Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Studies on Renal Safety and Preventive Analgesic Efficacy of Tramadol and Parecoxib in Dogs

Kavitha Kongara

Thesis in fulfilment of the degree of
Doctor of Philosophy
in Veterinary Clinical Science

Institute of Veterinary, Animal and Biomedical Sciences
College of Sciences, Massey University
Private Bag # 11222, Palmerston North - 4442
New Zealand

2008
ABSTRACT

Ovariobysterectomy and castration are common surgical procedures in small animal practice that can result in clinically significant postoperative pain. One way of controlling postoperative pain is administration of a single analgesic or a combination of different classes of analgesics prior to the onset of noxious stimuli. A constraint to the perioperative use of traditional opioids and non-steroidal anti-inflammatory drugs (NSAIDs) is their undesirable side effects. In this series of experiments, the preventive (pre-emptive) analgesic efficacy of two popular human analgesics, tramadol (an ‘atypical’ opioid) and parecoxib (a NSAID with selective COX-2 inhibition) was evaluated in dogs.

Initially, the efficacy and renal safety of parecoxib, tramadol and a combination of parecoxib, tramadol and pindolol (a β-adrenoceptor blocker and 5-HT1A/1B antagonist) were screened in anaesthetised healthy dogs. These analgesics increased the dogs’ nociceptive threshold to mechanical stimuli, without causing significant alterations in the dogs’ glomerular filtration rate (GFR) estimated by plasma iohexol clearance. Subsequently, the efficacy of tramadol was compared with morphine, in dogs undergoing ovariohysterectomy or castration. The Glasgow composite measure pain scale-short form score (CMPS-SF) and changes in intra-operative electroencephalogram (EEG) responses were used to assess the efficacy of analgesics. Of the three treatment groups (preoperative morphine, 0.5 mg kg⁻¹; preoperative tramadol, 3 mg kg⁻¹; a ‘combination’ of preoperative low-dose morphine, 0.1 mg kg⁻¹, and postoperative tramadol 3 mg kg⁻¹), dogs given the ‘combination’ had significantly lower pain scores after ovariohysterectomy. In castrated dogs, preoperative tramadol (3 mg kg⁻¹) and morphine (0.5 mg kg⁻¹) were tested and no significant difference in the CMPS-SF score were observed between them. Changes in EEG variables were not specific between the treatment groups in ovariohysterectomised dogs.

Finally, the efficacy of test drugs was evaluated against acute noxious electrical stimulation in anaesthetised dogs, using EEG. Median frequency of the EEG, a reliable indicator of nociception, increased significantly in tramadol and parecoxib groups, compared to morphine, after electrical stimulation. These studies demonstrated that tramadol and
parecoxib can produce analgesia in dogs with insignificant side effects. The efficacy of tramadol appears to vary with the type of noxious stimulus. A complete prevention of noxious input by administration of analgesics pre- and post-operatively could have important clinical applications.

Key words: tramadol, parecoxib, morphine, dogs, analgesic efficacy, anaesthesia, renal safety
ACKNOWLEDGEMENTS

At the outset, I express my sincere thanks to my supervisors Dr. Paul Chambers and Dr. Craig Johnson for their able guidance, constant support and encouragement throughout the study period. They gave me an opportunity to work in this interesting area of preventive analgesia and provided exposure and training in various techniques related to HPLC and pain assessment. Also, I would like to specifically thank Paul for his help in anaesthesia during the trials.

Funding for my research was provided by the IVABS postgraduate research fund. I have been financially supported during my study period by Massey University in the form of doctoral and other scholarships. I gratefully acknowledge their assistance.

Thanks are also due to Sheryl Mitchinson and Leanne McCracken for their help in the studies on experimental dogs, and to Neil Ward for his help in data retrieval and transfer. Special thanks to Troy Gibson for his help in EEG and to Joana Murrell for her valuable suggestions, inspiration and constructive criticism. I am grateful to fellow researchers Nacho, Tamara and Pania for their help at various stages of my study.

I would like to specially thank anaesthesia staff and nurses in theatre and in the small animal ward for their involvement and cooperation.

