Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
RNAi-mediated Knockdown of Chromatin Modifier Proteins and Their Effect on Long-term Memory in *Drosophila*

A thesis presented to Massey University in partial fulfillment of the requirements for the degree of Master of Science in Genetics

Charles Ellen
2008
Abstract

Memory formation in *Drosophila melanogaster* is composed of two pathways that are genetically distinct, and functionally independent of each other. These are short-term and long-term memory. Short-term memory is a transient phenomenon, located in the cytoplasm of the neuronal cells, which requires no alteration of gene expression. The formation of long-term memory requires a change in gene expression, therefore chromatin-modifying complexes may play an integral part. The mushroom-bodies of *Drosophila* are a distinct bilateral brain structure and are essential for the formation and recollection of long-term memory. Therefore, an alteration in gene expression within the mushroom bodies is essential to the formation of long-term memory. Disruption of a gene within the mushroom-bodies that resulted in an alteration in the formation of long-term memory would indicate that the gene is involved in long-term memory.

In order to investigate the role of the two chromatin-modifying proteins, HDACX and pr-Set7, whose role in memory function is unknown, RNA interference was used to knockdown expression of their respective mRNA. Published GAL4 lines were used to drive down expression in the mushroom bodies. The efficacy of the knockdown on levels of mRNA was measured by quantitative RT-PCR. The effect of these knockdowns on the formation of long-term memory was assayed using conditioned courtship. Additionally, the actual spatial and temporal expression of the GAL4 drivers was investigated using fluorescent proteins, and analysed using fluorescent microscopy.

Both pr-set7 and HDACX appear to play a role in long-term memory function. The RNAi-induced knockdown of the individual mRNAs caused impairment in long-term memory formation, although the exact mode of action is still to be elucidated. The levels of mRNA from these knockdowns were reduced within the head, although not to the extent expected. The fluorescent microscopy analysis indicated that the expression of mushroom-body specific GAL4 drivers was more widespread than previously reported.
Acknowledgment

I would like to thank my supervisor Associate Professor Max Scott for his seemingly endless patience, allowing me to investigate my topic freely, and reining me in if it got to out of hand. I would also like to thank him for having the confidence in me to handle a project that was new to the lab.

I would also like to thank Corey Laverty for putting up with my questions on experimental problems that had absolutely no reference to the topic at hand. Thanks to Anja for her helping me trouble-shoot the qRT-PCR experiments, and to everyone else who is in, or has been in, the Flyspot Lab: Esther, Fang, Abhi, Brandi-lee, Carolina, and Helen. I feel it is also important to mention my sister Fiona, and brother-in-law Andrew, and to thank them for the ready supply of farm meat, and handy clothes drier. The Massey University Alpine Club (MUAC) deserve a mention for simply keeping a flow of interesting people coming into the club, and helping me find places to stay around the world. Finally I would like to thank Emma for providing plenty of distraction and amusing anecdotes while sitting in the either freezing cold, or scorching hot, computer room. It was fun, and Good Luck to all.
Table of Contents

Abstract .. II

Acknowledgements .. III

List of Table .. XI

List of Figures ... XII

Abbreviations ... XIV

1. Chapter One – Introduction 1

1.1 Chromatin 2

1.1.1 Chromatin Overview 2
1.1.2 Histone Tails 3
1.1.3 Histone Acetyltransferase 3
1.1.4 Histone Deacetylase 5

1.1.4.1 Histone Deacetylase 5
1.1.4.2 Histone Deacetylase $HDACX$ 6

1.1.5 Histone Methyltransferase 7

1.1.5.1 Histone Methyltransferase 7
1.1.5.2 Histone Methyltransferase $pr-Set7$ 8
1.1.5.3 Histone Demethylase 9

1.2 Memory 10

1.2.1 Memory Overview 10
1.2.2 Long-Term Memory Consolidation 11
1.2.3 Mushroom Bodies 12

1.2.3.1 Mushroom Body Development 12
1.2.3.2 Mushroom Bodies and Long-Term Memory Function

1.2.4 Assays for Long-Term Memory
1.2.4.1 Olfactory Conditioning Assay
1.2.4.2 Courtship Conditioning Assay
1.2.5 Histone Acetylation during Memory Formation

