INTERACTIONS BETWEEN FLAVOUR COMPOUNDS AND MILK PROTEINS

A THESIS
PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN FOOD TECHNOLOGY AT MASSEY UNIVERSITY, PALMERSTON NORTH, NEW ZEALAND

XIANQ QIAN ZHU
2003
ACKNOWLEDGEMENTS

I would like to thank my chief supervisor, Professor Harjinder Singh, for the many hours of discussion and guidance throughout the length of this project. I am also thankful for the support of my co-supervisors, Dr Rogerio Pereira and Professor Peter Munro. I would also like to thank Dr Owen Mills (Fonterra Research Center, Palmerston North) for kindly providing flavour compounds and making time to discuss aspects of this project. Thanks also to Dr Mike Taylor for him kindly taking time to discuss the solubility of sodium palmitate.

I would also like to thank Mr. John Sykes for his kindly help in setting up GC machine in the beginning of my project. I am grateful for the help and support the staff and students in dairy cluster have given me throughout this project, especially Dr Aiqian Ye, Mr. Warwick Johnson, Mr. Steve Glasgow, Ms Karen Pickering, Maya Sugiarto, Jian Cui, Yiling Tan and Kelvin Goh.

I would like to sincerely thank the staff in First Aid Office and Reception of Institute of Food, Nutrition and Human Health for their kindly help during my project.

Finally, I would like to express my sincere gratitude to my family- my wife, Yanli, for her love, supporting and encouragement throughout this thesis; my parents and my son.
TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION

1

CHAPTER TWO: LITERATURE REVIEW

3

2.1 Flavour-matrix interaction 3

2.2 Interactions of volatile flavours in aqueous solution 3

2.3 Mechanism of binding of ligands to β-lactoglobulin 5

- 2.3.1 The structure of β-lactoglobulin and the binding sites 5
- 2.3.2 Effect of pH on ligand binding 7

2.4 Equilibrium binding phenomena 9

2.5 Published results on flavour-protein binding 11

2.6 Analysis methods 14

- 2.6.1 Fluorescence 14
- 2.6.2 Affinity chromatography 15
- 2.6.3 Headspace techniques 17
- 2.6.4 Equilibrium dialysis 17

2.7 Solid-phase microextraction technique 18

- 2.7.1 Equilibrium sampling 19
- 2.7.2 Dynamic sampling (rapid sampling) 21

2.8 Conclusions 26

2.9 Objectives 27

CHAPTER THREE: MATERIALS AND METHODS 28

3.1 General materials and equipment 28
Table of contents

3.2 Gas chromatography 29
3.3 Headspace solid-phase microextraction 29
3.4 Standard solutions 31
 3.4.1 Flavour compounds stock solution 31
 3.4.2 External standard method 31
 3.4.3 Protein solutions 31
 3.4.4 Flavour-protein mixed solutions 32
3.5 Determination of analyte retention times 32

CHAPTER FOUR: OPTIMISATION OF SOLID-PHASE MICROEXTRACTION CONDITIONS FOR FLAVOUR BINDING ANALYSIS 35

4.1 Introduction 35
4.2 Materials and methods 35
4.3 Results and discussion 35
 4.3.1 The size of containers 35
 4.3.2 The type of fibre and extraction time 37
4.4 Conclusions 43

CHAPTER FIVE: BINDING OF FLAVOUR COMPOUNDS TO MILK PROTEINS USING SOLID-PHASE MICROEXTRACTION 45

5.1 Introduction 45
5.2 Materials and methods 46
5.3 Results and discussion 47
 5.3.1 The effect of ethanol addition 47
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic representation of the tertiary structure of bovine β-lactoglobulin</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>The effect of pH on the quaternary structure of β-lactoglobulin</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Modification of aroma compound retention according to structural modifications of β-lactoglobulin with pH between 3 and 11.</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Hummel and Dreyer type chromatograms obtained for 40 and 80 ppm ethyl benzoate concentration in the eluent</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Various components of the SPME device</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Temperature dependence of the adsorption versus time profiles obtained for methamphetamine</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Demonstration of myoglobin (M) and cytochrome (C) displacement by lysozyme (L) with time (A) and protein extraction using a polyacrylic-acid-coated fibre (B).</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>Adsorption curve under different convection conditions</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Boundary layer model</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>SPME configuration</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical GC response (ethanol + 2-heptanone)</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Typical GC response (ethanol + 2-nonanone)</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>SPME results for different sub-samples of 0.6 mM 2-heptanone standard solution</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of extraction time at 25°C for 2-heptanone on the SPME results</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of extraction time at 25°C for 2-nonanone on the SPME results</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>GC response curve of 2-heptanone standard solution</td>
<td>40</td>
</tr>
<tr>
<td>4.5</td>
<td>GC response curve of 2-nonanone standard solution (7 µm PDMS coating fibre, extraction time 5 minutes)</td>
<td>41</td>
</tr>
</tbody>
</table>
List of figures