My heart-felt thanks are due to Mrs. Allain Scott for her wonderful support in personal, administrative and academic matters. I would also like to thank my fellow postgrads, Jeremy, Gina, Kathryn, Jo, Danie, Renee, Rebecca, Mary, Dipti, Nicola and Doris for providing moral support and pleasant work environment.

Finally, I am very much indebted to my husband Rao, son Likhit and my parents for their constant support and encouragement throughout the study period.
LIST OF CONTENTS

1 INTRODUCTION

2 POSTOPERATIVE PAIN: A REVIEW ON NEUROPHYSIOLOGICAL PATHWAYS AND PATHOLOGICAL MECHANISMS, EVALUATION METHODS AND MANAGEMENT STRATEGIES
 2.1 PERIPHERAL NOCICEPTIVE MECHANISMS
 2.2 CENTRAL NOCICEPTIVE MECHANISMS
 2.2.1 The spinal cord
 2.2.2 Ascending transmission from the spinal cord
 2.2.3 Perception
 2.2.4 Descending modulation
 2.3 PAIN ASSESSMENT METHODS
 2.3.1 Neurohumoral indicators
 2.3.2 Behavioural methods
 2.3.2.1 Nociceptive threshold testing
 2.3.2.2 Subjective evaluation
 2.3.2.2.1 Types of Behavioural responses
 2.3.2.2.2 Pain scoring systems
 2.3.3. Neurophysiological technique: electroencephalogram
 2.3.3.1 Sources of EEG
 2.3.3.2 EEG power spectrum
 2.3.3.3 EEG and depth of anaesthesia
 2.3.3.4 EEG changes during nociception and antinociception
 2.4 POSTOPERATIVE PAIN CONTROLLING STRATEGIES
 2.4.1 Preoperative analgesia
 2.4.1.1 Animal studies
 2.4.1.2 Human studies
 2.4.2 Balanced analgesia
 2.4.3 Postoperative analgesics
 2.4.3.1 Opioids
 2.4.3.2 Tramadol
 2.4.3.2.1 Mechanism of action
 2.4.3.2.2 Pharmacokinetics of tramadol in dogs
 2.4.3.2.3 Postoperative analgesia
 2.4.3.2.4 Toxicological studies
 2.4.3.3 NSAIDs
 2.4.3.3.1 Peripheral anti-inflammatory action
 2.4.3.3.2 Central analgesic action
 3 PLASMA IOHEXOL CLEARANCE TEST, MECHANICAL THRESHOLD TESTING AND EEG MEASUREMENT
 3.1 GLOMERULAR FILTRATION RATE
 3.1.1 Screening tests
 3.1.1.1 Blood urea nitrogen
 3.1.1.2 Serum creatinine concentration
 3.1.2 Renal scintigraphy
 3.1.3 Clearance techniques
3.1.3.1 Endogenous creatinine clearance 37
3.1.3.2 Clearance of exogenous creatinine 38
3.1.3.3 Inulin clearance 38
3.1.3.4 Plasma clearance of radioactive markers 39
3.1.3.5 Plasma iohexol clearance test 40
 3.1.3.5.1 Calculation of plasma iohexol clearance in dogs 42
 3.1.3.5.2 Analysis methods 46
 3.1.3.5.3 Plasma iohexol analysis by HPLC 49
3.2 MECHANICAL NOCICEPTIVE THRESHOLD TESTING 53
 3.2.1 Threshold testing device 53
 3.2.2 Threshold testing 55
3.3 EEG RECORDING 56
3.4 DRUGS USED 59
4 ANALGESIC EFFICACY AND EFFECTS ON GLOMERULAR FILTRATION RATE OF PARECOXIB AND TRAMADOL GIVEN ALONE OR TOGETHER WITH PINDOLOL IN ANAESTHETISED DOGS 60
 4.1 INTRODUCTION 60
 4.2 MATERIALS AND METHODS 61
 4.2.1 Animals 61
 4.2.2 Treatment groups and study design 62
 4.2.3 Drug administration and anaesthesia 62
 4.2.4 Assessment of analgesia 63
 4.2.5 Estimation of GFR 63
 4.2.6 Statistical analyses 63
 4.3 RESULTS 64
 4.3.1 Analgesic efficacy 64
 4.3.2 Renal safety 65
 4.4 DISCUSSION 66
 4.4.1 Mechanical nociceptive threshold testing 66
 4.4.2 Analgesia 68
 4.4.3 Renal safety 70
 4.5 CONCLUSION 72
5 EFFICACY OF PREOPERATIVE TRAMADOL, PREOPERATIVE MORPHINE OR PREOPERATIVE LOW-DOSE MORPHINE WITH POSTOPERATIVE TRAMADOL IN DOGS UNDERGOING OVARIOHYSTERECTOMY OR CASTRATION 73
 5.1 INTRODUCTION 73
 5.2 MATERIALS AND METHODS 75
 5.2.1 Ovariocystectomy study 75
 5.2.1.1 Animals 75
 5.2.1.2 Anaesthesia and analgesia 75
 5.2.1.2.1 Pre-anaesthetic medication 75
 5.2.1.2.2 Analgesia 75
 5.2.1.2.3 Anaesthesia 76
 5.2.1.3 EEG and ECG recording 76
 (contd..)
LIST OF CONTENTS (contd..)