1.3 RNAi Interference
1.3.1 RNA interference
1.3.2 Molecular Mechanism of RNAi

1.4 GAL4 Responsive Promoter
1.4.1 Mushroom-Body Specific Drivers

1.5 Site-Specific Integration Using Phage ΦC31 Integratease

1.6 Experimental Overview
1.6.1 Aim
1.6.2 Genes of Interest
1.6.2.1 Drosophila Histone Deacetylase HDACX
1.6.2.2 Drosophila Methyltransferase pr-Set7
1.6.3 Hypothesis
1.6.4 Project Objectives

2. Chapter Two – Materials and Methods
2.1 Chemicals and Enzymes
2.2 Buffers and Solutions
2.3 Culture Media
2.4 Bacterial Strains
2.5 Chemically Competent Cells
2.5.1 Modified Method for Creating Chemically Competent Stbl2™ Cells
2.6 Culture Storage
2.7 Isolation of Nucleic Acids
2.7.1 RNA
2.7.2 Small Scale Preparation of Plasmid DNA
2.7.3 Large-Scale Preparations of Plasmid DNA 26
2.7.4 Isolation of Genomic DNA 26
2.7.5 Isolation and Purification of Total RNA 26
2.7.6 DNase Treatment of Total RNA 27
2.7.7 Gel Extraction 27
2.7.8 PCR Purification 27

2.8 Nucleic Acid Quantification 27

2.9 DNA Sequencing 29
2.9.1 Sequencing 29
2.9.2 Sequence Analysis 29

2.10 Polymerase Chain Reaction 30
2.10.1 PCR 30
2.10.2 PCR on Colony 30
2.10.3 cDNA Synthesis 30
2.10.4 Inverse PCR 30
2.10.5 Quantitative Real-Time PCR 32

2.11 Agarose Gel Electrophoresis 32

2.12 Enzymatic Manipulations 32
2.12.1 Analytical Restriction Digestions 32
2.12.2 Preparative Restriction Digestions for Cloning 35
2.12.3 Dephosphorylation of 5’ Ends 35
2.12.4 Phosphorylation of 5’ Ends 35
2.12.5 Blunted End Formation 35
2.12.6 Ligation 36
2.12.7 Transformation of DH5α Chemically Competent Cells 36
2.12.7.1 Transformation of Stbl2™ Chemically Competent Cells 36

2.13 Drosophila Care and Manipulation 37
2.13.1 Drosophila Strains 37
2.13.2 Drosophila Culture Media 37
2.13.2.1 Cornmeal Agar 37
2.13.2.2 Egg Laying Media 37
2.13.3 Creation of transgenic Fly Lines
 2.13.3.1 Co-Precipitation with Helper Plasmid pΔ2-3
 2.13.3.2 Microinjection
2.13.4 Microinjection Crosses
2.13.5 Virgin Collection
2.13.6 Collection of Drosophila Heads
2.13.7 Linkage Analysis
2.13.8 Collection of Developmental Stages
2.13.9 Drosophila Brain Dissection for Confocal Microscopy
2.13.10 Fluorescent Microscopy
2.13.11 Confocal Microscopy
2.13.12 Viability Assay
2.14 Behavioural Conditioning of Drosophila
 2.14.1 Preparation of Female Flies for Conditioning Assay
 2.14.2 Preparation of Male Flies for Conditioning Assay
 2.14.3 Conditioning of Male Flies
 2.14.4 Behavioural Assay Method and Materials
 2.14.5 Statistical Analysis

3. Chapter Three – Results
3.1 Molecular Cloning
 3.1.1 Overall Strategy for Molecular Cloning
 3.1.2 Creation of pGEM-T Easy Clones
 3.1.2.1 Creation of HDACX pGEM-T Easy Clone
 3.1.2.2 Creation of pr-Set7 pGEM-T Easy Clone
 3.2.2.3 Creation of msl-2 pGEM-T Easy Clone
 3.1.3 Analysis of pUASp-NBa-CS2-BgX
 3.1.3.1 Sub-Cloning of Important Regions of pUASp-NBa-CS2-BgX
 3.1.3.2 Sequencing of Flanking Regions of the pUASp-NBa-CS2-BgX
3.1.4 Creation of pUASp-NBa-CS2-BgX Inverted Repeats 54
 3.1.4.1 Confirmation of HDACX Inverted Repeats 56
 3.1.4.2 Confirmation of pr-Set7 Inverted Repeats 56
 3.1.4.3 Confirmation of msl-2 Inverted Repeats 56
3.1.5 Creation of pUASp-RNAi-attB 58

