Host-parasite interactions between
Plasmodium species and New Zealand birds:
prevalence, parasite load and pathology

A thesis presented in partial fulfilment of the requirements for the degree of
Master of Veterinary Science
in
Wildlife Health
At Massey University, Palmerston North
New Zealand

© Danielle Charlotte Sijbranda
2015
Avian malaria, caused by *Plasmodium* spp., is an emerging disease in New Zealand and has been reported as a cause of morbidity and mortality in New Zealand bird populations. This research was initiated after *P.* (Haemamoeba) *relictum* lineage GRW4, a suspected highly pathogenic lineage of *Plasmodium* spp. was detected in a North Island robin of the Waimarino Forest in 2011. Using nested PCR (nPCR), the prevalence of *Plasmodium* lineages in the Waimarino Forest was evaluated by testing 222 birds of 14 bird species. *Plasmodium* sp. lineage LINN1, *P.* (Huffia) *elongatum* lineage GRW06 and *P.* (Novyella) sp. lineage SYATO5 were detected; *Plasmodium relictum* lineage GRW4 was not found. A real-time PCR (qPCR) protocol to quantify the level of parasitaemia of *Plasmodium* spp. in different bird species was trialled. The qPCR had a sensitivity and specificity of 96.7% and 98% respectively when compared to nPCR, and proved more sensitive in detecting low parasitaemias compared to the nPCR. The mean parasite load was significantly higher in introduced bird species compared to native and endemic species. The data suggests that introduced bird species such as blackbirds have a higher tolerance for *Plasmodium* spp. infections than endemic and native species. The high prevalence of infection and high parasite load in introduced passerines confirmed that they are important reservoirs for avian malaria in the New Zealand. A clinical case of avian malaria in a captive wildlife setting was described for a little penguin (*Eudyptula minor*) at Wellington Zoo. Nested PCR results and DNA sequencing confirmed infection of the deceased penguin with *Plasmodium* (Huffia) *elongatum* GRW06. A retrospective analysis of little penguin cases in the Massey University post mortem database, combined with nested PCR for *Plasmodium* spp. on stored liver tissue samples and DNA sequencing, revealed three additional mortality cases due to *P.* *elongatum* lineage GRW06, *P.* *relictum* lineage SGS1 and *P.* sp. lineage LINN1 in one captive and two wild little penguins. Our results suggest that avian malaria causes sporadic mortality in New Zealand’s little penguins, but there is no evidence of mass mortality events due to avian malaria in this species.
DECLARATION

The studies presented in this thesis were completed by the author whilst a postgraduate student at the Institute of Veterinary, Animal and Biomedical Sciences, Massey University. I officially state that this is my own work and the views presented are mine, and that the contents have not been submitted for any other degree. I certify that to the best of my knowledge any help received in preparing this thesis and all sources used have been acknowledged in the thesis.