5.2.1.4 Surgery 78
5.2.1.5 Postoperative pain assessment 78
5.2.2 Castration study 78
5.2.3 Statistical analyses 79
 5.2.3.1 ECG and EEG 79
 5.2.3.2 Pain and sedation scores - ovariohysterectomy 79
 5.2.3.2 Pain and sedation scores - castration 80
5.3 RESULTS 81
 5.3.1 Ovariohysterectomy 81
 5.3.1.1 EEG responses 82
 5.3.1.2 Pain and sedation scores 84
 5.3.2 Castration 86
 5.3.2.1 EEG responses 86
 5.3.2.2 Pain and sedation scores 88
5.4 DISCUSSION 89
 5.4.1 Ovariohysterectomy 89
 5.4.1.1 EEG responses 89
 5.4.1.2 Pain scores 92
 5.4.2 Castration 95
 5.4.2.1 EEG responses 95
 5.4.2.2 Pain and sedation scores 96
5.5 CONCLUSION 97
6 ELECTROENCEPHALOGRAPHIC RESPONSES OF TRAMADOL, PARECOXIB AND MORPHINE TO ACUTE NOXIOUS ELECTRICAL STIMULATION IN ANAESTHETISED DOGS 98
 6.1 INTRODUCTION 98
 6.2 MATERIALS AND METHODS 99
 6.2.1 Experimental design 99
 6.2.2 Anaesthesia 100
 6.2.3 EEG and ECG recording 100
 6.2.4 Statistical analyses 102
 6.3 RESULTS 102
 6.3.1 EEG responses 102
 6.3.2 ECG results 105
 6.4 DISCUSSION 105
 6.5 CONCLUSION 110
7 GENERAL DISCUSSION AND CONCLUSION 111
 7.1 MECHANICAL NOCICEPTIVE THRESHOLD TESTING 111
 7.2 RENAL FUNCTION UNDER ANAESTHESIA AND ANALGESIA 112
 7.3 EFFICACY AGAINST AN ELECTRICAL NOXIOUS STIMULUS 113
 7.4 INTRA-OPERATIVE NOCICEPTION AND POST-OPERATIVE ANALGESIA 114
 7.5 CONCLUSION 117
REFERENCES 118
APPENDIX 140
LIST OF TABLES

Table 1 Different inflammatory mediators released in response to tissue trauma and their effect on afferent nerve terminals 4
Table 2 Type of dorsal horn neurones and their role in nociceptive transmission 6
Table 3 Advantages and disadvantages of different types of noxious stimuli used to elicit experimental pain 13
Table 4 Side effects of opioids acting at different receptors 27
Table 5 Pharmacokinetics of tramadol following oral and intravenous administration in dogs 29
Table 6 Advantages and disadvantages of different laboratory analytical methods of iohexol in plasma or serum sample 48
Table 7 Simple mean±SE of GFR values estimated from plasma iohexol clearance of dogs (n=8) before and 24 hours after analgesia and anaesthetic induction 66
Table 8 Categorisation of the Glasgow CMPS-SF pain score into three classes, in ovariohysterectomised dogs, based on intensity of pain 80
Table 9 VAS sedation score categorisation into four classes, in ovariohysterectomised dogs, based on level of sedation 80
Table 10 Mean±SE intra-operative heart rate of ovariohysterectomised dogs 81
Table 11 Distribution of number of ovariohysterectomised dogs in three treatment groups, into three classes of pain intensity, at different postoperative time points to enable statistical analysis 84
Table 12 Mean and median CMPS-SF pain score categories of ovariohysterectomised dogs of three treatment groups over nine hours postoperatively 84
Table 13 Distribution of number of ovariohysterectomised dogs in three treatment groups, into four classes of sedation at different postoperative time points to enable statistical analysis 85
Table 14 Mean and median VAS sedation score categories of ovariohysterectomised dogs of three treatment groups during pre- and post-operative periods 85
LIST OF FIGURES