3.2 Drosophila Transformations 59
 3.2.1 Transformation of Drosophila with the pUAS-IR-CS2 Vector 59
 3.2.2 Transformation of pUAS-CS2-attB into Drosophila 59
 3.2.3 Transgene Integration Sites of Selected Transformant Fly Lines 60
 3.2.3.1 pUAS-HDACX_\textsubscript{IR-CS2_intron} Insertion Position 60
 3.2.3.2 pUAS-pr-Set7_\textsubscript{IR-CS2_intron} Insertion Position 60
 3.2.3.3 pUAS-MSL2_\textsubscript{IR-CS2_intron} Insertion Position 60
3.3 Analysis of GAL4 Driver Lines by Fluorescence 61
 3.3.1 Analysis of GAL4 Expression by DsRed-nls Fluorescence 61
 3.3.1.1 Analysis of Artificial Promoter 61
 3.3.1.2 Analysis of Enhancer-Trap Line BSC8176 65
 3.3.2 Analysis of GAL4 Expression by Fluorescence of Mushroom-Body Specific Enhancers 66
 3.3.2.1 Analysis of MB247 by Fluorescence 66
 3.3.2.2 Analysis of MB739 by Fluorescence 70
 3.3.2.3 Analysis of MB772 by Fluorescence 73
3.4 RNAi-mediated Reduction of Expression of Target Genes 75
 3.4.1 Whole Fly qRT-PCR of arm-GAL4 Induced Transformant Lines 75
 3.4.1.1 Relative Levels of HDACX mRNA in Whole Flies 75
 3.4.1.2 Relative Levels of pr-Set7 mRNA in Whole Flies 77
 3.4.1.3 Relative Levels of msl-2 mRNA in Whole Flies 77
3.4.2 Analysis of mRNA Levels by qRT-PCR of MB247 Induced Transformant Lines 78

3.5 HDACX Developmental Expression 80

3.6 Phenotypic Effect of Inverted Repeat Lines 82
 3.6.1 Phenotypic Effects of Eye specific Promoter 82
 3.6.2 Effect on Viability of arm-GAL4 Induced Transformant Lines 84

3.7 Effect of RNAi-Induced Reduction of Target Gene Expression on Long-Term Memory 86
 3.7.1 Behavioural Analysis of CantonS 86
 3.7.2 Behavioural Analysis of CamKII Inverted Repeat 88
 3.7.3 Behavioural Analysis of HDACX Inverted Repeat 88
 3.7.4 Behavioural Analysis of pr-Set7 Inverted Repeat 91

4. Chapter Four – Discussion 93
 4.1 Creation of UAS-Inverted Repeat Lines 94
 4.2 Expression Analysis of GAL4 Drivers 95
 4.3 Analysis of Relative mRNA Levels and Phenotypic Effects of RNAi 98
 4.3.1 RNAi-mediated Knockdown of Gene Expression 98
 4.3.2 Relative HDACX mRNA Levels Through Development 99
 4.3.3 Phenotypic Effects of RNAi-mediated Knockdown of Gene Expression 99
 4.4 A Possible Role for the HDACX and pr-Set7 Chromatin Modifying Proteins in Long-Term Memory 100
 4.5 Technical Problems Arising Within this Study 101

5. Chapter Five – References 103

6. Chapter Six – Appendicies 110
 6.1 Vector Map of pUAS-HDACX\textsubscript{IR.CS2intron} and Predicted Restriction Fragments 111
 6.2 Vector Map of pUAS-prSet7\textsubscript{IR.CS2intron} and Predicted Restriction Fragments 112
6.3 Vector Map of pUAS-MSL2<i>ir</i>-CS2<i>intron</i> and Predicted Restriction Fragments 113
6.4 Vector Map of pUASp-NBa-CS2-BgX 114
6.5 Vector Maps of pUASp-RNAi-attB 115
6.6 Courtship Conditioning Assay Data 116
6.7 Data from qRT-PCR Experiments 117
6.8 Viability Assay Data 120
6.9 Chitin Synthase 2 Intron Alignment 123
6.10 HDACX Sequence Alignment 124
6.11 pr-Set7 Sequence Alignment 125
6.12 msl-2 Sequence Alignment 126
6.13 Map of pCaSpeR Vector 127
6.14 Injection Data 128
6.15 Inverse PCR Sequence Alignment 129
6.16 Sequence of pUASp-NBa-CS2-BgX Region of Interest 130
6.17 Sequence of PCR to confirm attB insert 131
List of Tables