__
Danielle Sijbranda

Supervisor

__
Brett Gartrell
ACKNOWLEDGEMENTS

First of all I’d like to thank my supervisors Brett Gartrell and Laryssa Howe from Massey University for their clear and professional coaching towards the establishment and documentation of all parts of this research project. I’m also grateful to Jim Campbell from the New Zealand Department of Conservation for playing a positive and vital part in implementing the research protocols in the local Waimarino Forest setting and for his help in liaising with local landowners and DOC staff. The advice I received from Nikki McArthur from the Greater Wellington Regional Council and Doug Armstrong from Massey University regarding North Island robin behaviour and trapping techniques was invaluable, and I fondly remember the phone calls to Nikki I made from the Waimarino Forest during which he coached me through my first robin-mealworm training sessions. The success of the fieldwork can be accredited to many experienced volunteers, who graciously volunteered their knowledge and time to help me achieve my goals. The detailed knowledge of the Waimarino Forest, offered by Mark Lammas from Maungatautari Ecological Island Reserve, helped us plan our catching locations within the forest, resulting in highly efficient robin trapping protocols. Geoff de Lisle and Dallas Bishop joined me on each fieldwork day to catch robins with an extremely relaxed and positive attitude. Nikki McArthur showed a never ending enthusiasm to catch robins during long field days, and gets the trophy for tidiest hand writing on field work sheets. Raechel Cousins lead the mist-netting team, in the area of Pipiriki, in a highly professional way. Besides these steady rocks, others contributing to our fieldwork success were Ellen Schoener, Micah Jensen, David Izquierdo Acebes, Brett Gartrell, Zoe Grange (also thanks for help with the latent class analysis), Charmaine Stanley, Nic Goreman, Susanne Govella, Ralph Ostertag, Katie Sheridan, Delia Small, Rosie Doole, Mariko Sashika and Department of Conservation’s staff members Jim Campbell, Kate McInnes, Sarah Treadgold, Rufus Bristol, Timothy Paki, Edward Te Huia, Anton Taipoto Edmonds and Daniell Hurley.

This work would not have been possible without the support of local land owners Atihau-Whanganui Incorporation, Ngaporo-Waimarino Forest Trust, Pipiriki Incorporation and Ernslaw One Limited. Financial contributions towards the project were gratefully received
from The New Zealand Department of Conservation and the Pacificvet Avian Health
Research Fund of the Institute of Veterinary, Animal and Biomedical Sciences. And last but
not least, I’d like to thank my partner, Ralph Ostertag, for his patience and support
throughout this process. Each of you was a link in the chain, turning this project into a very
pleasant and positive experience.

ETHICS APPROVAL AND CONSENTS

The handling of live birds during this research was approved by the Massey University
Animal Ethics Committee (MUAEC protocol number 11/72), the New Zealand Department
of Conservation (DOC Permit no. 34781-FAU) and the local land owners of the Waimarino
Forest: Atihau-Whanganui Incorporation, Ngaporo-Waimarino Forest Trust, Pipiriki
Incorporation and Ernslaw One Limited.
THESIS STRUCTURE AND FORMAT

This thesis comprises an introduction and literature review, three research chapters, and a general discussion chapter, followed by two sections containing references and appendices. The three research chapters were written as stand-alone papers with the intention of peer reviewed publication. Hence there is some replication in the introduction and discussion sections of these various chapters.

Chapter 1

The “introduction and literature review” provides a framework of background information regarding Plasmodium parasites and their life cycle, the related pathogenic effects in birds, diagnostic techniques for avian malaria and examples of the impact of avian malaria infections during wildlife management situations.

Chapter 2

“Avian malaria in introduced, native and endemic New Zealand bird species in a mixed ecosystem” describes a study evaluating the prevalence of various lineages of Plasmodium spp. in North Island robins and other bird species in the Waimarino Forest in order to evaluate this area as a source site for robin translocations. A modification of this chapter has been accepted as a research article by the New Zealand Journal of Ecology, and will be published in its 2016 edition 40(1). The article was first published on-line on the 3rd of September 2015 at http://newzealandecology.org/nzje/3241.

Chapter 3

“Use of a real-time PCR to explore disease dynamics of avian malaria in a mixed New Zealand ecosystem” describes the development of a real-time PCR protocol for Plasmodium spp. in order to quantify parasite load in individual birds.
Chapter 4

“Mortality of little penguins (Eudyptula minor) in New Zealand due to avian malaria” describes a clinical case of avian malaria in a blue penguin in a wildlife rehabilitation setting at Wellington zoo, and incorporates findings of a retrospective review of little penguin post mortem cases from the Massey University post mortem database.

Chapter 5

The “general discussion” reflects on the findings and implications for New Zealand birds of the aforementioned studies, and discusses ideas for further research.

References

To prevent duplication of references, all references have been grouped together after Chapter 5.