Figure 1 Visual analogue scale for pain scoring 19
Figure 2 Graph of known concentrations of iohexol in dog plasma plotted against peak area determined 50
Figure 3 Chromatogram showing two peaks (eluted at 254 nm of UV light) corresponding to two isomers of iohexol 51
Figure 4 Standard graph of known concentrations of iohexol in dog plasma plotted against peak area determined by final HPLC method 52
Figure 5 Plasma iohexol concentrations (Y-axis, detected by HPLC technique) plotted against time (X-axis, at 120 min and 240 min). (y = -0.2513 x + 78.2, r = 1) 53
Figure 6 Mechanical threshold testing device used to assess efficacy of test drugs in dogs 54
Figure 7 Mechanical nociceptive threshold testing device calibration curve. The Y-axis shows the pressure applied to generate corresponding force in Newtons 54
Figure 8 Position of the electrodes on an anaesthetised dog for EEG recording 56
Figure 9 Schematic diagram of an EEG power spectrum 57
Figure 10 Alterations in the EEG activity with increasing levels of sedation/hypnosis 58
Figure 11 Mean (±SE) nociceptive thresholds of dogs measured before and after administration of analgesics 64
Figure 12 LSM±SE for post-treatment (over 60 minutes) nociceptive thresholds expressed as percent of pre-treatment values, in dogs 65
Figure 13 LSM±SE for plasma iohexol clearance rate (an estimate of GFR) expressed as percent of pretreatment values, of dogs 66
Figure 14 The visual analogue scale used for assessing dogs' sedation in the perioperative period 75
Figure 15 Position of the EEG electrodes on a dog undergoing ovariohysterectomy 77
Figure 16 Diagram of the EEG recording pattern for different surgical time points in dogs undergoing ovariohysterectomised 77
Figure 17 Raw EEG recorded in an anaesthetised dog undergoing surgery 78
Figure 18 Mean±SE end-tidal halothane tension (%) in ovariohysterectomised dogs of three treatment groups 81
Figure 19 Mean±SE F50 (Hz) of ovariohysterectomised dogs (n=8) given morphine (0.1mg kg-1), tramadol (3 mg kg-1) or morphine (0.5 mg kg-1) preoperatively 82
Figure 20 Mean±SE Ptot (µv2) of ovariohysterectomised dogs (n=8) given morphine (0.1mg kg-1), tramadol (3 mg kg-1) or morphine (0.5 mg kg-1) preoperatively 83
Figure 21 Mean±SE SEF (Hz) of ovariohysterectomised dogs (n=8) given morphine (0.1mg kg-1), tramadol (3 mg kg-1) or morphine (0.5 mg kg-1) preoperatively 83
Figure 22 Mean±SE of end-tidal halothane tension (%) in castrated dogs 86

(contd..)
LIST OF FIGURES (contd..)

