common and potentially pathogenic parasites of lambs in New Zealand. Three studies were undertaken; the first a presence/absence survey to determine the distribution of the two species on farms, the second examined the prevalence of benzimidazole (BZ) resistance in the two species and the third experiment investigated the requirements for chilling for *N. filicollis* eggs to hatch.

The first two studies utilised faecal samples from routine faecal egg counts and/or routine faecal egg count reduction testing on farms. To identify the *Nematodirus* species involved, eggs from these samples were chilled and then incubated to facilitate hatching of *N. filicollis*, before larvae were recovered. The identity of the larvae was determined using PCR of the ITS-2 region of rDNA. The third experiment used a bulk collection of *N. filicollis* from naturally infected lambs. Extracted eggs were incubated at temperatures between 2.7°C - 9.9°C, for up to 224 days. The proportion of eggs hatching was assessed against chill units. Chill units (degree-day) were calculated by subtracting the culture temperature from a constant threshold of 11°C and multiplying by the number of days for which the sample was cultured.

In Study 1, *N. spathiger* was present on all farms tested, while *N. filicollis* was found on 76% of farms. Both species were distributed throughout New Zealand, with no regional differences. In Study 2, the BZ-resistance study, efficacies below 95% were recorded for *N. spathiger* and *N. filicollis* on 95% (20/21) and 40% (4/10) respectively of farms tested. In Study 3, the chilling experiment, the overall hatching of *N. filicollis* eggs was low, but increased with chill accumulation to plateau at about 11%, with 800-1000 chill units required for maximum hatching.

In conclusion the two species of *Nematodirus* were commonly found on most New Zealand farms. The prevalence of BZ-resistance in *N. filicollis* was lower than that in *N. spathiger*. *N. filicollis* required a considerable period of chilling to enable hatching to occur and this will influence their epidemiology.
Preface

In 2009-2010 two new anthelmintic families (monepantel and derquantel) were released to the market in New Zealand, which reduced the need for research into finding solutions to the anthelmintic resistance problem. It also created an opportunity to focus on minimising the impact of parasites in sheep through improved management strategies. In particular targeting specific nematodes species and understanding their epidemiology on pasture. This is poorly understood in some species. For this study the genus *Nematodirus* was targeted because it is pathogenic, it is often reported as resistant to drenches and it is found nation-wide. Further, the ecology of the genus is quite different to the other strongyle species and it has been poorly studied in New Zealand. Consequently this project was initiated with an aim of discovering the factors influencing the development and survival of the pre-parasitic stages of *Nematodirus spathiger* and *N. filicollis* and was undertaken as part of a Foundation for Research Science and Technology grant, under contract C10X0714.

The study commenced in November 2010, with a study on the effect of three temperature regimes using mixed *Nematodirus* species from different farms in tissue culture well plates. However this was unsuccessful, as many eggs did not hatch, therefore this experiment is not presented. The project commenced in late spring - early summer, when *Nematodirus* eggs are present in faeces, before a literature review could be undertaken; this resulted in not fully understanding the development and hatching requirements of *Nematodirus* and the failure of the first experiment.

At the same time faecal samples were collected and incubated from farms throughout the country for the distribution survey. Drench tests were also being sent to the laboratory for routine faecal egg count reduction testing (FECRT), which became part of the benzimidazole resistance study. As eggs had not hatched in the first experiment it was decided to halve the cultures from both these experiments. This allowed one half to be chilled and the other half processed.

Finally with the comprehension that *N. filicollis* eggs required significant chilling before they would hatch, an experiment was planned to determine what these requirements were. In late January 2012 an almost pure strain of *N. filicollis* was found on a local farm. After isolation from the field and a period of incubation to allow the eggs to
develop, the chilling experiment began in May 2012 with the eggs being placed at
different temperatures.

The chapters relating to the experimental studies are presented as papers for journal
publication. Chapter 3 has been published in the New Zealand Veterinary Journal
(Oliver et al. 2014). My contribution for this published paper was 85%. Chapter 4 has
been prepared for submission to the same journal; my contribution for this paper was
80%. Chapter 5 has been submitted to Veterinary Parasitology, my contribution for this
paper was 75%. As a result there is some repetition of methods; also reformatting and
modifications to these chapters by way of annotations and the re-numbering of sections
and illustrations have been made, to reflect thesis style. Some raw data is also presented
for Chapter 3, 4 and 5 in the appendices. The references for each chapter have been
collated into the bibliography.
Acknowledgements

I thank my supervisors Professor Bill Pomroy and Dr. Dave Leathwick for their input and mentoring throughout this MSc. For their guidance with experimental design and planning; the reading of draft manuscripts of this thesis and making useful critique. Bill, for the many meetings, your incredible patience, understanding and sound advice – Thank-you! Dave, for coming up with an “idea so cunning you could pin a tail on it”, for giving me the opportunity to pursue further study, on several occasions advising the direction I needed to take and the timely words of encouragement, especially “it’s not supposed to be easy!” Your phenomenal support in this journey is much appreciated - Thank-you. It has been a privilege to work with you both.