Appendices

Research data and laboratory protocols for nested and real-time PCR are added as appendices for reference.
TABLE OF CONTENTS

ABSTRACT ... iv
DECLARATION ... vi
ACKNOWLEDGEMENTS ... vii
ETHICS APPROVAL AND CONSENTS ... viii
THESIS STRUCTURE AND FORMAT .. ix
TABLE OF CONTENTS .. xi
LIST OF TABLES .. xv
LIST OF FIGURES ... xv

CHAPTER 1 ... 2

INTRODUCTION AND LITERATURE REVIEW

1.1 Definition of avian malaria and nomenclature of *Plasmodium* lineages 3

1.2 Life cycle of *Plasmodium* spp. .. 3

1.3 Pathologic effects of *Plasmodium* infection in birds ... 6

1.3.1 Susceptibility to infection .. 6

1.3.2 Clinical disease .. 6

1.3.3 Subclinical effects on condition, behaviour and reproduction ... 7

1.3.4 Mortality and post-mortem signs ... 9

1.4 Diagnostic techniques used to identify *Plasmodium* spp. ... 10

1.4.1 Evaluation of blood smears .. 11

1.4.2 Nested Polymerase Chain Reaction (PCR) .. 11

1.4.3 Real-time (quantitative) PCR ... 12

1.4.4 Serological assays ... 13

1.4.5 Next generation sequencing ... 14

1.5 Avian malaria in New Zealand ... 14

1.5.1 Detection of *Plasmodium* spp. infections in birds before 1950 14

1.5.2 *Plasmodium* lineages detected since 2006 ... 15

1.5.3 Prevalence of *Plasmodium* spp. infections in New Zealand birds 18

1.5.4 The threat of avian malaria to endemic and native New Zealand birds 19

1.6. Avian malaria and New Zealand wildlife management .. 21

1.6.1 Translocations ... 21

1.6.2 Captive wildlife management .. 22

1.7 Research hypothesis and aims ... 23
LIST OF TABLES

Table 1.1. Incidence of *Plasmodium* spp. lineages reported in New Zealand bird species 17

Table 2.1. The prevalence of avian malaria in birds in the Waimarino Forest area and the *Plasmodium* lineages identified .. 36

Table 2.2 Packed cell volume (PCV) and body condition index (BCI) with standard errors (SE) for species with *Plasmodium* negative (neg) and positive (pos) birds 37

Table 3.1 The estimated true prevalence of *Plasmodium* spp. infection based on real-time PCR (qPCR) results including 95% confidence intervals (CI) ... 55

Table 3.2 Estimated true prevalence with 95% confidence interval (95% CI) and mean parasite load with standard error of mean (SEM) for *Plasmodium* spp. infections in introduced, native and endemic species, defined as number of *Plasmodium* DNA copies per 10,000 avian cells .. 57

Table 3.3. Mean packed cell volume (PCV) and body condition index (BCI) +/- standard errors of means (SEM) for *Plasmodium* spp. positive and negative birds based on qPCR results ... 58

Table 4.1. Haematological parameters of a little penguin (*Eudyptula minor*) with avian malaria at Wellington Zoo ... 70

LIST OF FIGURES

Figure 2.1. Location of the Waimarino Forest within New Zealand and its relation to surrounding geographical features ... 31

Figure 3.1. Real-time PCR amplification curves (A), derivative melt curves (B) and standard curve (C) of 7 standard samples with a dilution factor of 10 and a starting quantity of 2.61×10^8 copies of the qPCR target DNA sequence (Friedl and Groscurth, 2012) .. 53

Figure 3.2. Meltcurves for samples positive for *Plasmodium* specific DNA (A), and samples negative for *Plasmodium* specific DNA, but revealing the presence of non-specific DNA amplicons (B). The red shading indicates the temperature range of dissociation temperatures for *Plasmodium* spp. ... 54

Figure 4.1. Photomicrographs of tissues from a little penguin (*Eudyptula minor*) 72