Figure 23 Mean±SE F50 (Hz) of castrated dogs (n=8) given morphine (0.5mg kg-1) or tramadol (3 mg kg-1) preoperatively 87
Figure 24 Mean±SE Ptot (µv²) of castrated dogs (n=8) given morphine (0.5mg kg-1) or tramadol (3 mg kg-1) preoperatively 87
Figure 25 Mean±SE SEF (Hz) of castrated dogs (n=8) given morphine (0.5mg kg-1) or tramadol (3 mg kg-1) preoperatively 88
Figure 26 Mean±SE pain score of dogs given preoperative morphine 0.5 mg kg-1 (n=8) or tramadol 3 mg kg-1(n=8), at 1, 3, 6 and 9 hours after castration 88
Figure 27 EEG and ECG recording in an anaesthetised dog subjected to electrical stimulation 101
Figure 28 Raw EEG recorded in anaesthetised dogs before and after electrical stimulation 101
Figure 29 LSM±SE for post-electrical stimulation F50 expressed as % of baseline values, of eight dogs given saline, morphine, tramadol or parecoxib 103
Figure 30 LSM±SE for post-electrical stimulation Ptot expressed as % of baseline values, of eight dogs given saline, morphine, tramadol or parecoxib 104
Figure 31 LSM±SE for post-electrical stimulation SEF expressed as % of baseline values, of eight dogs given saline, morphine, tramadol or parecoxib 104
Figure 32 Heart rates post-electrical stimulation in eight dogs administered saline, morphine, tramadol, and parecoxib 105
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine</td>
</tr>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>CGRP</td>
<td>calcitonin gene related peptide</td>
</tr>
<tr>
<td>CL1</td>
<td>clearance calculated by one-compartment model</td>
</tr>
<tr>
<td>CMPS-SF</td>
<td>composite measure pain scale-short form</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COX</td>
<td>cyclooxygenase</td>
</tr>
<tr>
<td>Craf</td>
<td>continual rate of application of force</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>cytochrome P450 2D6</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalogram</td>
</tr>
<tr>
<td>ERPF</td>
<td>effective renal plasma flow</td>
</tr>
<tr>
<td>ET CO₂</td>
<td>end-tidal CO2 tension</td>
</tr>
<tr>
<td>ET HAL</td>
<td>end-tidal halothane tension</td>
</tr>
<tr>
<td>F50</td>
<td>median frequency</td>
</tr>
<tr>
<td>FFT</td>
<td>fast fourier transformation</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-amino butyric acid</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GLMM</td>
<td>generalised linear mixed models</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>IC50</td>
<td>median inhibition concentration</td>
</tr>
<tr>
<td>ICL</td>
<td>iohexol clearance</td>
</tr>
<tr>
<td>ICP-AEC</td>
<td>inductively coupled plasma-atomic emission spectroscopy</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>LD50</td>
<td>median lethal dose</td>
</tr>
<tr>
<td>LSM</td>
<td>least square means</td>
</tr>
<tr>
<td>MAP</td>
<td>mean arterial pressure</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NA</td>
<td>noradrenaline</td>
</tr>
<tr>
<td>NH₄OH</td>
<td>ammonium hydroxide</td>
</tr>
<tr>
<td>NK</td>
<td>neurokinin</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-Methyl D-Aspartate</td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
</tr>
</tbody>
</table>

(contd..)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAG</td>
<td>periaqueductal grey</td>
</tr>
<tr>
<td>PG</td>
<td>prostaglandin</td>
</tr>
<tr>
<td>PGE2</td>
<td>prostaglandin E2</td>
</tr>
<tr>
<td>PPD</td>
<td>pressure of palpation device</td>
</tr>
<tr>
<td>PR</td>
<td>pulse rate</td>
</tr>
<tr>
<td>Ptot</td>
<td>total EEG power</td>
</tr>
<tr>
<td>RBF</td>
<td>renal blood flow</td>
</tr>
<tr>
<td>RR</td>
<td>respiratory rate</td>
</tr>
<tr>
<td>RVM</td>
<td>rostral ventromedial medulla</td>
</tr>
<tr>
<td>SC</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SEF</td>
<td>spectral edge frequency 95%</td>
</tr>
<tr>
<td>SG</td>
<td>strain gauge</td>
</tr>
<tr>
<td>SP</td>
<td>substance P</td>
</tr>
<tr>
<td>SpO2</td>
<td>oxygen saturation</td>
</tr>
<tr>
<td>SRT</td>
<td>spinoreticular tract</td>
</tr>
<tr>
<td>STT</td>
<td>spinothalamic tract</td>
</tr>
<tr>
<td>T<sub>max</sub></td>
<td>time to maximum plasma concentration</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analogue scale</td>
</tr>
<tr>
<td>VTH</td>
<td>veterinary teaching hospital</td>
</tr>
<tr>
<td>WMWodds</td>
<td>Wilcoxon-Mann-Whitney odds</td>
</tr>
</tbody>
</table>