<table>
<thead>
<tr>
<th>Table ID</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Oligonucleotide Primers for Sequencing and iPCR</td>
<td>29</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Oligonucleotide Primers Used for PCR</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>LightCycler 480 Protocol Used for Quantitative Real-Time PCR</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Oligonucleotide Primers Used for Quantitative Real-Time PCR</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Fly Lines Used in this Study</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Fly Lines Produced in this Study</td>
<td>39</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Plasmids Used or Made in this Study</td>
<td>41</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1	Diagram of the *Drosophila* Mushroom-Bodies	13
Figure 1.2	Mechanism of Dicer/RISC Mediated RNAi	18
Figure 2.1	Behavioural Conditioning and Assay Chamber	47
Figure 3.1	Cloning Strategy for RNAi Vector	55
Figure 3.2	Example of Restriction Digest for Inverted Repeat Confirmation	57
Figure 3.3	GAL4 Regulated Expression of DsRed-nls Throughout Development	62
Figure 3.4	GAL4 Regulated Expression of DsRed-nls Throughout Development	64
Figure 3.5	GAL4 Regulated Expression of DsRed-nls and GFP Throughout Development	67
Figure 3.6	Confocal Microscopy Image of MB247-GAL4 Driving DsRed-nls	69
Figure 3.7	Confocal Microscopy Image of MB247-GAL4 Driving GFP	71
Figure 3.8	GAL4 Regulated Expression of DsRed-nls and GFP Throughout Development of MB739	72
Figure 3.9	GAL4 Regulated Expression of DsRed-nls and GFP Throughout Development of MB772	74
Figure 3.10	Relative mRNA Levels of RNAi Induced Transgenic Lines in Whole Flies	76
Figure 3.11	Relative mRNA Levels of RNAi Induced Transgenic Lines in Fly Heads	79
Figure 3.12	Relative mRNA Levels of HDACX Through *Drosophila* Development	81
Figure 3.13	Eye Specific Promoter of Inverted Repeat Lines	83
Figure 3.14	Effect of dsRNA on Fly Viability	85
Figure 3.15	Courtship Data of Adult CantonS Flies	87
Figure 3.16	Courtship Data of Adult CantonS that Express Reduced Levels of CamKII	89
Figure 3.17 Courtship Data of Adult CantonS that Express Reduced Levels of HDACX

Figure 3.18 Courtship Data of Adult CantonS that Express Reduced Levels of pr-Set7
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDGP</td>
<td>Berkeley Drosophila Genome Project</td>
</tr>
<tr>
<td>bp</td>
<td>Base Pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleoside triphosphates</td>
</tr>
<tr>
<td>CIP</td>
<td>Calf Intestinal Phosphatase</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>PNK</td>
<td>Polynucleotide Kinase</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl- beta-D-galactopyranoside</td>
</tr>
<tr>
<td>CS2</td>
<td>chitin Synthase 2 intron</td>
</tr>
<tr>
<td>iPCR</td>
<td>Inverse PCR</td>
</tr>
<tr>
<td>nt</td>
<td>Nucleotide</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA Interference</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histone deacetylase</td>
</tr>
<tr>
<td>HMT</td>
<td>Histone methyltransferase</td>
</tr>
<tr>
<td>HAT</td>
<td>Histone acetyltransferase</td>
</tr>
<tr>
<td>DNase</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcriptase - polymerase chain reaction</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase-pair</td>
</tr>
<tr>
<td>CI</td>
<td>Courtship Index</td>
</tr>
<tr>
<td>MB</td>
<td>Mushroom-bodies</td>
</tr>
<tr>
<td>ISWI</td>
<td>Imitation Switch</td>
</tr>
<tr>
<td>P/CAF</td>
<td>p300/CBP Associated Factor</td>
</tr>
<tr>
<td>MYST</td>
<td>MOZ translocation partner, two yeast Sas proteins, and Tip60 protein family</td>
</tr>
</tbody>
</table>