4.6 GC response curve of 2-nonanone standard solution (30 µm PDMS coating fibre; extraction time: 5 min) 42

4.7 GC response curve of 2-nonanone standard solution (30 µm PDMS coating fibre, extraction time: 30 seconds) 43

5.1 The effect of the addition of ethanol to 0.2 mM 2-nonanone standard solution on the GC response 48

5.2 The effect of ethanol addition to a flavour--protein solution on the GC response 49

5.3 The effect of ethanol addition to a flavour--protein solution on the GC response (0.2 mM 2-nonanone in 2% WPI solution; 30 µm PDMS fibre; extraction time: 5 min) 50

5.4 The interaction between WPI and 2-heptanone with time (0.4 mM 2-heptanone solution; 100 µm PDMS fibre; extraction time: 5 min) 52

5.5 The interaction between WPI and 2-heptanone with time (0.8 mM 2-heptanone solution; 100 µm PDMS fibre; extraction time: 5 min) 52

5.6 The interaction between WPI and 2-nonanone with time (0.2 mM 2-nonanone solution; 30 µm PDMS fibre; extraction time: 5 min) 53

5.7 The interaction between WPI and 2-nonanone with time (0.2 mM 2-nonanone solution; 30 µm PDMS fibre; extraction time: 30 seconds) 53

5.8 SPME results for the binding of 2-heptanone to Na-CN (100 µm PDMS fibre; extraction time: 5 min) 54

5.9 Figure 5.9. SPME result for the binding of 2-nonanone to Na-CN 55

5.10 Klotz plot for 2-nonanone binding to Na-CN 56

5.11 SPME result of the binding of 2-heptanone to WPI (100 µm PDMS fibre; extraction time: 5 min) 57

5.12 SPME result of the binding of 2-nonanone to WPI (30 µm PDMS fibre; extraction time: 5 min) 57

5.13 SPME result of the binding of 2-nonanone to WPI (30 µm PDMS fibre; extraction time: 30 seconds) 58

5.14 Amount of bound 2-nonanone at different WPI concentrations 58

5.15 Klotz plot for 2-heptanone binding to WPI 60

5.16 Klotz plot for the binding of 2-nonanone to WPI at WPI concentrations ≤ 0.5% 61
List of figures

5.17 Klotz plot for the binding of 2-nonanone to WPI at WPI concentrations ≥ 1% 62
5.18 Klotz plot for 2-nonanone binding to β-lactoglobulin in WPI, assuming that all the binding occurred with β-lactoglobulin alone at WPI concentrations ≤ 0.5% 63
5.19 Klotz plot for 2-nonanone binding to β-lactoglobulin in WPI, assuming that all the binding occurred with β-lactoglobulin alone at WPI concentrations ≥ 1%. 64
5.20 The proportion of monomer β-lactoglobulin as a function of the protein concentration (simulated data using an association constant $K = 4.88 \times 10^4 \text{ M}^{-1}$) 65
6.1 The effect of pH on the binding of 2-nonanone to WPI (1%) 68
6.2 Klotz plot for 2-nonanone and WPI binding at pH = 3 69
6.3 Klotz plot for 2-nonanone and WPI binding at pH = 4 69
6.4 Klotz plot for 2-nonanone and WPI binding at pH = 6 70
6.5 WPI–2-nonanone binding parameters at different pH values 71
6.6 Klotz plot for binding of 2-nonanone to β-lactoglobulin binding in WPI solution at pH = 4 72
6.7 Klotz plot for binding of 2-nonanone to β-lactoglobulin in WPI solution at pH = 6 73
6.8 The effect of sodium palmitate on the binding of 2-nonanone to WPI 76
6.9 The effect of added sodium palmitate on β-lactoglobulin–2-nonanone binding 78
6.10 Comparison of the competition model and experimental results (0.5% WPI, 0.2 mM 2-nonanone) 81
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of binding constants obtained with different methods</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Temperature and conditioning recommendations for fibres</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Retention times for the two components in standard solutions</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Retention times of individual components</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Container and liquid amount used for optimization of SPME conditions</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>The SPME-GC results obtained using different containers</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>The SPME results for 2-heptanone standard samples</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>The SPME results of 2-nonanone standard samples</td>
<td>41</td>
</tr>
<tr>
<td>6.1</td>
<td>WPI–2-nonanone binding parameters at different pH values</td>
<td>70</td>
</tr>
<tr>
<td>6.2</td>
<td>β-Lactoglobulin–2-nonanone binding parameters at different pH values</td>
<td>72</td>
</tr>
<tr>
<td>6.3</td>
<td>Bound amount of 2-nonanone in different sodium palmitate added</td>
<td>80</td>
</tr>
</tbody>
</table>