Thank you, to the many other people who have assisted with this project especially the following. To those who gave early advice on the subject, especially Barb Adlington, Paul Mason, Phil McKenna and Fiona Kenyon. The veterinarians and consultants who collected and sent faecal samples as part of routine drench testing on farms especially: Jill MacGibbon, Alastair Mather, Mark Gilmour, John Smart, Caleb King, Pete Anderson, Beatrix Loomis, John Meban and Tony Rhodes; and also the many farmers throughout the country who collected samples and sent them into the laboratory. A special thank-you to those farmers: Justin Fryer, Trevor Holloway and John Napier who allowed me on their farms and assisted with the field work - yarding lambs and/or drenching; additionally Ben Fryer assisted with these procedures and provided an extra pair of hands. Chris Miller also assisted in the field with faecal sampling and drenching.

To those who assisted in the laboratory, especially Wendy Taylor for faecal egg counting and picking larvae; Charlotte Bouchet for assistance with the processing of PCR samples and troubleshooting, their help was invaluable and made the amount of laboratory work feasible. Also Stewart Bisset and Jacqui Knight who gave access to the molecular identification protocol and willingly gave advice when required. Chris Miller assisted with egg extraction and trial set up; Lawrie McMurtry and Tania Waghorn assisted with egg counting. Christian Sauermann, Chris Miller and Richard Scott assisted with incubator/datalogger set-up. Siva Ganesh assisted with the choice of statistical tests and fitted models. Bernadette Williams assisted with proof-reading. To you all, your contribution is gratefully acknowledged.
I wish to thank the Foundation for Research and Technology for funding the project. A special thanks to Wayne Hein who initially and enthusiastically supported my undertaking of this MSc. Also Ian Sutherland and Richard Scott for their continued support of the project and the latter for allowing me time and a place to write, under challenging circumstances! A mention must go to the parasitology team at AgResearch, who have assisted with other areas of work when I was unavailable to do so and to Tania Waghorn for all your helpful advice along the way!

Thanks to my friends and colleagues who all gave support at various times, especially Coralie McFadzien, Kate Jack, Matt Martin, Anne Cooper, Julie Hoffman, Kristy Lunn, Wendy Taylor and Chris Miller for a listening ear, continual encouragement, sense of humour and sound advice. This thesis would not have been completed without their ongoing support. However my greatest thanks go to my family: Bern and Glen, Trish and Justin, their families and especially Kahlia, for their continual support, encouragement and the reality of life outside this thesis. Lastly to my parents Ellen and David, words cannot express my heartfelt gratitude; they have unselfishly given everything of themselves for my higher education, as first teachers they instilled a passion for nature, the environment and agriculture; encouraged me in my aspirations and to explore the wonders of the world. Your values of hard work, finishing the job whatever the challenges are and the importance of continued education are reflected in this thesis. I will be eternally indebted to you for your over-whelming support in this journey.
Table of Contents

ABSTRACT iii
PREFACE iv
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS viii
LIST OF FIGURES AND TABLES x
ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 LITERATURE REVIEW 5

2.0.1 Introduction 5

2.1 Taxonomy 5

2.1.1 Species within the genus *Nematodirus* 7

2.1.2 Defining characteristics – morphological 8

2.1.2.1 Generic characteristics of the adult 8

2.1.2.2 Characteristics of the adult *N. spathiger* and *N. filicollis* 8

2.1.2.3 Characteristics of *N. spathiger* and *N. filicollis* eggs 10

2.1.2.4 Characteristics of the infective larvae 12

2.1.2.5 New Zealand data 12

2.1.2.6 Molecular characteristics 13

2.2 Biology of *Nematodirus* with an emphasis on *N. spathiger* and *N. filicollis* 13

2.2.1 Definition of parasite and host 14

2.2.2 Lifecycle – free living stages 14

2.2.3 Free living stages – development and hatching 15

2.2.4 Diapause – chilling 17

2.2.5 Chill accumulation 19

2.2.6 Seasonality 20

2.2.7 Survival on pasture of larvae 23

2.3 Host species 25

2.3.1 Host age and immunity 25

2.3.2 Pathology 26

2.4 Pathogenicity 26

2.5 Distribution 27

2.5.1 World-wide distribution 27

2.5.2 *Nematodirus* distribution in New Zealand 28

2.6 *Nematodirus* resistance to anthelmintics 29

2.6.1 Faecal egg count reduction test 31

2.7 Molecular identification 31

2.7.1 Polymerase chain reaction 32

2.8 Conclusion 35
CHAPTER 3 A SURVEY OF THE PREVALENCE OF Nematodirus spathiger AND N. filicollis ON FARMS IN THE NORTH AND SOUTH ISLANDS OF NEW ZEALAND

3.1 Abstract
3.2 Introduction
3.3 Materials and methods
 3.3.1 Collection of eggs
 3.3.2 Egg culture
 3.3.3 Molecular analysis
 3.3.3.1 Template preparation
 3.3.3.2 PCR assay
 3.3.4 Statistical analysis
3.4 Results
3.5 Discussion
3.6 Acknowledgements

CHAPTER 4 BENZIMIDAZOLE RESISTANCE IN Nematodirus spathiger AND N. filicollis

4.1 Abstract
4.2 Introduction
4.3 Methods
 4.3.1 Source of samples
 4.3.2 Parasitology
 4.3.3 Molecular diagnostics
 4.3.4 Calculations and statistical analyses
4.4 Results
4.5 Discussion
4.6 Acknowledgements

CHAPTER 5 CHILLING REQUIREMENTS FOR HATCHING OF A NEW ZEALAND ISOLATE OF Nematodirus filicollis

5.1 Abstract
5.2 Introduction
5.3 Materials and methods
 5.3.1 Recovery of Nematodirus eggs
 5.3.2 Incubation of eggs
 5.3.3 Study design
 5.3.4 Identification of larvae
 5.3.5 Statistical analysis
5.4 Results
5.5 Discussion
5.6 Acknowledgements

CHAPTER 6 GENERAL DISCUSSION

CHAPTER 7 BIBLIOGRAPHY

CHAPTER 8 APPENDICES
APPENDIX 1 STANDARD OPERATING PROCEDURES
APPENDIX 2 SUPPLEMENTARY DATA
List of Figures and Tables

FIGURES

Figure 3.1. Approximate sheep farm locations in New Zealand that provided faecal samples. 41

Figure 5.1. The proportion of *N. filicollis* eggs hatching. 66

Figure 5.2. The proportion of eggs hatching as chill units increase. 66

TABLES

Table 2.1. Summary of the literature on egg dimensions (length x width) of *Nematodirus* spp. found in New Zealand sheep. 11

Table 2.2. Summary of the literature on the measurements of the infective larvae (L3) of *N. spathiger* and *N. filicollis*. 13

Table 3.1. Species-specific primer sequences, and the two generic primers, used in multiplex PCR assays. 43

Table 4.1. Species specific and generic primers, with their associated sequences and product sizes used to identify larvae to species. 51

Table 4.2. Efficacy of albendazole against *Nematodirus spathiger* and *Nematodirus filicollis*. 54

Table 5.1. Species specific and generic primers, with their associated sequences. 64
Abbreviations

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>ABZ</td>
<td>Albendazole</td>
</tr>
<tr>
<td>BZ</td>
<td>Benzimidazole</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CU</td>
<td>Chill units</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>epg</td>
<td>Eggs per gram</td>
</tr>
<tr>
<td>FEC</td>
<td>Faecal egg count</td>
</tr>
<tr>
<td>FECR</td>
<td>Faecal egg count reduction</td>
</tr>
<tr>
<td>FECRT</td>
<td>Faecal egg count reduction test</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>ITS</td>
<td>Internal transcribed region</td>
</tr>
<tr>
<td>lb</td>
<td>Pound</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L2</td>
<td>Second stage larva</td>
</tr>
<tr>
<td>L3</td>
<td>Third stage larva</td>
</tr>
<tr>
<td>ML</td>
<td>Macrocyclic lactone</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>pmol</td>
<td>Picomole</td>
</tr>
<tr>
<td>rDNA</td>
<td>Ribosomal Deoxyribonucleic acid</td>
</tr>
<tr>
<td>sg</td>
<td>Specific gravity</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard operating procedure</td>
</tr>
<tr>
<td>SSU</td>
<td>Small subunit</td>
</tr>
</tbody>
</table>